Advertisement

European Journal for Security Research

, Volume 3, Issue 2, pp 139–161 | Cite as

When Big Data Meet Securitization. Algorithmic Regulation with Passenger Name Records

  • Lena UlbrichtEmail author
Original Article
  • 500 Downloads

Abstract

This contribution deals with big data as a resource for state regulation. The academic interest in the specificities of contemporary technology-based regulation has generated the concept of “algorithmic regulation” (Yeung, Regulat Govern 347(6):1–19, 2017), which yet needs to be refined empirically. This article sets out to analyze the use of passenger name records (PNR) for security governance as a form of algorithmic regulation. It scrutinizes the political debate about the establishment of the use of PNR for security governance in Germany. Along the three phases of the regulatory process (standard setting, monitoring and enforcement), the study sheds light on how Yeung’s taxonomy helps to critically analyze the choices that lead to a specific type of algorithmic regulation. The analysis also unveils the major controversies of the debate (for example about individual rights) and addresses aspects that were left out of the debate (such as the problem of unwanted discrimination through machine learning). The analysis shows how these issues shaped the specific model of PNR-based governance. The German case also raises awareness for the symbolic function of big data in regulation—a dimension that should be taken into account by the concept of algorithmic regulation. The final discussion points out that research about algorithmic regulation is challenged by systemic opacity, which poses conceptual and political problems. The articles ends with a reflection upon the power of the (seemingly unchallenged) promise of big data that lends itself as a resource for securitization strategies.

Keywords

Algorithmic regulation Preemptive security Passenger name records Data analysis Big data Mobility 

Notes

Acknowledgements

My thanks go to Eva Korte and Björn Mohr for their valuable research assistance and to two anonymous reviewers for their excellent comments.

