Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management

  • Parul Shukla
  • Parul Chaurasia
  • Kaiser Younis
  • Ovais Shafiq Qadri
  • Soban Ahmad Faridi
  • Gaurav SrivastavaEmail author
Critical Reviews


Food and agriculture sector directly relate to human life, and therefore intervention of nanotechnology in this sector has been recently approved by the regulatory authorities, very cautiously. The drawbacks associated with traditional methods of farming have restricted the utilization of available farmlands to full its potential. Nanotechnology has emerged as one of the most promising solutions to overcome the shortcomings of traditional agricultural practices. At every stage of agriculture (seed storage, priming, germination, fertigation, post-harvest), nanotechnology promises to improve crop productivity and quality. Use of nanoparticles as seed priming agents to enhance seed germination and crop productivity is encouraging. Nanoformulations positively influence seed germination, shoot to root ratio and overall growth. The site-directed and controlled release of encapsulated fertilizers and pesticides is a revolutionary change for crop improvement, environment and animal health. Efforts are being continuously made to create nanoagrochemicals to release specific nutrients in a controlled fashion, thus maintaining soil fertility and health. Nanotechnology has also helped in the development of smart, stronger and cost-effective polymers or nanocomposites-based packaging materials with efficient gas and water barrier properties. The use of suitable and protective packaging material has the potential to increase shelf life substantially, and thus these nanocoatings have come up as a great interest to the scientific society. This review aims to describe the current applications of nanotechnology in every aspect of agriculture, i.e., from seed priming/storage to post-harvest management of the crop produce.


Nanotechnology Agriculture Seed priming Food technology Nanofertilizer Nanoagrochemicals 



  1. 1.
    Vidal J (2012) Food scarcity: the time bomb setting nation against nation. The Guardian.
  2. 2.
    Cackler M (2015) Tha Guardians we need to grow 50% more food yet agriculture causes climate change. How do we get out of this bind? The Guardian.
  3. 3.
    Lee MH, Lee HJ, Ryu PD (2001) Public health risks: chemical and antibiotic residues-review. Asian-Australas J Anim Sci 14(3):402–413CrossRefGoogle Scholar
  4. 4.
    Gooding MJ, Davies WP (1992) Foliar urea fertilization of cereals: a review. Fertil Res 32(2):209–222CrossRefGoogle Scholar
  5. 5.
    Altman J, Campbell CL (1977) Effect of herbicides on plant diseases. Annu Rev Phytopathol 15(1):361–385CrossRefGoogle Scholar
  6. 6.
    S-l Xing, B-w Han, Liu M-z, Xu M-g (2010) The effect of NPK fertilizer combined with soil organic manure on soil nutrition and wheat yield increasing. J Agro-Environ Sci 29:135–140Google Scholar
  7. 7.
    Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300(5620):758–762CrossRefGoogle Scholar
  8. 8.
    Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci 80(15):4803–4807CrossRefGoogle Scholar
  9. 9.
    Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, Cham, pp 19–35. CrossRefGoogle Scholar
  10. 10.
    Feynman RP (1961) There’s plenty of room at the bottom. In: Gilbert HD (ed) Miniaturization. Reinhold, New York, p 282–296Google Scholar
  11. 11.
    Kumar A (2014) Nanotechnology development in India an overview. Research and Information System for Developing Countries (RIS) research paper 193Google Scholar
  12. 12.
    Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:28. CrossRefGoogle Scholar
  13. 13.
    Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nanofertilizers and their smart delivery system. In: Nanotechnologies in food and agriculture. Springer, Switzerland, pp 81–101Google Scholar
  14. 14.
    Bhagat Y, Gangadhara K, Rabinal C, Chaudhari G, Ugale P (2015) Nanotechnology in agriculture: a review. J Pure App Microbiol 9:737–747Google Scholar
  15. 15.
    Karimi N, Minaei S, Almassi M, Shahverdi AR (2012) Application of silver nano-particles for protection of seeds in different soils. Afr J Agric Res 7(12):1863–1869CrossRefGoogle Scholar
  16. 16.
    Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514(Supplement C):131–139. CrossRefGoogle Scholar
  17. 17.
    Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13Google Scholar
  18. 18.
    Dhewa T (2015) Nanotechnology applications in agriculture: an update. Octa J Environ Res 3(2):204–211Google Scholar
  19. 19.
