Skip to main content

Pathophysiology and strategic treatment of sighted non-24-h sleep–wake rhythm disorders

Abstract

Non-24-h sleep–wake rhythm disorder (N24SWD) is one type of circadian rhythm sleep–wake disorder. Once developed, N24SWD causes occupational and social dysfunction due to its early onset, long-term morbidity, and intractable nature, imposing a huge burden on individuals with the disorder. N24SWD is highly prevalent in blind individuals who have had no photic entrainment. The pathophysiology of sighted N24SWD in individuals with no visual impairment is unclear, but as a concept, impaired entrainment to the 24-h day–night cycle or abnormality in the free-running period (τ) was thought to be the cause of N24SWD. A recent study using a strict forced desynchrony protocol revealed prolonged τ in sighted N24SWD patients. In contrast, some evening chronotypes are able to entrain to the 24-h-day cycle despite having similarly prolonged τ. Therefore, the onset of N24SWD could be reasonably explained by the multiple-hit hypothesis, which proposes that disease onset requires the coexistence of multiple vulnerabilities, such as prolonged τ, abnormal photosensitivity, overexposure to ambient light in the delay zone of the phase response curve, and psychiatric problems. The application of a molecular genetic approach similar to that used in the study of advanced sleep–wake phase disorder is difficult because of the absence of familial occurrence in most sighted N24SWD patients. However, a different experimental approach such as whole-exome analysis of individual cases may be useful for clarifying the molecular basis underlying the onset of sighted N24SWD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    ICSD-3. American Academy of Sleep Medicine. International classification of sleep disorders, 3rd edn. Darien: American Academy of Sleep Medicine, 2014; 2014.

  2. 2.

    Wever RA. The circadian system of man: results of experiments under temporal isolation. New York: Springer; 1979.

    Book  Google Scholar 

  3. 3.

    Boivin DB, Duffy JF, Kronauer RE, Czeisler CA. Dose–response relationships for resetting of human circadian clock by light. Nature. 1996;379(6565):540–2.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999;284:2177–81.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Lockley SW, Skene DJ, Arendt J, Tabandeh H, Bird AC, Defrance R. Relationship between melatonin rhythms and visual loss in the blind. J Clin Endocrinol Metab. 1997;82(11):3763–70.

    CAS  PubMed  Google Scholar 

  6. 6.

    Leger D, Guilleminault C, Defrance R, Domont A, Paillard M. Prevalence of sleep/wake disorders in persons with blindness. Clin Sci (Lond). 1999;97(2):193–9.

    CAS  Article  Google Scholar 

  7. 7.

    Lockley SW, Skene DJ, Butler LJ, Arendt J. Sleep and activity rhythms are related to circadian phase in the blind. Sleep. 1999;22(5):616–23.

    CAS  PubMed  Google Scholar 

  8. 8.

    Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H. Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab. 1992;75(1):127–34.

    CAS  PubMed  Google Scholar 

  9. 9.

    Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, Klein T, Rizzo JI. Suppression of melatonin secretion in some blind patients by exposure to bright light [see comments]. N Engl J Med. 1995;332(1):6–11.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Warman GR, Pawley MD, Bolton C, Cheeseman JF, Fernando AT 3rd, Arendt J, Wirz-Justice A. Circadian-related sleep disorders and sleep medication use in the New Zealand blind population: an observational prevalence survey. PLoS One. 2011;6(7):e22073.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    McArthur AJ, Lewy AJ, Sack RL. Non-24-hour sleep–wake syndrome in a sighted man: circadian rhythm studies and efficacy of melatonin treatment. Sleep. 1996;19(7):544–53.

    CAS  PubMed  Google Scholar 

  12. 12.

    Hashimoto S, Nakamura K, Honma S, Honma K. Free-running circadian rhythm of melatonin in a sighted man despite a 24-hour sleep pattern: a non-24-hour circadian syndrome. Psychiatry Clin Neurosci. 1997;51(3):109–14.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Lockley SW, Dressman MA, Licamele L, Xiao C, Fisher DM, Flynn-Evans EE, Hull JT, Torres R, Lavedan C, Polymeropoulos MH. Tasimelteon for non-24-hour sleep–wake disorder in totally blind people (SET and RESET): two multicentre, randomised, double-masked, placebo-controlled phase 3 trials. Lancet. 2015;386(10005):1754–64.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Mishima K, Tozawa T, Satoh K, Matsumoto Y, Hishikawa Y, Okawa M. Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep–waking. Biol Psychiatry. 1999;45(4):417–21.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Turner PL, Van Someren EJ, Mainster MA. The role of environmental light in sleep and health: effects of ocular aging and cataract surgery. Sleep Med Rev. 2010;14(4):269–80.