References

  1. Ajana B (2015) Augmented borders: big data and the ethics of immigration control. J Inf Commun Ethics Soc 13(1):58–78.  https://doi.org/10.1108/JICES-01-2014-0005 CrossRefGoogle Scholar
  2. Amnesty International, Privacy International (2015) Two years after Snowden: protecting human rights in an age of mass surveillance. https://www.amnestyusa.org/wp-content/uploads/2017/04/ai-pi_two_years_on_from_snowden_final_final_clean.pdf. Accessed 19 July 2017
  3. Amoore L (2011) Data derivatives. Theory Cult Soc 28(6):24–43.  https://doi.org/10.1177/0263276411417430 CrossRefGoogle Scholar
  4. Amoore L (2013) The politics of possibility: risk and security beyond probability. Duke University Press, DurhamCrossRefGoogle Scholar
  5. Amoore L, Raley R (2016) Securing with algorithms: knowledge, decision, sovereignty. Secur Dialogue 48(1):3–10.  https://doi.org/10.1177/0967010616680753 CrossRefGoogle Scholar
  6. Ananny M, Crawford K (2017) Seeing without knowing: limitations of the transparency ideal and its application to algorithmic accountability. New Media Soc 33(4):1–17.  https://doi.org/10.1177/1461444816676645 CrossRefGoogle Scholar
  7. Anderson C (2008) The end of theory: the data deluge makes the scientific method obsolete. Wired. https://www.wired.com/2008/06/pb-theory. Accessed 1 Dec 2017
  8. Aradau C, Blanke T (2016) Politics of prediction: security and the time/space of governmentality in the age of big data. Eur J Social Theory 20(3):373–391.  https://doi.org/10.1177/1368431016667623 CrossRefGoogle Scholar
  9. Balzacq T (2015) The ‘Essence’ of securitization: theory, ideal type, and a sociological science of security. Int Relat 29(1):103–113.  https://doi.org/10.1177/0047117814526606b CrossRefGoogle Scholar
  10. Beaussier A-L, Demeritt D, Griffiths A, Rothstein H (2016) Accounting for failure: risk-based regulation and the problems of ensuring healthcare quality in the NHS. Health Risk Soc 18(3–4):205–224.  https://doi.org/10.1080/13698575.2016.1192585 CrossRefGoogle Scholar
  11. Berk R, Heidari H, Jabbari S, Kearns M, Roth A (2017) Fairness in criminal justice risk assessments: the state of the art. https://arxiv.org/abs/1703.09207 Accessed 1 Dec 2017
  12. Black J (2002) Regulatory conversations. J Law Soc 29(1):163–196CrossRefGoogle Scholar
  13. Black J (2014) Learning from regulatory disasters. LSE 24:1–18.  https://doi.org/10.2139/ssrn.2519934 CrossRefGoogle Scholar
  14. Boellstorff T (2014) Die Konstruktion von Big Data in der Theorie. In: Reichert R (ed) Big data: analysen zum digitalen Wandel von Wissen, Macht und Ökonomie. Transcript, Bielefeld, pp 105–131Google Scholar
  15. Boyd D, Crawford K (2012) Critical questions for big data. Inf Commun Soc 15(5):662–667.  https://doi.org/10.1080/1369118x.2012.678878 CrossRefGoogle Scholar
  16. Burrows R, Savage M (2014) After the crisis? Big Data and the methodological challenges of empirical sociology. Big Data Soc 1(1):1–6.  https://doi.org/10.1177/2053951714540280 CrossRefGoogle Scholar
  17. Caton S, Hall M, Weinhardt C (2015) How do politicians use Facebook? An applied social observatory. Big Data Soc 2:1–18.  https://doi.org/10.1177/2053951715612822 CrossRefGoogle Scholar
  18. Ceron A, Curini L, Iacus SM, Porro G (2014) Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France. New Media Soc 16(2):340–358.  https://doi.org/10.1177/1461444813480466 CrossRefGoogle Scholar
  19. Christin A, Rosenblat A, Boyd D (2015) Courts and predictive algorithms. Data & society. http://www.datacivilrights.org/pubs/2015-1027/Courts_and_Predictive_Algorithms.pdf. Accessed 13 Jan 2017
  20. Diakopoulos N (2016) Accountability in algorithmic decision making. Commun. ACM (CACM) 59(2):56–62.  https://doi.org/10.1145/2844110 CrossRefGoogle Scholar
  21. Epstein C (2007) Guilty bodies, productive bodies, destructive bodies: crossing the biometric borders. Int Political Sociol 1(2):149–164.  https://doi.org/10.1111/j.1749-5687.2007.00010.x CrossRefGoogle Scholar
  22. Espeland W, Stevens M (2008) A sociology of quantification. Eur J Sociol 49(3):401–436.  https://doi.org/10.1017/S0003975609000150 CrossRefGoogle Scholar
  23. Fischer F, Gottweis H (2012) Introduction. In: Fischer F, Gottweis H (eds) The argumentative turn revisited: public policy as communicative practice. Duke University Press, Durham, pp 1–27CrossRefGoogle Scholar
  24. Floridi L (2014) Artificial agents and their moral nature. In: Kroes P, Verbeek P-P (eds) The Moral status of technical artefacts. Springer, Dordrecht, pp 185–212CrossRefGoogle Scholar
  25. Gandy OH (1993) The panoptic sort: a political economy of personal information. Critical studies in communication and in the cultural industries. Westview Press, BoulderGoogle Scholar
  26. Gillespie T (2014) The relevance of algorithms. In: Foot KA, Boczkowski PJ, Gillespie T (eds) Media technologies: essays on communication, materiality, and society. The MIT Press, Cambridge, pp 167–193Google Scholar
  27. Golder SA, Macy MW (2011) Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051):1878–1881.  https://doi.org/10.1126/science.1202775 CrossRefGoogle Scholar
  28. Hajer MA (2002) Discourse analysis and the study of policy making. Eur Political Sci 1(1):61–65CrossRefGoogle Scholar
  29. Hajer MA, Wagenaar H (eds) (2004) Deliberative policy analysis: understanding governance in the network society. Theories of institutional design. Cambridge University Press, CambridgeGoogle Scholar
  30. Hajer MA (2005) Setting the stage: a dramaturgy of policy deliberation. Admin Soc 36(6):624–647.  https://doi.org/10.1177/0095399704270586 CrossRefGoogle Scholar
  31. Hajer MA (2006) Doing discourse analysis: coalitions, practices, meaning. In: Brink M van den, Metze T (eds) Words matter in policy and planning: discourse theory and method in the social sciences. Netherlands Geographical Studies 344, Utrecht, KNAG Nethur, pp 65–74Google Scholar
  32. Halavais A (2015) Bigger sociological imaginations: framing big social data theory and methods. Inf Commun Soc 18(5):583–594.  https://doi.org/10.1080/1369118X.2015.1008543 CrossRefGoogle Scholar
  33. Hardt M (2014) How big data is unfair. https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de#.l3ia947tq. Accessed 13 Jan 2017