    Prasanna BM (2007) Nanotechnology in agriculture. ICAR National Fellow, division of genetics, IARI, New DelhiGoogle Scholar
  20. 20.
    Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7(1):8263. CrossRefGoogle Scholar
  21. 21.
    Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46CrossRefGoogle Scholar
  22. 22.
    Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45CrossRefGoogle Scholar
  23. 23.
    Nounjan N, Siangliw JL, Toojinda T, Chadchawan S, Theerakulpisut P (2016) Salt-responsive mechanisms in chromosome segment substitution lines of rice (Oryza sativa L. cv. KDML105). Plant Physiol Biochem 103:96–105CrossRefGoogle Scholar
  24. 24.
    Valadkhan M, Mohammadi K, Nezhad MTK (2005) Efect of priming and foliar application of nanoparticles on agronomic traits of chickpea. Biol Forum Int J 7(2):599–602Google Scholar
  25. 25.
    Rahimi D, Kartoolinejad D, Nourmohammadi K, Naghdi R (2016) Increasing drought resistance of Alnus subcordata CA Mey. seeds using a nano priming technique with multi-walled carbon nanotubes. J For Sci 62(6):269–278CrossRefGoogle Scholar
  26. 26.
    Mohanlall V, Odayar K, Odhav B (2013) The role of nanoparticles on the plant growth of orthodox and recalcitrant seeds. Adv Compos Biocomposites Nanocomposites 1(1):287–304Google Scholar
  27. 27.
    Karpachev VV, Spiridonov JJ, Voropaeva NL, Tkachev AG, Shachnev NV, Figovsky OL (2016) Pre-sowing seed treatment nanotechnology with environment-friendly nanotube-based nanochips. Int Lett Nat Sci 58:29–34Google Scholar
  28. 28.
    Milewska-Hendel A, Gawecki R, Zubko M, Stróż D, Kurczynska E (2016) Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants, 69.
  29. 29.
    Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84(Supplement C):277–285. CrossRefGoogle Scholar
  30. 30.
    Das CK, Srivastava G, Dubey A, Verma S, Saxena M, Roy M, Sethy NK, Bhargava K, Singh SK, Sarkar S (2016) The seed stimulant effect of nano iron pyrite is compromised by nano cerium oxide: regulation by the trace ionic species generated in the aqueous suspension of iron pyrite. RSc Adv 6(71):67029–67038CrossRefGoogle Scholar
  31. 31.
    Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250CrossRefGoogle Scholar
  32. 32.
    Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915CrossRefGoogle Scholar
  33. 33.
    Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A-M, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208CrossRefGoogle Scholar
  34. 34.
    Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16(11):26644–26653. CrossRefGoogle Scholar
  35. 35.
    Hojjat SS, Hojjat H (2015) Effect of nano silver on seed germination and seedling growth in fenugreek seed. Int J Food Eng 1(2):106–110Google Scholar
  36. 36.
    Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2(6A):815Google Scholar
  37. 37.
    Rai M, Ribeiro C, Mattoso L, Duran N (2015) Nanotechnologies in food and agriculture. Springer, BerlinCrossRefGoogle Scholar
  38. 38.
    Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229Google Scholar
  39. 39.
    Moaveni P, Kheiri T (2011) TiO2 nano particles affected on maize (Zea mays L). In: 2nd International Conference on Agricultural and Animal Science IPCBEE, vol. 22. IACSIT Press, Singapore, pp 160–163 Google Scholar
  40. 40.
    Naderi MR, Abedi A (2012) Application of nanotechnology in agriculture and refinement of environmental pollutants. J Nanotechnol 11(1):18–26Google Scholar
  41. 41.
    DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91CrossRefGoogle Scholar
  42. 42.
    Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. CrossRefGoogle Scholar
  43. 43.
    Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061CrossRefGoogle Scholar
  44. 44.
    Parise A, Thakor H, Zhang X (2014) Activity inhibition on municipal activated sludge by single-walled carbon nanotubes. J Nanopart Res 16(1):2159CrossRefGoogle Scholar
  45. 45.
    Flores D, Chaves JS, Chacón R, Schmidt A (2013) A novel technique using SWCNTs to enhanced development and root growth of fig plants (Ficus carica). In: Technical Proceedings of the NSTI Nanotechnology Conference and Expo (NSTI-Nanotech’13), vol. 3, pp. 167–170Google Scholar
  46. 46.
    Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118CrossRefGoogle Scholar
  47. 47.
