Phytoplankton and Hydrochemical Parameters Near Net Pens with Beluga Whales in a Shallow Bay of the Northwestern Sea of Japan

  • Olga G. Shevchenko
  • Vladimir M. Shulkin
  • Anna A. Ponomareva


The dynamics of phytoplankton composition and main hydrochemical parameters have been studied in Paris Bay, northwestern Sea of Japan. This body of water draws particular attention due to the captive beluga whales, Delphinapterus leucas, which are kept in open net pens here. According to the results of investigations conducted, the main factors that influence the hydrochemical parameters in this area are the water exchange, terrestrial runoff, ice melting, and phytoplankton blooms. Phytoplankton has the most pronounced effect in early spring, when its destruction is accompanied by a significant increase in concentration of dissolved nutrients, and in early summer, when proliferation of diatoms causes a depletion of nutrients. An analysis of the hydrochemical parameters and phytoplankton composition has shown that the marine mammals kept in captivity exert no impact on trophicity of the waters in Paris Bay. The dynamics of abundance of micro-algae are characterized by two or three peaks a year; the pattern of these dynamics is typical of most shallow bays in the northwestern Sea of Japan. Diatom species of the genus Skeletonema (S. dohrnii and S. japonicum), which are new to the marine waters of Russia, have been found for the first time.


Phytoplankton Environmental variables Hydrochemical parameters Marine mammals Sea of Japan 