  34. Hert P de, Bellanova R (2011) Transatlantic cooperation on travelers’ data processing: from sorting countries to sorting individuals. Migration Policy Institute Report. https://www.migrationpolicy.org/research/transatlantic-cooperation-travelers-data-processing. Accessed 01 Dec 2017
  35. Johns F (2017) Data mining as global governance: UNSW Law Research Paper No. 2015-61. In: Brownsword R, Scotford E, Yeung K (eds) The Oxford handbook of law, regulation and technology. Oxford University Press, Corby, pp 1–41Google Scholar
  36. Just N, Latzer M (2016) Governance by algorithms: reality construction by algorithmic selection on the Internet. Media Cult Soc 39(2):238–258.  https://doi.org/10.1177/0163443716643157 CrossRefGoogle Scholar
  37. Kapiszewski D, Kirilova D (2014) Transparency in qualitative security studies research: standards, benefits, and challenges. Secur Stud 23(4):699–707.  https://doi.org/10.1080/09636412.2014.970408 CrossRefGoogle Scholar
  38. Kitchin R (2013) Big data and human geography: opportunities, challenges and risks. Dialogues Human Geogr 3(3):262–267.  https://doi.org/10.1177/2043820613513388 CrossRefGoogle Scholar
  39. Kitchin R (2016) Thinking critically about and researching algorithms. Inf Commun Soc 20(1):14–29.  https://doi.org/10.1080/1369118X.2016.1154087 CrossRefGoogle Scholar
  40. Korff D, George M (2015) Passenger Name Records, data mining & data protection: the need for strong safeguards. Directorate General Human Rights and Rule of Law. http://docplayer.net/16673463-Passenger-name-records-data-mining-data-protection.html. Accessed 17 Jan 2017
  41. La Clé des langues (2017) The State and Surveillance: fear and Control: conversation between Didier Bigo and Mireille Delmas-Marty. http://cle.ens-lyon.fr/anglais/the-state-and-surveillance-fear-and-control-131675.kjsp? Accessed 1 Dec 2017
  42. Leese M (2014) The new profiling: algorithms, black boxes, and the failure of anti-discriminatory safeguards in the European Union. Secur Dialogue 45(5):494–511.  https://doi.org/10.1177/0967010614544204 CrossRefGoogle Scholar
  43. Lyon D (2006) Airport screening, surveillance, and social sorting: Canadian responses to 9/11 in context. Can J Criminol Crim Justice 48(3):397–411.  https://doi.org/10.1353/ccj.2006.0030 CrossRefGoogle Scholar
  44. Medina E (2015) Rethinking algorithmic regulation. Kybernetes 44(6/7):1005–1019.  https://doi.org/10.1108/K-02-2015-0052 CrossRefGoogle Scholar
  45. Monahan T, Fisher JA (2014) Strategies for obtaining access to secretive or guarded organizations. J Contemp Ethnogr 44(6):1–28.  https://doi.org/10.1177/0891241614549834 CrossRefGoogle Scholar
  46. Morozov E (2014) The rise of data and the death of politics. The Guardian. https://www.theguardian.com/technology/2014/jul/20/rise-of-data-death-of-politics-evgeny-morozov-algorithmic-regulation. Accessed 1 Dec 2017
  47. Neff G, Tanweer A, Fiore-Gartland B, Osburn L (2017) Critique and contribute: a practice-based framework for improving critical data studies and data science. Big Data 5(2):85–97.  https://doi.org/10.1089/big.2016.0050 CrossRefGoogle Scholar
  48. O’Reilly T (2013) Open data and algorithmic regulation. In: Goldstein B, Dyson L (eds) Beyond transparency: open data and the future of civic innovation. Code for America Press, San Francisco, pp 289–300Google Scholar
  49. Pasquale F (2015) The Black Box society: the secret algorithms that control money and information. Harvard University Press, CambridgeCrossRefGoogle Scholar
  50. Ratcliffe J (2011) Intelligence-led policing. Routledge, LondonGoogle Scholar
  51. Roßnagel A (2013) Big data—small privacy? Konzeptionelle Herausforderungen für das Datenschutzrecht. Zeitschrift für Datenschutz 3(11):562–567Google Scholar
  52. Ruppert E (2012) Seeing population: census and surveillance by numbers. In: Ball K, Haggerty K, Lyon D (eds) Routledge international handbook of surveillance studies. Routledge, London, pp 209–216Google Scholar
  53. Sales NA (2015) Big Data at the border: balancing visa-free travel and security in a digital age. Syracuse University College of Law. https://ecpr.eu/Events/PaperDetails.aspx?PaperID=26167&EventID=94. Accessed 12 Dec 2016
  54. Sandvig C, Hamilton K, Karahalios K, Langbort C (2016) When the algorithm itself is a racist: diagnosing ethical harm in the basic components of software. Int J Commun 10(19):4972–4990Google Scholar
  55. Schintler LA, Kulkarni R (2014) Big data for policy analysis: the good, the bad, and the ugly. Rev Policy Res 31(4):343–348.  https://doi.org/10.1111/ropr.12079 CrossRefGoogle Scholar
  56. Schmidt VA (2008) discursive institutionalism: the explanatory power of ideas and discourse. Annu Rev Polit Sci 11(1):303–326.  https://doi.org/10.1146/annurev.polisci.11.060606.135342 CrossRefGoogle Scholar
  57. Taylor L, Schroeder R (2015) Is bigger better? The emergence of big data as a tool for international development policy. GeoJournal 80(4):503–518.  https://doi.org/10.1007/s10708-014-9603-5 CrossRefGoogle Scholar
  58. Venturini T, Jacomy M, Meunier A, Latour B (2017) An unexpected journey: a few lessons from sciences Po médialab’s experience. Big Data Soc 4(2):1–11.  https://doi.org/10.1177/2053951717720949 CrossRefGoogle Scholar
  59. Vermeulen M, Bellanova R (2012) European ‘smart’ surveillance: what’s at stake for data protection, privacy and non-discrimination? Secur Human Rights 23(4):297–311CrossRefGoogle Scholar
  60. White P, Breckenridge RS (2014) Trade-offs, limitations, and promises of big data in social science research. Rev Policy Res 31(4):331–338.  https://doi.org/10.1111/ropr.12078 CrossRefGoogle Scholar
  61. Yeung K (2016) ‘Hypernudge’: big data as a mode of regulation by design. Inf Commun Soc 20(1):118–136.  https://doi.org/10.1080/1369118X.2016.1186713 CrossRefGoogle Scholar
  62. Yeung K (2017) Algorithmic regulation: a critical interrogation. Regulat Govern 347(6):1–19.  https://doi.org/10.1111/rego.12158 CrossRefGoogle Scholar
  63. Zuboff S (2015) Big other: surveillance capitalism and the prospects of an information civilization. J Inf Technol 30:75–89.  https://doi.org/10.1057/jit.2015.5 CrossRefGoogle Scholar