    Cui D, Ruan H, Zhang X, Hu S, Huang P, Song H, Wang K, Ruan J (2012) Effects of single walled carbon nanotubes on Arabidopsis mesophyll cells. ECS Trans 41(40):43–48CrossRefGoogle Scholar
  48. 48.
    Hao Y, Yang X, Shi Y, Xing J, Marowitch J, Chen J, Chen J (2012) FITC delivery into plant cells using magnetic single-walled carbon nanotubes. J Nanosci Nanotechnol 12(8):6287–6293CrossRefGoogle Scholar
  49. 49.
    Lou JC, Jung MJ, Yang HW, Han JY, Huang WH (2011) Removal of dissolved organic matter (DOM) from raw water by single-walled carbon nanotubes (SWCNTs). J Environ Sci Health Part A 46(12):1357–1365CrossRefGoogle Scholar
  50. 50.
    Ke PC, Lamm MH (2011) A biophysical perspective of understanding nanoparticles at large. Phys Chem Chem Phys 13(16):7273–7283CrossRefGoogle Scholar
  51. 51.
    Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931CrossRefGoogle Scholar
  52. 52.
    Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31(8):1880–1886CrossRefGoogle Scholar
  53. 53.
    Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1125CrossRefGoogle Scholar
  54. 54.
    Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4(2):203–221CrossRefGoogle Scholar
  55. 55.
    Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2(2):112CrossRefGoogle Scholar
  56. 56.
    Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584CrossRefGoogle Scholar
  57. 57.
    Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841CrossRefGoogle Scholar
  58. 58.
    Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310CrossRefGoogle Scholar
  59. 59.
    Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk—size particles. Environ Toxicol 27(9):510–517CrossRefGoogle Scholar
  60. 60.
    Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135CrossRefGoogle Scholar
  61. 61.
    Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71CrossRefGoogle Scholar
  62. 62.
    Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479CrossRefGoogle Scholar
  63. 63.
    Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinform 1(4):282Google Scholar
  64. 64.
    Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  65. 65.
    Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827CrossRefGoogle Scholar
  66. 66.
    Liu X-M, Feng Z-B, Zhang F-D, Zhang S-Q, He X-S (2006) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric Sci China 5(9):700–706CrossRefGoogle Scholar
  67. 67.
    Guo J (2004) Synchrotron radiation, soft-X-ray spectroscopy and nanomaterials. Int J Nanotechnol 1(1–2):193–225CrossRefGoogle Scholar
  68. 68.
    Hussein MZB, Sarijo SH, Yahaya AH, Zainal Z (2007) Synthesis of 4-chlorophenoxyacetate-zinc-aluminium-layered double hydroxide nanocomposite: physico-chemical and controlled release properties. J Nanosci Nanotechnol 7(8):2852–2862CrossRefGoogle Scholar
  69. 69.
    bin Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Sci Technol Adv Mater 6(8):956–962CrossRefGoogle Scholar
  70. 70.
    Ghazali SAISM, Hussein MZ, Sarijo SH (2013) 3, 4-Dichlorophenoxyacetate interleaved into anionic clay for controlled release formulation of a new environmentally friendly agrochemical. Nanoscale Res Lett 8(1):362CrossRefGoogle Scholar
  71. 71.
    Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78Google Scholar
  72. 72.
    Manik A, Subramanian KS (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9(2):276–284CrossRefGoogle Scholar
  73. 73.
    Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3(2A):315CrossRefGoogle Scholar
  74. 74.
    Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
  75. 75.
    Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498CrossRefGoogle Scholar
  76. 76.
    Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55Google Scholar
  77. 77.
    Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91CrossRefGoogle Scholar
  78. 78.
    Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111(1–3):239–253CrossRefGoogle Scholar
  79. 79.
    Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88CrossRefGoogle Scholar
  80. 80.
    Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178CrossRefGoogle Scholar
  81. 81.
    Liu XM, Zhang FD, Zhang SQ, He XS, Fang R, Feng Z, Y-j Wang (2005) Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fert Sci 11:14–18Google Scholar
  82. 82.
    Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400CrossRefGoogle Scholar
  83. 83.
    Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79CrossRefGoogle Scholar
  84. 84.
    Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132Google Scholar
  85. 85.
    Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci 7:90CrossRefGoogle Scholar
  86. 86.
    Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652Google Scholar
  87. 87.
    Delfani M, Baradarn Firouzabadi M, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45(4):530–540CrossRefGoogle Scholar
  88. 88.
    Liu X, Zhang F, Zhang S, He X, Wang R, Fei Z, Wang Y (2005) Responses of peanut to nano-calcium carbonate. Plant Nutr Fert Sci 11(3):385–389Google Scholar
  89. 89.
    Srivastava G, Das A, Kusurkar TS, Roy M, Airan S, Sharma RK, Singh SK, Sarkar S, Das M (2014) Iron pyrite, a potential photovoltaic material, increases plant biomass upon seed pretreatment. Mater Express 4(1):23–31CrossRefGoogle Scholar
  90. 90.
    Srivastava G, Das CK, Das A, Singh SK, Roy M, Kim H, Sethy N, Kumar A, Sharma RK, Singh SK, Philip D, Das M (2014) Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSc Adv 4(102):58495–58504. CrossRefGoogle Scholar
  91. 91.
    Das CK, Srivastava G, Dubey A, Roy M, Jain S, Sethy NK, Saxena M, Harke S, Sarkar S, Misra K, Singh SK, Bhargava K, Philip D, Das M (2016) Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol Environ Eng 1(1):2. CrossRefGoogle Scholar
  92. 92.
    Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25(3):443–447CrossRefGoogle Scholar
  93. 93.
    Nekrasova G, Ushakova O, Ermakov A, Uimin M, Byzov I (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42(6):458CrossRefGoogle Scholar
  94. 94.
    Burman U, Saini M, Kumar P- (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612CrossRefGoogle Scholar
  95. 95.
    Ghafari H, Razmjoo J (2013) Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. Int J Agron Plant Prod 4(11):2997–3003Google Scholar
  96. 96.
    Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686CrossRefGoogle Scholar
  97. 97.
    Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951CrossRefGoogle Scholar
  98. 98.
    Jeyasubramanian K, Thoppey UUG, Hikku GS, Selvakumar N, Subramania A, Krishnamoorthy K (2016) Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSc Adv 6(19):15451–15459CrossRefGoogle Scholar
  99. 99.
    Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31(9):2147–2152CrossRefGoogle Scholar
  100. 100.
    Yuvaraj M, Subramanian K (2015) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 61(2):319–326CrossRefGoogle Scholar
  101. 101.
    Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Insecticides design using advanced technologies. Springer, Berlin, Heidelberg, pp 1–39Google Scholar
  102. 102.
    Perlatti B, de Souza Bergo PL, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Insecticides-development of safer and more effective technologies. InTech, Rijeka, CroatiaGoogle Scholar
  103. 103.
    Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441CrossRefGoogle Scholar
  104. 104.
    Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792CrossRefGoogle Scholar
  105. 105.
    Adak T, Kumar J, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health Part B 47(3):217–225CrossRefGoogle Scholar
  106. 106.
    Al-Samarrai AM (2012) Nanoparticles as alternative to pesticides in management plant diseases-a review. Int J Sci Res Publ 2(4):1–4Google Scholar
  107. 107.
    Vinutha JS, Bhagat D, Bakthavatsalam N (2013) Nanotechnology in the management of polyphagous pest Helicoverpa armigera. J Acad Indus Res 1(10):606–608Google Scholar
  108. 108.
    Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora Cordifolia Miers. Parasitol Res 109(1):185–194CrossRefGoogle Scholar
  109. 109.
    Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26(3):320–327CrossRefGoogle Scholar
  110. 110.
    Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867CrossRefGoogle Scholar
  111. 111.
    Madhuri S, Choudhary AK, Rohit K (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:78–82Google Scholar
  112. 112.
    Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545CrossRefGoogle Scholar
  113. 113.
    Lamsal K, Kim S-W, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32CrossRefGoogle Scholar
  114. 114.
    Chakravarthy AK, Kandakoor SB, Atanu B, Dhanabala K, Gurunatha K, Ramesh P (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae). Curr Biot 6(3):271–281Google Scholar
  115. 115.
    Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257CrossRefGoogle Scholar
  116. 116.
    Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal: biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue of State Agri Technologists Service Assoc 1–18Google Scholar
  117. 117.
    Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579Google Scholar
  118. 118.
    Lodriche SS, Soltani S, Mirzazadeh R (2013) Silicon nanocarrier for delivery of drug, pesticides and herbicides, and for waste water treatment. Google PatentsGoogle Scholar
  119. 119.
