Analysis of the CH4 adsorption under atmospheric conditions by zeolite-based commercial adsorbents

  • B. DelgadoEmail author
  • A. Avalos Ramírez
  • S. Godbout
  • R. Lagacé
  • J. L. Valverde
  • A. Giroir-Fendler
Original Paper


Methane (CH4) is one of the most important greenhouse gases emitted into the atmosphere. CH4 capture is a key to control its emissions issued from human activities such as agriculture. However, there is a lack of information about CH4 adsorption under atmospheric conditions. The purpose of the present study was to analyze the performance of different commercial adsorbents, zeolites, for the CH4 adsorption at low partial pressures. For this purpose, some commercial zeolites were physically and chemically characterized and their properties were correlated with their respective CH4 adsorption capacities. Zeolites in pellet forms were evaluated to understand how the adsorbent structure affects the CH4 adsorption. Finally, the effect of chemical composition (Si/Al ratio) of the zeolites in powder form on CH4 adsorption capacity was analyzed.


CH4 adsorption Equilibria Modeling Commercial adsorbent Atmospheric conditions 



The authors gratefully acknowledge the grant awarded by the Agricultural Greenhouse Gases Program (AGGP) to perform the research project in the “Institut de Recherche et de Développement en Agroenvironnement (IRDA)”, as well as that awarded by the Rhône-Alpes Region (CMIRA 2013 and 2014—Accueil Doc 1400856201) and Campus France (Eiffel scholarships—812591L) for complementary funding for this research. The “Centre National en Électrochimie et en Technologies Environnementales (CNETE)” and the “Universidad de Castilla-La Mancha” are also acknowledged for their support.


  1. 1.
    Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. Climate Change 2013: the physical science basis. In: Contribution of working group I to the fifth assessment report. Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA.
  2. 2.
    Groenestein CM (2006) Environmental aspects of improving sow welfare with group housing and straw bedding. Dissertation, Wageningen University, NetherlandsGoogle Scholar
  3. 3.
    Philippe FX, Laitat M, Nicks B, Cabaraux JF (2012) Ammonia and greenhouse gas emissions during the fattening of pigs kept on two types of straw floor. Agric Ecosyst Environ 150:45–53. CrossRefGoogle Scholar
  4. 4.
    Makal TA, Li J-R, Lu W, Zhou H-C (2012) Methane storage in advanced porous materials. Chem Soc Rev 41(23):7761–7779. CrossRefGoogle Scholar
  5. 5.
    Mason JA, Veenstra M, Long JR (2014) Evaluating metal-organic frameworks for natural gas storage. Chem Sci 5(1):32–51. CrossRefGoogle Scholar
  6. 6.
    Antoniou MK, Diamanti EK, Enotiadis A, Policicchio A, Dimos K, Ciuchi F, Maccallini E, Gournis D, Agostino RG (2014) Methane storage in zeolite-like carbon materials. Microporous Mesoporous Mater 188:16–22. CrossRefGoogle Scholar
  7. 7.
    Esteve-Turrillas FA, Pastor A, de la Guardia M (2012) Passive sampling of atmospheric organic contaminants. In: Pawliszyn J (ed) Comprehensive sampling and sample preparation, vol 1: sampling theory and methodology. Academic Press, Oxford, pp 201–222. CrossRefGoogle Scholar
  8. 8.
    Godbout S, Phillips VR, Sneath RW (2006) Passive flux samplers to measure nitrous oxide and methane emissions from agricultural sources, Part 1: adsorbent selection. Biosyst Eng 94(4):587–596. CrossRefGoogle Scholar
  9. 9.
    Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New YorkGoogle Scholar
  10. 10.
    Rouquerol F, Rouquerol J, Sing KSW, Llewellyn P, Maurin G (2014) Adsorption by powders, porous solids: principles, methodology, applications. In: Maurin G, Rouquerol F, Rouquerol J, Sing KSW, Llewellyn P (eds) Adsorption by powders and porous solids, 2nd edn. Academic Press, OxfordGoogle Scholar
  11. 11.
    International Zeolite Association (2016) Database of zeolite structures. http://www.iza-structureorg/databases/
  12. 12.
    Cruciani G (2006) Zeolites upon heating: factors governing their thermal stability and structural changes. J Phys Chem Solids 67(9–10):1973–1994. CrossRefGoogle Scholar
  13. 13.
    Sebastián V, Casado C, Coronas J (2010) Special applications of zeolites. In: Čejka J, Corma A, Zones S (eds) Zeolites and catalysis. Wiley-VCH, Weinheim, pp 389–410. CrossRefGoogle Scholar
  14. 14.
    Xu X, Zhao X, Sun L, Liu X (2008) Adsorption separation of carbon dioxide, methane, and nitrogen on Hβ and Na-exchanged β-zeolite. J Nat Gas Chem 17(4):391–396. CrossRefGoogle Scholar
  15. 15.
    Yang J, Li J, Wang W, Li L, Li J (2013) Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and beta. Ind Eng Chem Res 52(50):17856–17864. CrossRefGoogle Scholar
  16. 16.
    Sethia G, Somani RS, Chand Bajaj H (2015) Adsorption of carbon monoxide, methane and nitrogen on alkaline earth metal ion exchanged zeolite-X: structure, cation position and adsorption relationship. RSC Adv 5(17):12773–12781. CrossRefGoogle Scholar
  17. 17.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619. CrossRefGoogle Scholar
  18. 18.
    Kowalczyk P, Terzyk AP, Gauden PA, Solarz L (2002) Numerical analysis of Horvath–Kawazoe equation. Comput Chem 26(2):125–130. CrossRefGoogle Scholar
  19. 19.
    Coasne B, Grosman A, Dupont-Pavlovsky N, Ortega C, Simon M (2001) Adsorption in an ordered and non-interconnected mesoporous material: single crystal porous silicon. Phys Chem Chem Phys 3(7):1196–1200. CrossRefGoogle Scholar
  20. 20.
    Schoeman BJ, Sterte J, Otterstedt JE (1994) Colloidal zeolite suspensions. Zeolites 14(2):110–116. CrossRefGoogle Scholar
  21. 21.
    Freundlich H (1932) Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II. Trans Faraday Soc 28:195–201. CrossRefGoogle Scholar
  22. 22.
    Sips R (1948) On the structure of catalyst surface. J Chem Phys 16:490–495. CrossRefGoogle Scholar
  23. 23.
    Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441. CrossRefGoogle Scholar