    PubMed  Article  Google Scholar 

  16. 16.

    Hinton DR, Sadun AA, Blanks JC, Miller CA. Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med. 1986;315(8):485–7.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Kitamura S, Hida A, Enomoto M, Watanabe M, Katayose Y, Nozaki K, Aritake S, Higuchi S, Moriguchi Y, Kamei Y, et al. Intrinsic circadian period of sighted patients with circadian rhythm sleep disorder, free-running type. Biol Psychiatry. 2013;73(1):63–9.

    PubMed  Article  Google Scholar 

  18. 18.

    Duffy JF, Cain SW, Chang AM, Phillips AJ, Munch MY, Gronfier C, Wyatt JK, Dijk DJ, Wright KP Jr, Czeisler CA. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci USA. 2011;108(Suppl 3):15602–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Duffy JF, Wright KP Jr. Entrainment of the human circadian system by light. J Biol Rhythms. 2005;20(4):326–38.

    PubMed  Article  Google Scholar 

  20. 20.

    Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness–eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110.

    CAS  PubMed  Google Scholar 

  21. 21.

    Barion A, Zee PC. A clinical approach to circadian rhythm sleep disorders. Sleep Med. 2007;8(6):566–77.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Kokkoris CP, Weitzman ED, Pollak CP, Spielman AJ, Czeisler CA, Bradlow H. Long-term ambulatory temperature monitoring in a subject with a hypernychthemeral sleep–wake cycle disturbance. Sleep. 1978;1(2):177–90.

    CAS  PubMed  Google Scholar 

  23. 23.

    Hida A, Kitamura S, Katayose Y, Kato M, Ono H, Kadotani H, Uchiyama M, Ebisawa T, Inoue Y, Kamei Y, et al. Screening of clock gene polymorphisms demonstrates association of a PER3 polymorphism with morningness–eveningness preference and circadian rhythm sleep disorder. Sci Rep. 2014;4(6309):6309.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Baehr EK, Revelle W, Eastman CI. Individual differences in the phase and amplitude of the human circadian temperature rhythm: with an emphasis on morningness–eveningness. J Sleep Res. 2000;9(2):117–27.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Duffy JF, Dijk DJ, Hall EF, Czeisler CA. Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people. J Investig Med. 1999;47(3):141–50.

    CAS  PubMed  Google Scholar 

  26. 26.

    Klerman EB, Dijk DJ, Kronauer RE, Czeisler CA. Simulations of light effects on the human circadian pacemaker: implications for assessment of intrinsic period. Am J Physiol. 1996;270:R271–82.

    CAS  PubMed  Google Scholar 

  27. 27.

    Duffy JF, Czeisler CA. Age-related change in the relationship between circadian period, circadian phase, and diurnal preference in humans. Neurosci Lett. 2002;318:117–20.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Duffy JF, Rimmer DW, Czeisler CA. Association of intrinsic circadian period with morningness–eveningness, usual wake time, and circadian phase. Behav Neurosci. 2001;115:895–9.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Sack RL, Brandes RW, Kendall AR, Lewy AJ. Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med. 2000;343(15):1070–7.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Khalsa SB, Jewett ME, Cajochen C, Czeisler CA. A phase response curve to single bright light pulses in human subjects. J Physiol. 2003;549(Pt 3):945–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Lewy AJ, Sack RL. Exogenous melatonin’s phase-shifting effects on the endogenous melatonin profile in sighted humans: a brief review and critique of the literature. J Biol Rhythms. 1997;12(6):588–94.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Burgess HJ, Revell VL, Eastman CI. A three pulse phase response curve to three milligrams of melatonin in humans. J Physiol. 2008;586(2):639–47.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Uchiyama M, Shibui K, Hayakawa T, Kamei Y, Ebisawa T, Tagaya H, Okawa M, Takahashi K. Larger phase angle between sleep propensity and melatonin rhythms in sighted humans with non-24-hour sleep–wake syndrome. Sleep. 2002;25(1):83–8.