The study was financially supported by the Russian Foundation for Basic Research, project no. 15-04-04838 and no. 16-05-00166.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Aleksanin AI, Kim V, Orlova TY, Stonik IV, Shevchenko OG (2012) Phytoplankton of the Peter the Great Bay and its remote sensing problem. Okeanologiya 52(2):239–250Google Scholar
  2. Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela RM, Parsons ML, Rensel JEJ, Townsend DW, Trainer VL, Vargo GA (2008) Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8:39–53CrossRefGoogle Scholar
  3. Bargu S, Silver M, Goldstein T, Roberts K, Gulland F (2010) Complexity of domoic acid-related sea lion strandings in Monterey Bay, California: foraging patterns, climate events, and toxic blooms. Mar Ecol Prog Ser 418:213–222CrossRefGoogle Scholar
  4. Begun AA (2004) Phytoplankton in the Zolotoi Rog Bay and the Ussuri Bay (sea of Japan) under conditions of anthropogenic pollution. Izv TINRO 138:320–344Google Scholar
  5. Borkman D, Smayda T (2009) Multidecadal (1959–1997) changes in Skeletonema abundance and seasonal bloom patterns in Narragansett Bay, Rhode Island, USA. J Sea Res 61:84–94CrossRefGoogle Scholar
  6. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth, p 192Google Scholar
  7. Colijn F (1992) Changes in plankton communities: when, where and why. ISES Mar Sci Symp 195:193–212Google Scholar
  8. Dahl E, Bagoien E, Edvardsen B, Stenseth N-C (2005) The dynamics of Chrysochromulina species in the Skagerrak in relation to environmental conditions. J Sea Res 54:15–24CrossRefGoogle Scholar
  9. Degerlund M, Eilertsen HC (2010) Main species characteristics of phytoplankton spring blooms in NE Atlantic and Arctic waters (68–80°N). Estuar Coasts 33:242–269CrossRefGoogle Scholar
  10. Gle C, Del Amo Y, Sautour B, Laborde P, Chardy P (2008) Variability of nutrients and phytoplankton primary production in a shallow macrotidal coastal ecosystem (Arcachon Bay, France). Estuar Coast Shelf Sci 76:642–656CrossRefGoogle Scholar
  11. Grasshoff K, Erhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, Weinheim, p 419Google Scholar
  12. Halpern BS, McLeod RL, Rosenberg AA, Crowder LB (2008) Managing for cumulative impacts in ecosystem based management through ocean zoning. Ocean Coast Manag 51:203–211CrossRefGoogle Scholar
  13. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  14. Hasle GR, Fryxell GA (1970) Diatoms: cleaning and mounting for light and electron microscopy. Trans Am Microsc Soc 1970 89:469–474Google Scholar
  15. Herńandez-Becerril DU, Bravo-Sierra E, Aké-Castillo J (2007) Phytoplankton on the western coasts of Baja California in two different seasons in 1998. Sci Mar 71(4):735–743CrossRefGoogle Scholar
  16. Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51(1, part 2):364–376CrossRefGoogle Scholar
  17. Konovalova GV (1972) Seasonal characteristics of phytoplankton in the Amursky Bay of the sea of Japan. Okeanologiya 12(1):123–127Google Scholar
  18. Kooistra WHCF, Sarno D, Balzano S, Gu H, Andersen RA, Zingone A (2008) Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 159(2):177–193Google Scholar
  19. Olenina I, Hajdu S, Edler L et al (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt Sea Environ Proc 106:144Google Scholar
  20. Orlova TY (2012) Toxic microalgae in Peter the Great Bay. In: Khristoforova NK (ed) Modern ecological condition of Peter the Great Bay. Sea of Japan. Far Eastern University, Vladivostok, pp 227–238Google Scholar
  21. Orlova TY (2014) Diversity of potentially toxic microalgae on the east coast of Russia. In: Song S, Adrianov AV, Lutaenko KA, Xiao-Xia S (eds) Marine biodiversity and ecosystem dynamics of the Northwest Pacific Ocean. Science Press, Beijing, pp 77–87Google Scholar
  22. Orlova TY, Selina MS, Lilly EL, Kulis DM, Anderson DM (2007) Morphogenetic and toxin composition variability of Alexandrium tamarense (Dinophyceae) from the east coast of Russia. Phycologia 46(5):534–548CrossRefGoogle Scholar
  23. Orlova TY, Stonik IV, Shevchenko OG (2009) Flora of planktonic microalgae of Amursky Bay, sea of Japan. Russ J Mar Biol 35:60–78CrossRefGoogle Scholar
  24. Pautova LA, Silkin VA (2000) The winter phytoplankton of the north-western Japan Sea. Some determinants of structural formation in the coastal shallow waters. Okeanologia 40(4):553–561Google Scholar
  25. Shevchenko OG, Aizdaicher NA (2014) The morphology and development in laboratory culture of the diatoms Skeletonema grethae Zingone et Sarno, 2005 and S. japonicum Zingone et Sarno, 2005, new to the seas of Russia. Russ J Mar Biol 40(4):266–272CrossRefGoogle Scholar
  26. Shulkin VM, Orlova TY, Shevchenko OG, Stonik IV (2013) The effect of river runoff and phytoplankton production on the seasonal variation of the chemical composition of coastal waters of the Amursky Bay, sea of Japan. Russ J Mar Biol 39(3):197–207CrossRefGoogle Scholar
  27. Škaloud P, Řezáčová M, Ellegaard M (2006) Spatial distribution of phytoplankton in spring 2004 along a transect in the eastern part of the North Sea. J Oceanogr 62:717–729CrossRefGoogle Scholar
  28. Statham PJ (2012) Nutrients in estuaries – an overview and the potential impacts of climate change. Sci Total Environ 434:213–227CrossRefGoogle Scholar
  29. Stonik IV, Orlova TY (1998) Summer-autumn phytoplankton in Amurskii Bay, sea of Japan. Russ J Mar Biol 24(4):207–213Google Scholar
  30. Stonik IV, Orlova TYu, Сhikalovets IV, Chernikov OV, Litvinova NG (2011) Diatoms from the northwestern sea of Japan as producers of domoic acid. Abstracts of 9th IST Asia Pacific meeting on animal, plant and microbial toxins (International Society on Toxicology, IST), 4–8 September 2011, Vladivostok, Russia, p. 41Google Scholar
  31. Sukhanova IN (1983) Kontsentrirovanie fitoplanktona v probe. In: Vinogradov ME (ed) Sovremennie metodi kolichestvennoi otsenki i raspredeleniya morskogo planktona. Nauka, Moscow, pp 97–105Google Scholar
  32. Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25(11):1331–1346CrossRefGoogle Scholar
  33. Thomas K, Harvey JT, Goldstein T, Gulland F (2010) Movement, dive behavior, and survival of California sea lions (Zalophus californianus) posttreatment for domoic acid toxicosis. Mar Mamm Sci 26(1):36–52CrossRefGoogle Scholar
  34. Thomsen HA, Buck KR, Chavez FP (1994) Haptophytes as components of marine phytoplankton. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 187–208Google Scholar
  35. Tian J, Hu Y, Zhang J (2008) Chemiluminescence detection of permanganate index (CODMn) by aluminol-KMnO4 based reaction. J Environ Sci 20:252–256CrossRefGoogle Scholar
  36. Tishchenko PY, Lobanov VB, Zvalinsky VI et al (2011) Seasonal hypoxia of Amursky Bay (Japan Sea). Izv TINRO 165:136–157Google Scholar
  37. Trigueros JM, Orive E (2001) Seasonal variations of diatoms and dinoflagellates in a shallow, temperate estuary, with emphasis on neritic assemblages. Hydrobiologia 444:119–133CrossRefGoogle Scholar
  38. Utermöhl H (1958) Zur Vervollkommnung der quntitativen Phytoplankton. Methodik Internat Verein Limnol Mitteilungen 9:1–38Google Scholar
  39. Van Beusekom JEE, Loebl M, Martens P (2009) Distant riverine nutrient supply and local temperature drive the long-term phytoplankton development in a temperate coastal basin. J Sea Res 61:26–33CrossRefGoogle Scholar
  40. Yamada M, Katsuki E, Otsubo M, Kawaguchi M, Ichimi K, Kaeriyama H, Tada K, Harrison P (2010) Species diversity of the genus Skeletonema (Bacillariophyceae) in the Industrial Harbor Dokai Bay. Jpn J Oceanogr 66:755–771CrossRefGoogle Scholar
  41. Zvalinsky VI, Maryash AA, Tishchenko PY, Shvetsova MG (2008) Chlorophyll and nutrients in the Razdolnaya River estuary during the period of ice formation in 2006–2007. In: Akulichev VA (ed) Current environmental condition and tendencies of its change in the Peter the Great Bay. Sea of Japan. GEOS, Moscow, pp 184–198Google Scholar
  42. Zvalinsky VI, Maryash AA, Stonik IV, Shvetzova MG, Sagalayev SG, Begun AA, Tischenko PY (2010) Production and hydrochemical characteristics of ice, under-ice water and sediments in the Razdolnaya River estuary (Amursky Bay, sea of Japan) during ice cover period. Russ J Mar Biol 36(4):270–281CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Olga G. Shevchenko
    • 1
    • 2
  • Vladimir M. Shulkin
    • 3
  • Anna A. Ponomareva
    • 2
  1. 1.“Primorsky Aquarium”, National Scientific Center of Marine Biology, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  3. 3.Pacific Geographical Institute, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations