Advertisement

Green and sonogreen synthesis of zinc oxide nanoparticles for the photocatalytic degradation of methylene blue in water

  • Kamal K. TahaEmail author
  • M. Al Zoman
  • M. Al Outeibi
  • S. Alhussain
  • A. Modwi
  • Abdulaziz A. Bagabas
Original Paper
  • 8 Downloads

Abstract

A green chemical and environmentally benign approach for the synthesis of zinc oxide (ZnO) nanostructure has been explored using aqueous solution of Gum Arabic (GA). Moreover, the added value of applying ultrasound energy to the green synthesis route and its effect on the nanoparticles (NPs) characteristics was considered. The scanning electron and transmission electron images revealed the formation of ZnO nanorods with 3:1 aspect ratio. The crystallite size of the nanostructures derived from X-ray diffraction analysis were 40 and 32 nm for the sample obtained via sonogreen and only green methods, respectively. The band gap energies of the green and sonogreen ZnO were calculated as 3.15 and 3.22 eV, respectively, according to optical analysis data. The photocatalytic performance of samples was tested using dye where a complete decolorization following a pseudo-first-order kinetics was achieved. The current approach exemplifies an entirely green nanomaterials synthesis using a natural product GA and their modifications by applying ultrasound energy. This practice can be expanded to the fabrication of other metal oxide NPs.

Keywords

ZnO nanorods Gum Arabic Ultrasonic XRD Photodegradation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Utamapanya S, Klabunde KJ, Schlup JR (1991) Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chem Mater 3(1):175–181Google Scholar
  2. 2.
    Jiang Y et al (1998) Catalytic solid state reactions on the surface of nanoscale metal oxide particles. J Catal 180(1):24–35Google Scholar
  3. 3.
    Johnston BD et al (2010) Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol 44(3):1144–1151Google Scholar
  4. 4.
    Hwangbo Y, Lee Y-I (2019) Facile synthesis of zirconia nanoparticles using a salt-assisted ultrasonic spray pyrolysis combined with a citrate precursor method. J Alloy Compd 771:821–826Google Scholar
  5. 5.
    Gou L, Murphy CJ (2003) Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3(2):231–234Google Scholar
  6. 6.
    Wang B et al (2017) Rapid synthesis of Cu2O/CuO/rGO with enhanced sensitivity for ascorbic acid biosensing. J Alloy Compd 693:902–908Google Scholar
  7. 7.
    de Lima L et al (2017) Magnetic behavior in CoFe2–CoFe2O4 nanocomposites obtained from colloidal synthesis using chitosan and borohydride reduction. J Magn Magn Mater 444:378–382Google Scholar
  8. 8.
    Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941Google Scholar
  9. 9.
    Rao C et al (2003) Size-dependent chemistry: properties of nanocrystals. In: Gopalakrishnan J, Kulkarni GU (eds) Advances in chemistry: a selection of CNR Rao’s publications (1994–2003). World Scientific, pp 227–233Google Scholar
  10. 10.
    Jha AK, Prasad K (2010) Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol Phys Chem 1(2):P110–P117Google Scholar
  11. 11.
    Jha AK et al (2009) Plant system: nature’s nanofactory. Colloids Surf B 73(2):219–223Google Scholar
  12. 12.
    Sharma NC et al (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41(14):5137–5142Google Scholar
  13. 13.
    Bakar NA, Ismail J, Bakar MA (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104(2–3):276–283Google Scholar
  14. 14.
    Vigneshwaran N et al (2006) A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohyd Res 341(12):2012–2018Google Scholar
  15. 15.
    Chandran SP et al (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22(2):577–583Google Scholar
  16. 16.
    Kattumuri V et al (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3(2):333–341Google Scholar
  17. 17.
    Kong H et al (2014) Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol 65:155–162Google Scholar
  18. 18.
    Wang Z (2007) Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl Phys A 88(1):7–15Google Scholar
  19. 19.
    Polsongkram D et al (2008) Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B 403(19–20):3713–3717Google Scholar
  20. 20.
    Hirate T et al (2007) Control of diameter of ZnO nanorods grown by chemical vapor deposition with laser ablation of ZnO. Superlattices Microstruct 42(1–6):409–414Google Scholar
  21. 21.
    Ogata K et al (2003) Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy. J Cryst Growth 248:25–30Google Scholar
  22. 22.
    Grabowska J et al (2005) Synthesis and photoluminescence of ZnO nanowires/nanorods. J Mater Sci Mater Electron 16(7):397–401Google Scholar
  23. 23.
    Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39(1):301–312Google Scholar
  24. 24.
    Peralta-Videa JR et al (2016) Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng 1(1):4Google Scholar
  25. 25.
    Oxley JD, Prozorov T, Suslick KS (2003) Sonochemistry and sonoluminescence of room-temperature ionic liquids. J Am Chem Soc 125(37):11138–11139Google Scholar
  26. 26.
    Goharshadi EK et al (2009) Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrason Sonochem 16(1):120–123Google Scholar
  27. 27.
    McNamara WB III, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401(6755):772Google Scholar
  28. 28.
    Gao T, Li Q, Wang T (2005) Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem Mater 17(4):887–892Google Scholar
  29. 29.
    Jung SH et al (2007) A sonochemical method for fabricating aligned ZnO nanorods. Adv Mater 19(5):749–753Google Scholar
  30. 30.
    Jimmy CY et al (2001) Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem Commun 19:1942–1943Google Scholar
  31. 31.
    Wang W, Tadé MO, Shao Z (2015) Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev 44(15):5371–5408Google Scholar
  32. 32.
    Islam MT et al (2018) Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. J Environ Chem Eng 6(4):3827–3836Google Scholar
  33. 33.
    Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189(1–2):519–525Google Scholar
  34. 34.
    Badr Y, Mahmoud M (2007) Photocatalytic degradation of methyl orange by gold silver nano-core/silica nano-shell. J Phys Chem Solids 68(3):413–419Google Scholar
  35. 35.
    Ajmal A et al (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4(70):37003–37026Google Scholar
  36. 36.
    Ibhadon A, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189–218Google Scholar
  37. 37.
    Balantrapu K, Goia DV (2009) Silver nanoparticles for printable electronics and biological applications. J Mater Res 24(9):2828–2836Google Scholar
  38. 38.
    Idris O, Williams P, Phillips G (1998) Characterisation of gum from Acacia senegal trees of different age and location using multidetection gel permeation chromatography. Food Hydrocoll 12(4):379–388Google Scholar
  39. 39.
    Taha K et al (2012) Analytical study on three types of gum from Sudan. J For Prod Ind 1(1):11–16Google Scholar
  40. 40.
    Sayre RM, Dowdy JC, Poh-Fitzpatrick M (2004) Dermatological risk of indoor ultraviolet exposure from contemporary lighting sources¶†‡ §. Photochem Photobiol 80(1):47–51Google Scholar
  41. 41.
    Meng A et al (2015) Cr-doped ZnO nanoparticles: synthesis, characterization, adsorption property, and recyclability. ACS Appl Mater Interfaces 7(49):27449–27457Google Scholar
  42. 42.
    Zak AK et al (2011) Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int J Nanomed 6:1399Google Scholar
  43. 43.
