Advertisement

Vertical Distribution of Benthic Macrofauna in Intertidal Habitats Frequented by Shorebirds at Merja Zerga Lagoon

  • Feirouz Touhami
  • Hocein Bazairi
  • Bouabid Badaoui
  • Abdelaziz Benhoussa
Article
  • 26 Downloads

Abstract

The distribution of shorebirds is strongly linked to the availability of their prey consisting mainly of benthic invertebrates, especially during wintering and migratory stopovers. To better understand the functioning of this trophic link benthos-shorebirds at intertidal mudflats, it is necessary to evaluate the vertical distribution and importance of the fraction of benthic macrofauna accessible to shorebirds at these habitats. Nineteen stations were sampled in the main mudflats frequented by birds. Samples were cut into three slices of 0–5 cm, 5–15 cm and >15 cm. The results showed a vertical stratification of the benthic macrofauna negatively correlated with the depth of the Merja Zerga lagoon intertidal sediments. The specific richness, density and biomass were concentrated at the surface layer of the sediments and shrink as we go more in depth. The polychaetes showed the most diverse distribution pattern along the three sedimentary layers. While the Bivalves dominated in term of biomass, the Gastropods dominated with regard to density. We observed also that the upper layer is mainly colonized by small species and / or individuals with high density and low biomass; this phenomenon is gradually reversed as we go more in depth. The sedimentary parameters (organic matter content and granulometry of the substrate) were not responsible for the variations observed in the distribution of the macrofauna along the sedimentary profile, as the vertical distribution of these factors was homogeneous to a depth of 20 cm.

Keywords

Merja Zerga lagoon Benthic macrofauna Vertical distribution Accessible fraction Avifauna 