  24. 24.
    de la Osa AR, De Lucas A, Romero A, Valverde JL, Sánchez P (2011) Kinetic models discrimination for the high pressure WGS reaction over a commercial CoMo catalyst. Int J Hydrog Energy 36(16):9673–9684. CrossRefGoogle Scholar
  25. 25.
    Valverde JL, Zumalacárregui L, De lucas A, Suris G (1997) An improved method for determining rheological parameters of suspension: statistical approach. Chem Eng Res Des 75(8):784–791. CrossRefGoogle Scholar
  26. 26.
    Froment GF, Bischoff KB (1990) Chemical reactor analysis and design. Wiley, New YorkGoogle Scholar
  27. 27.
    Eyer S, Stadie NP, Borgschulte A, Emmenegger L, Mohn J (2014) Methane preconcentration by adsorption: a methodology for materials and conditions selection. Adsorption 20(5–6):657–666. CrossRefGoogle Scholar
  28. 28.
    Bao Z, Yu L, Dou T, Gong Y, Zhang Q, Ren Q, Lu X, Deng S (2011) Adsorption equilibria of CO2, CH4, N2, O2, and Ar on high silica zeolites. J Chem Eng Data 56(11):4017–4023. CrossRefGoogle Scholar
  29. 29.
    Moura PAS, Bezerra DP, Vilarrasa-Garcia E, Bastos-Neto M, Azevedo DCS (2016) Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X. Adsorption 22(1):71–80. CrossRefGoogle Scholar
  30. 30.
    Gueudré L, Jolimaîte E, Bats N, Dong W (2010) Diffusion in zeolites: is surface resistance a critical parameter? Adsorption 16(1):17–27. CrossRefGoogle Scholar
  31. 31.
    Xue T, Wang YM, He M-Y (2012) Synthesis of ultra-high-silica ZSM-5 zeolites with tunable crystal sizes. Solid State Sci 14(4):409–418. CrossRefGoogle Scholar
  32. 32.
    Strohmaier KG (2010) Synthesis approaches. In: Čejka J, Corma A, Zones S (eds) Zeolites and catalysis: synthesis, reactions and applications. Wiley-VCH, Weinheim, pp 57–86. CrossRefGoogle Scholar
  33. 33.
    Talu O, Zhang SY, Hayhurst DT (1993) Effect of cations on methane adsorption by NaY, MgY, CaY, SrY, and BaY zeolites. J Phys Chem 97(49):12894–12898. CrossRefGoogle Scholar
  34. 34.
    Kamarudin KSN (2007) Stuctural and gas adsorption characteristics of zeolite adsorbents. Dissertation, Universiti Teknologi Malaysia, Kuala LumpurGoogle Scholar
  35. 35.
    Wu W, Weitz E (2014) Modification of acid sites in ZSM-5 by ion-exchange: an in situ FTIR study. Appl Surf Sci 316:405–415. CrossRefGoogle Scholar
  36. 36.
    Sethia G, Pillai RS, Dangi GP, Somani RS, Bajaj HC, Jasra RV (2010) Sorption of methane, nitrogen, oxygen, and argon in ZSM-5 with different SiO2/Al2O3 ratios: grand canonical Monte Carlo simulation and volumetric measurements. Ind Eng Chem Res 49(5):2353–2362. CrossRefGoogle Scholar
  37. 37.
    Palomino M, Corma A, Rey F, Valencia S (2010) New insights on CO2 − CH4 separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs. Langmuir 26(3):1910–1917. CrossRefGoogle Scholar
  38. 38.
    Rouquerol F, Rouquerol J, Sing KSW, Maurin G, Llewellyn P (2014) Chapter 1—Introduction. In: Maurin G, Rouquerol F, Rouquerol J, Sing KSW, Llewellyn P (eds) Adsorption by powders and porous solids, 2nd edn. Academic Press, Oxford, pp 1–24. CrossRefGoogle Scholar
  39. 39.
    Asadi T, Ehsani MR, Ribeiro AM, Loureiro JM, Rodrigues AE (2013) CO2/CH4 separation by adsorption using nanoporous metal organic framework copper-benzene-1,3,5-tricarboxylate tablet. Chem Eng Technol 36(7):1231–1239. CrossRefGoogle Scholar
  40. 40.
    Prajwal BP, Ayappa KG (2014) Evaluating methane storage targets: from powder samples to onboard storage systems. Adsorption 20(5–6):769–776. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • B. Delgado
    • 1
    • 2
    • 3
    Email author
  • A. Avalos Ramírez
    • 4
  • S. Godbout
    • 3
  • R. Lagacé
    • 1
  • J. L. Valverde
    • 5
  • A. Giroir-Fendler
    • 2
  1. 1.Faculté des Sciences de l’agriculture et de l’alimentationUniversité LavalQuebec CityCanada
  2. 2.Université de Lyon, Université Claude Bernard Lyon 1CNRS, UMR 5256, IRCELYONVilleurbanneFrance
  3. 3.Institut de Recherche et de Développement en AgroenvironnementQuebec CityCanada
  4. 4.Centre National en Électrochimie et Technologies EnvironnementalesShawiniganCanada
  5. 5.Department of Chemical EngineeringUniversidad de Castilla-La ManchaCiudad RealSpain

Personalised recommendations