    Swarthmore P (1972) Powder diffraction file, joint committee on powder diffraction standards. International center for diffraction data. Card, p. 3-0226Google Scholar
  44. 44.
    Qin Y et al (2015) Sodium sulfate–diatomite composite materials for high temperature thermal energy storage. Powder Technol 282:37–42Google Scholar
  45. 45.
    Ali NE et al (2012) Physicochemical characteristics of some acacia gums. Inter J Agric Res 7:406–413Google Scholar
  46. 46.
    Quan Z et al (2010) Microstructures, surface bonding states and room temperature ferromagnetisms of Zn0 95Co0 05O thin films doped with copper. Appl Surf Sci 256(11):3669–3675Google Scholar
  47. 47.
    Modwi A et al (2018) Structural, surface area and FTIR characterization of ZnO·95−xCuO·05 FeO 0xO nanocomposites prepared via sol–gel method. J Mater Sci Mater Electron 29(3):2184–2192Google Scholar
  48. 48.
    Barrett CS (1943) Structure of metals. McGraw-Hill Book Company, New YorkGoogle Scholar
  49. 49.
    Seetawan U et al (2011) Effect of calcinations temperature on crystallography and nanoparticles in ZnO disk. Mater Sci Appl 2(09):1302Google Scholar
  50. 50.
    Pandiyarajan T, Karthikeyan B (2012) Cr doping induced structural, phonon and excitonic properties of ZnO nanoparticles. J Nanoparticle Res 14(1):647Google Scholar
  51. 51.
    Pal U et al (2006) Synthesis and optical properties of ZnO nanostructures with different morphologies. Opt Mater 29(1):65–69Google Scholar
  52. 52.
    Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. J Appl Crystallogr 7(6):526–531Google Scholar
  53. 53.
    Modwi A et al (2016) Influence of annealing temperature on the properties of ZnO synthesized via 2.3. Dihydroxysuccinic acid using flash sol–gel method. J Ovonic Res 12(2):59–66Google Scholar
  54. 54.
    Taha K, M’hamed M, Idriss H (2015) Mechanical fabrication and characterization of zinc oxide (ZnO) nanoparticles. J Ovonic Res 11(6):271–276Google Scholar
  55. 55.
    Barrett C, Massalski T (1980) “Structure of metals, crystallographic methods, principles and data”, international series on materials science and technology. Pergamon, New YorkGoogle Scholar
  56. 56.
    Pacholski C, Kornowski A, Weller H (2002) Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed 41(7):1188–1191Google Scholar
  57. 57.
    Vergés MA, Mifsud A, Serna C (1990) Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J Chem Soc Faraday Trans 86(6):959–963Google Scholar
  58. 58.
    Li Q et al (2005) Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem Mater 17(5):1001–1006Google Scholar
  59. 59.
    Sampanthar JT, Zeng HC (2002) Arresting butterfly-like intermediate nanocrystals of β-Co (OH) 2 via ethylenediamine-mediated synthesis. J Am Chem Soc 124(23):6668–6675Google Scholar
  60. 60.
    James RO, Parks GA (1982) Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties. In: Matijević E (ed) Surface and colloid science, vol 12. Springer, Boston, MA, pp 119–216Google Scholar
  61. 61.
    Karlsson ME et al (2018) Synthesis of zinc oxide nanorods via the formation of sea urchin structures and their photoluminescence after heat treatment. Langmuir 34(17):5079–5087Google Scholar
  62. 62.
    Shulin J, Changhui Y (2009) Synthesis, growth mechanism, and applications of zinc oxide nanomaterials. 材料科学与技术 24(04):457–472Google Scholar
  63. 63.
    Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125(15):4430–4431Google Scholar
  64. 64.
    Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3(1):37–46Google Scholar
  65. 65.
    Ridha NJ et al (2013) Defects-controlled ZnO nanorods with high aspect ratio for ethanol detection. Int J Electrochem Sci 8:4583–4594Google Scholar
  66. 66.
    Kappadan S et al (2016) Tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants. Mater Sci Semicond Process 51:42–47Google Scholar
  67. 67.
    Ishwarya R et al (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B 178:249–258Google Scholar
  68. 68.
    Sopajaree K et al (1999) An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part I: experiments and modelling of a batch-recirculated photoreactor. J Appl electrochem 29(5):533–539Google Scholar
  69. 69.
    Eskizeybek V et al (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B 119:197–206Google Scholar
  70. 70.
    Adeleke J et al (2018) Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl Surf Sci 455:195–200Google Scholar
  71. 71.
    Mishra DD, Tan G (2018) Visible photocatalytic degradation of methylene blue on magnetic SrFe12O19. J Phys Chem Solids 123:157–161Google Scholar
  72. 72.
    Zhang T et al (2001) Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J Photochem Photobiol A 140(2):163–172Google Scholar
  73. 73.
    Jing H-P et al (2014) Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv 4(97):54454–54462Google Scholar
  74. 74.
    Xu Y-H, Liang D-H, Liu D-Z (2008) Preparation and characterization of Cu2O–TiO2: efficient photocatalytic degradation of methylene blue. Mater Res Bull 43(12):3474–3482Google Scholar
  75. 75.
    Wang J et al (2018) Graphene oxide as solid-state electron mediator enhanced photocatalytic activities of GO-Ag3PO4/Bi2O3 Z-scheme photocatalyst efficiently by visible-light driven. Mater Technol 33(6):421–432Google Scholar
  76. 76.
    Wu G, Xing W (2018) Fabrication of ternary visible-light-driven semiconductor photocatalyst and its effective photocatalytic performance. Mater Technol 33:1–9Google Scholar
  77. 77.
    Houas A et al (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31(2):145–157Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kamal K. Taha
    • 1
    • 3
    Email author
  • M. Al Zoman
    • 1
  • M. Al Outeibi
    • 1
  • S. Alhussain
    • 1
  • A. Modwi
    • 1
  • Abdulaziz A. Bagabas
    • 2
  1. 1.Department of Chemistry, College of ScienceAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  2. 2.National Center for Petrochemical TechnologyKACSTRiyadhSaudi Arabia
  3. 3.College of Applied and Industrial SciencesUniversity of BahriKhartoumSudan

Personalised recommendations