Notes

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Acuña k, Duarte C, Jaramillo E, Contreras H, Manzano M, Navarro JM (2012) Vertical distribution of the macroinfauna associated to bivalves in a sedimentary intertidal flat of southern Chile. Rev Biol Mar Oceanogr 47(3):383–393.  https://doi.org/10.4067/S0718-19572012000300002 CrossRefGoogle Scholar
  2. Barbosa A, Moreno E (1999) Evolution of foraging strategies in shorebirds: an ecomorphological approach. Auk 116:712–725CrossRefGoogle Scholar
  3. Benhoussa A (2000) Caractérisation des habitats et microdistribution de l’avifaune de la zone humide de Merja Zerga (Maroc). Thèse de doctorat, Université Mohamed V, RabatGoogle Scholar
  4. Bocher P, Robin F, Kojadinovic J, Delaporte P, Rousseau P, Dupuy C, Bustamante P (2014) Trophic resource partitioning within a shorebird community feeding on intertidal mudflat habitats. J Sea Res 92:115–124.  https://doi.org/10.1016/j.seares.2014.02.011 CrossRefGoogle Scholar
  5. Bouchet VMP, Sauriau PG, Debenay JP, Mermillod-Blondin F, Schmidt S, Amiard JC, Dupas B (2009) Influence of the mode of macrofauna-mediated bioturbation on the vertical distribution of living benthic foraminifera: first insight from axial tomodensitometry. J Exp Mar Biol Eco 371(1):20–33.  https://doi.org/10.1016/j.jembe.2008.12.012 CrossRefGoogle Scholar
  6. Cardoso I, Granadeiro JP, Cabral H (2010) Benthic macroinvertebates vertical distribution in the Tagus estuary (Portugal): the influence of tidal cycle. Estuar Coast Shelf Sci 86(4):580–586.  https://doi.org/10.1016/j.ecss.2009.11.024 CrossRefGoogle Scholar
  7. Chassé C, Glémarec M (1976) Principes généraux de la classification des fonds pour la cartographie bio-sédimentaire. J Rech Oceanogr 1(3):1–18Google Scholar
  8. Cherkaoui I, Lamrani M (2007) Caractérisation ornithologique des habitats naturels de la lagune de Merja Zerga (Maroc). Ostrich 78(2):533–540.  https://doi.org/10.2989/OSTRICH.2007.78.2.66.180 CrossRefGoogle Scholar
  9. Clavier J (1984) Distribution verticale de la macrofaune benthique dans un sédiment fin non exondable. Cah Biol Mar 25:141–152Google Scholar
  10. Dakki M, Qninba A, El Agbani MA, Benhoussa A, Beaubrun PC (2001) Wintering of waders in Morocco : national population estimates and assessment of the sites ‘importance. Wader Study Group Bull 96:35–47Google Scholar
  11. Durou C (2006) Recherche d’indicateurs de l’état physiologique de l’annélide polychète endogée Nereis diversicolor en relation avec la qualité du milieu. Université de Nantes, Faculté des sciences pharmaceutiquesGoogle Scholar
  12. Esselink P, Zwarts L (1989) Seasonal trend in burrow depth and tidal variation in feeding activity of Nereis diversicolor. Mar Ecol Prog Ser 56:243–254.  https://doi.org/10.3354/meps056243 CrossRefGoogle Scholar
  13. Evans PR, Ward RM, Bone M, Leakey M (1998) Creation of temperate-climate intertidal mudflats: factors affecting colonization and use by benthic invertebrates and their bird predators. Mar Pollut Bull 37:8–12Google Scholar
  14. Fasola M, Biddau L (1997) An assemblage of wintering waders in coastal Kenya: activity budget and habitat use. Afr J Ecol 35(4):339–350.  https://doi.org/10.1111/j.1365-2028.1997.087-89087.x CrossRefGoogle Scholar
  15. Filgueiras VL, Campo LS, Lavrado HP, Frensel R, Pollery R (2007) Vertical distribution of macrobenthic infauna from the shallow sublittoral zone of Admiralty Bay, King George Island, Antarctica. Polar Biol 30(11):1439–1447.  https://doi.org/10.1007/s00300-007-0305-z CrossRefGoogle Scholar
  16. Flach E, Heip C (1996) Vertical distribution of macrozoobenthos within the sediment on the continental slope of the Goban Spur area (NE Atlantic). Mar Ecol Prog Ser 141:55–66.  https://doi.org/10.3354/meps141055 CrossRefGoogle Scholar
  17. Fonseca VG, Grade N, Cancela da Fonseca L (2004) Patterns of association and habitat use by migrating shorebirds on intertidal mudflats and saltworks on the Tavira estuary, Ria Formosa, southern Portugal. Wader Study Group Bull 105:50–55Google Scholar
  18. François F, Gerino M, Stora G, Durbec JP, Poggiale JC (2002) Functional approach to sediment reworking by gallery-forming macrobenthic organisms: modeling and application with the polychaete Nereis diversicolor. Mar Ecol Prog Ser 229:127–136.  https://doi.org/10.3354/meps229127 CrossRefGoogle Scholar