Primary Sources

  1. Arzt C (2017) Stellungnahme zur Anhörung des Innenausschusses des Deutschen Bundestages zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU)Google Scholar
  2. Deutscher Bundestag (2017a) Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681: (Fluggastdatengesetz – FlugDaG)Google Scholar
  3. Deutscher Bundestag (2017b) Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681 (Fluggastdatengesetz – FlugDaG)Google Scholar
  4. Deutscher Bundestag (2017c) Plenarprotokoll 225. Sitzung: 1. Lesung zu PNR-GesetzGoogle Scholar
  5. Deutscher Bundestag (2017d) Plenarprotokoll 231. Sitzung: 2. Lesung zu PNR-GesetzGoogle Scholar
  6. Bundestag Deutscher (2017) Wortprotokoll der der 114. Sitzung des Innenausschusses, Öffentliche Anhörung zu PNR-GesetzGoogle Scholar
  7. Die Bundesregierung (2017) Konsequenzen nach Anschlag in Berlin. https://www.bundesregierung.de/Content/DE/Artikel/2017/01/2017-01-10-de-maiziere-maas-sicherheitspolitik-nach-berlinanschlag.html. Accessed 17 July 2017
  8. European Court of Justice (2017) Opinion 1/15 of the court (Grand Chamber). ECLI:EU:C:2017:592Google Scholar
  9. European Parliament (2016) EU Passenger Name Record (PNR) directive: an overview. http://www.europarl.europa.eu/news/en/news-room/20150123BKG12902/eu-passenger-name-record-(pnr)-directive-an-overview. Accessed 12. Dec 2016
  10. Knetsch M (2017) Stellungnahme zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtline (EU) 2016/681 {Fluggastdatengesetz - FlugDaG)Google Scholar
  11. Münch H (2017) Anhörung des Präsidenten des Bundeskriminalamtes Holger Münch vor dem Innenausschuss des Bundestages am 24. April 2017 zum Entwurf eines Fluggastdatengesetzes (FlugDaG): StellungnahmeGoogle Scholar
  12. Sander A (2017) Stellungnahme des Digitale Gesellschaft e. V. zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681Google Scholar
  13. Voßhoff A (2017) Stellungnahme zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681 (Fluggastdatengesetz-FlugDaG)Google Scholar
  14. Wildfang A (2017) Stellungnahme des Deutschen Richterbundes zum Referentenentwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681 (Fluggastdatengesetz—FlugDaG)Google Scholar
  15. Wollenschläger F (2017) Stellungnahme zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681 (Fluggastdatengesetz—FlugDaG) (BT-Drs. 18/11501)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wissenschaftszentrum Berlin für Sozialforschung (WZB)/WZB Berlin Social Science Center, Politikfeld Internet/Internet PolicyBerlinGermany

Personalised recommendations