    Sarijo SH, Bin Hussein MZ, Yahaya AH, Zainal Z, Yarmo MA (2010) Synthesis of phenoxyherbicides-intercalated layered double hydroxide nanohybrids and their controlled release property. Curr Nanosci 6(2):199–205CrossRefGoogle Scholar
  120. 120.
    Hussein MZ, Abdul Rahman NSS, Sarijo SH, Zainal Z (2012) Herbicide-intercalated zinc layered hydroxide nanohybrid for a dual-guest controlled release formulation. Int J Mol Sci 13(6):7328–7342CrossRefGoogle Scholar
  121. 121.
    Bashi AM, Haddawi SM, Dawood AH (2011) Synthesis and characterizations of two herbicides with Zn/Al layered double hydroxide nano hybrides. J Kerbala Univ 9(1):9–16Google Scholar
  122. 122.
    Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSc Adv 3(26):10471–10478CrossRefGoogle Scholar
  123. 123.
    Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293CrossRefGoogle Scholar
  124. 124.
    Robertson GL (2005) Food packaging: principles and practice. CRC Press, Boca RatonCrossRefGoogle Scholar
  125. 125.
    Kumar SK, Krishnamoorti R (2010) Nanocomposites: structure, phase behavior, and properties. Ann Rev Chem Biomol Eng 1(1):37–58. CrossRefGoogle Scholar
  126. 126.
    Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89CrossRefGoogle Scholar
  127. 127.
    Cortes-Lobos R (2013) Nanotechnology research in the US agri-food sectoral system of innovation: toward sustainable developmentGoogle Scholar
  128. 128.
    Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24. CrossRefGoogle Scholar
  129. 129.
    Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95CrossRefGoogle Scholar
  130. 130.
    Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335CrossRefGoogle Scholar
  131. 131.
    Sumit G, Gyanendra K (2012) Nanotechnology in food packaging a critical review. Russ J Agric Socio-Econ Sci 10(10):14–24Google Scholar
  132. 132.
    Espitia PJP, Soares NdFF, Teófilo RF, dos Reis Coimbra JS, Vitor DM, Batista RA, Ferreira SO, de Andrade NJ, Medeiros EAA (2013) Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr Polym 94(1):199–208CrossRefGoogle Scholar
  133. 133.
    Wyser Y, Adams M, Avella M, Carlander D, Garcia L, Pieper G, Rennen M, Schuermans J, Weiss J (2016) Outlook and challenges of nanotechnologies for food packaging. Packag Technol Sci 29(12):615–648CrossRefGoogle Scholar
  134. 134.
    Ahvenainen R (2003) Novel food packaging techniques. Elsevier, AmsterdamCrossRefGoogle Scholar
  135. 135.
    Brockgreitens J, Abbas A (2016) Responsive food packaging: recent progress and technological prospects. Compr Rev Food Sci Food Saf 15(1):3–15CrossRefGoogle Scholar
  136. 136.
    Tiwari A (2011) Recent developments in bio-nanocomposites for biomedical applications. Nova Science Publishers, New YorkGoogle Scholar
  137. 137.
    Abdullaeva Z (2017) Nanomaterials in food industry and packaging. In: Nanomaterials in Daily Life. Springer, Cham, pp. 23–46CrossRefGoogle Scholar
  138. 138.
    Sekhon BS (2010) Food nanotechnology–an overview. Nanotechnol Sci Appl 3:1Google Scholar
  139. 139.
    Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87(2):316–321CrossRefGoogle Scholar
  140. 140.
    Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851CrossRefGoogle Scholar
  141. 141.
    Alfadul SM, Elneshwy AA (2010) Use of nanotechnology in food processing, packaging and safety—review. Afr J Food Agric Nutr Dev 10(6): 2719–2739Google Scholar
  142. 142.
    Magnuson BA, Jonaitis TS, Card JW (2011) A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci 76(6):R126–R133CrossRefGoogle Scholar
  143. 143.
    Dasgupta N, Ranjan S (2018) Nanotechnology in food sector. In: An introduction to food grade nanoemulsions. Springer, Singapore, pp 1–18CrossRefGoogle Scholar
  144. 144.
    Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SECG, Wijnhoven SWP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62CrossRefGoogle Scholar
  145. 145.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BioengineeringIntegral UniversityLucknowIndia
  2. 2.Institute of Engineering and Technology, Department of BiotechnologyBundelkhand UniversityJhansiIndia

Personalised recommendations