  19. Garmendia JM, Mora JMPJ (2003) Niveles de penetración de los diferentes grupos macroinfaunales en los sedimentos arenosos sublitorales de la ría de Ares y Betanzos (Galicia) (noroeste de la península Ibérica). Bol Inst Esp Oceanogr 19:283–291Google Scholar
  20. Gérino M, Frignani M, Mugnai C, Belluci L, Prevedelli D, Valentini A, Castelli A, Delmotte S, Sauvage S (2007) Bioturbation in the Venice lagoon: rates and relationship to organisms. Acta Oecol 32(1):14–25.  https://doi.org/10.1016/j.actao.2007.02.003 CrossRefGoogle Scholar
  21. Gilbert F, Hulth S, Grossi V, Poggiale JC, Desrosiers G, Rosenberg R, Gerino M, Francois-Carcaillet F, Michaud E, Stora G (2007) Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): importance of faunal biovolume. J Exp Mar Biol Ecol 348(1-2):133–144.  https://doi.org/10.1016/j.jembe.2007.04.015 CrossRefGoogle Scholar
  22. Goeij P, Luttikhuizen PC, van der Meer J, Piersma T (2001) Facilitation on an intertidal mudflat: the effect of siphon nipping by flatfish on burying depth of the bivalve Macoma balthica. Oecologia 126(4):500–506.  https://doi.org/10.1007/s004420000526 CrossRefGoogle Scholar
  23. Goss-Custard JD (1996) The oystercatcher: from individuals to populations. Oxford University Press, OxfordGoogle Scholar
  24. Guerra-García JM, Corzo JR, García-Gómez JC (2003) Distribución vertical de la macrofauna en sedimentos contaminados del interior del puerto de Ceuta. Bol Inst Esp Oceanogr 19:105–121Google Scholar
  25. Hines AH, Comtois KL (1985) Vertical distribution of infauna in sediments of a subestuary of Central Chesapeake Bay. Estuaries 8(3):296–304.  https://doi.org/10.2307/1351490 CrossRefGoogle Scholar
  26. Jaramillo E, Contreras H, Duarte C (2007) Community structure of the macroinfauna inhabiting tidal flats characterized by the presence of different species of burrowing bivalves in Southern Chile. Hydrobiologia 580(1):85–96.  https://doi.org/10.1007/s10750-006-0463-y CrossRefGoogle Scholar
  27. Johnson RG (1967) The vertical distribution of the infauna of a sand flat. Ecology 48(4):571–578.  https://doi.org/10.2307/1936501 CrossRefGoogle Scholar
  28. Josefson AB (1989) Do subsurface deposit-feeder partition resources by vertical stratification in the sediment? Sci Mar 53:307–313Google Scholar
  29. Lourenço PM, Catry T, Piersma T, Granadeiro JP (2016) Comparative feeding ecology of shorebirds wintering at Banc d’Arguin, Mauritania. Estuar Coast 39(3):855–865.  https://doi.org/10.1007/s12237-015-0029-1 CrossRefGoogle Scholar
  30. Luczak C, Menu D, Rolet C (2013) A multilevel core sampler device to directly estimate food supply accessible to waders. OJMS 3(02):52–65.  https://doi.org/10.4236/ojms.2013.32A006 CrossRefGoogle Scholar
  31. Meadows PS, Tait J (1989) Modification of sediment permeability and shear strength by two burrowing invertebrate. Mar Biol 101(1):75–82.  https://doi.org/10.1007/BF00393480 CrossRefGoogle Scholar
  32. Mermillod-Blondin F, Rosenberg R (2006) Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat Sci 68(4):434–442.  https://doi.org/10.1007/s00027-006-0858-x CrossRefGoogle Scholar
  33. Michaud G, Ferron J (1990) Prey selection by four shorebird species (Charadrii) passing through the SaintLaurent estuary on their southward migration. Can J Zool 68(6):1154–1162.  https://doi.org/10.1139/z90-171 CrossRefGoogle Scholar
  34. Michaud E, Desrosiers G, Mermillod-Blondin F, Sundby B, Stora G (2006) The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J Exp Mar Biol Ecol 337(2):178–189.  https://doi.org/10.1016/j.jembe.2006.06.025 CrossRefGoogle Scholar
  35. Mucha AP, Vasconcelos MT, Bórdalo AA (2004) Vertical distribution of the macrobenthic community and its relationships to trace metals and natural sediment characteristics in the lower Douro estuary, Portugal. Estuar Coast Shelf Sci 59(4):663–673.  https://doi.org/10.1016/j.ecss.2003.11.010 CrossRefGoogle Scholar
  36. Muniz P, Pires-Vanin AMS, Venturini N (2013) Vertical distribution patterns of macrofauna in a subtropical near-shore coastal area affected by urban sewage. Mar Ecol 34(2):233–250.  https://doi.org/10.1111/maec.12010 CrossRefGoogle Scholar
  37. Palacio J, Lastra M, Mora J (1993) Distribución vertical de la macroinfauna intermareal en la Ensenada de Lourizan (Ría de Pontevedra). Thalassas 9:49–62Google Scholar
  38. Ponsero A, Sturbois A, Desroy N, Le Mao P, Jones A, Fournier J (2016) How do macrobenthic resources concentrate foraging waders in large megatidal sand flats. Estuar Coast Shelf Sci 178:120–128.  https://doi.org/10.1016/j.ecss.2016.05.023 CrossRefGoogle Scholar
  39. Poznańska-Kakareko M, Budka M, Żbikowski J, Czarnecka M, Kakareko T, Jermacz L, Kobak J (2017) Survival and vertical distribution of macroinvertebrates during emersion of sandy substratum in outdoor mésocosmes. Fundam Appl Limnol 190(1):29–47.  https://doi.org/10.1127/fal/2017/1017 CrossRefGoogle Scholar
  40. Qninba A, Dakki M, Benhoussa A, EL Agbani MA (2007) Rôle de la côte Atlantique marocaine dans l’hivernage des limicoles (Aves, Charadrii). Ostrich 78(2):489–493.  https://doi.org/10.2989/OSTRICH.2007.78.2.59.173 CrossRefGoogle Scholar
  41. Queirós AM, Hiddink JG, Johnson G, Cabral HN, Kaiser MJ (2011) Context dependence of marine ecosystem engineer invasion impacts on benthic ecosystem functioning. Biol Invasions 13(5):1059–1075.  https://doi.org/10.1007/s10530-011-9948-3 CrossRefGoogle Scholar
  42. Quijón P, Jaramillo E (1996) Seasonal vertical distribution of the intertidal macroinfauna in an estuary of south-central Chile. Estuar Coast Shelf Sci 43:53–663CrossRefGoogle Scholar
  43. R Core Team (2016) R: A language and environment for statistical computing .R Foundation for Statistical Computing. URL http://www.R-project.org
  44. Reading CF, Mcgrorty S (1978) Seasonal variations in the burying depth of Macoma balthica (L.) and its accessibility to wading birds. Estuarine Coastal Mar Sci 6(2):135–144.  https://doi.org/10.1016/0302-3524(78)90095-6 CrossRefGoogle Scholar
  45. Rodil IF, Cividanes S, Lastra M, Lopez J (2008) Seasonal variability in the vertical distribution of benthic macrofauna and sedimentary organic matter in an estuarine beach (NW Spain). Estuar Coast 31(2):382–395.  https://doi.org/10.1007/s12237-007-9017-4 CrossRefGoogle Scholar
  46. Rolet C (2015) Les communautés macrozoobenthiques des sédiments meubles intertidaux du littoral Nord - Pas-de-Calais : Structure, relations avec les limicoles hivernants et enjeux de conservation. Thèse de doctorat, Lille 1Google Scholar
  47. Rosa LC, Bemvenuti CE (2006) Seasonal stratification of the estuarine macroinfauna of the Patos lagoon estuary, Southern Brazil. Thalassas 22:17–23Google Scholar
  48. Smith CR, Kukert H (1996) Macrobenthic community structure, secondary production, and rates of bioturbation and sedimentation at the Kiine’ohe bay lagoon floor. Pac Sci 50:211–229Google Scholar
  49. Valencia B, Herrera L, Giraldo A (2014) Estructura de la comunidad y distribución vertical de la macrofauna de fondos blandos en isla Gorgona. Pacífico Colombian 62:169–188Google Scholar
  50. Van de Kam J, Ens BJ, Piersma T, Zwarts L (2004) Shorebirds. An illustrated behavioural ecology KNNV publishers. Utrecht 1–368Google Scholar
  51. Volkenborn N, Polerecky D, Beer D (2007) Bioturbation and bioirrigation extend the open exchange regions in permeable sediments. Limnol Oceanogr 52(5):1898–1909.  https://doi.org/10.4319/lo.2007.52.5.1898 CrossRefGoogle Scholar
  52. Zwarts L, Blomert AM (1992) Why knot Cahdris canutus take medium-sized Macoma balthica when six prey species are available. Mar Ecol Prog Ser 83:113–128.  https://doi.org/10.3354/meps083113 CrossRefGoogle Scholar
  53. Zwarts L, Wanink JH (1993) How the food supply harvestable by waders in the Wadden Sea depends on the variation in energy density, body weight, biomass, burying depth and behaviour of tidal-flat invertebrates. Neth J Sea Res 31(4):441–476.  https://doi.org/10.1016/0077-7579(93)90059-2 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory of ‘Biodiversity, Ecology and Genome’, Research Center of ‘Plant and Microbial Biotechnology, Biodiversity and Environment’, Faculty of SciencesUniversity Mohammed V in RabatRabatMorocco

Personalised recommendations