    PubMed  Google Scholar 

  34. 34.

    Uchiyama M, Kamei Y, Tagaya H, Takahashi K. Poor compensatory function for sleep loss in delayed sleep phase syndrome and non-24-hour sleep–wake syndrome. Sleep Biol Rhythms. 2004;2(supplement 1):s5–6.

    Article  Google Scholar 

  35. 35.

    Sharma B, Feinsilver S. Circadian rhythm sleep disorders: an update. Sleep Biol Rhythms. 2009;7:113–24.

    Article  Google Scholar 

  36. 36.

    Hoban TM, Sack RL, Lewy AJ, Miller LS, Singer CM. Entrainment of a free-running human with bright light? Chronobiol Int. 1989;6(4):347–53.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Uchiyama M, Okawa M, Ozaki S, Shirakawa S, Takahashi K. Delayed phase jumps of sleep onset in a patient with non-24-hour sleep–wake syndrome. Sleep. 1996;19(8):637–40.

    CAS  PubMed  Google Scholar 

  38. 38.

    Regestein QR, Monk TH. Delayed sleep phase syndrome: a review of its clinical aspects. Am J Psychiatry. 1995;152(4):602–8.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Thorpy MJ, Korman E, Spielman AJ, Glovinsky PB. Delayed sleep phase syndrome in adolescents. J Adolesc Health Care. 1988;9(1):22–7.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Hayakawa T, Uchiyama M, Kamei Y, Shibui K, Tagaya H, Asada T, Okawa M, Urata J, Takahashi K. Clinical analyses of sighted patients with non-24-hour sleep–wake syndrome: a study of 57 consecutively diagnosed cases. Sleep. 2005;28(8):945–52.

    PubMed  Google Scholar 

  41. 41.

    Tagaya H, Matsuno Y, Atsumi Y. A schizophrenic with non-24-hour sleep–wake syndrome. Jpn J Psychiatry Neurol. 1993;47(2):441–2.

    CAS  PubMed  Google Scholar 

  42. 42.

    Morinobu S, Yamashita H, Yamawaki S, Tanaka K, Ohkawa M. Obsessive–compulsive disorder with non-24-hour sleep–wake syndrome. J Clin Psychiatry. 2002;63(9):838–40.

    PubMed  Article  Google Scholar 

  43. 43.

    Drennan MD, Klauber MR, Kripke DF, Goyette LM. The effects of depression and age on the Horne-Ostberg morningness–eveningness score. J Affect Disord. 1991;23(2):93–8.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Mansour HA, Monk TH, Nimgaonkar VL. Circadian genes and bipolar disorder. Ann Med. 2005;37(3):196–205.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Ahn YM, Chang J, Joo YH, Kim SC, Lee KY, Kim YS. Chronotype distribution in bipolar I disorder and schizophrenia in a Korean sample. Bipolar Disord. 2008;10(2):271–5.

    PubMed  Article  Google Scholar 

  46. 46.

    Wood J, Birmaher B, Axelson D, Ehmann M, Kalas C, Monk K, Turkin S, Kupfer DJ, Brent D, Monk TH, et al. Replicable differences in preferred circadian phase between bipolar disorder patients and control individuals. Psychiatry Res. 2009;166(2–3):201–9.

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Gaspar-Barba E, Calati R, Cruz-Fuentes CS, Ontiveros-Uribe MP, Natale V, De Ronchi D, Serretti A. Depressive symptomatology is influenced by chronotypes. J Affect Disord. 2009;119(1–3):100–6.

    PubMed  Article  Google Scholar 

  48. 48.

    Kitamura S, Hida A, Watanabe M, Enomoto M, Aritake-Okada S, Moriguchi Y, Kamei Y, Mishima K. Evening preference is related to the incidence of depressive states independent of sleep–wake conditions. Chronobiol Int. 2010;27(9–10):1797–812.

    PubMed  Article  Google Scholar 

  49. 49.

    Artioli P, Lorenzi C, Pirovano A, Serretti A, Benedetti F, Catalano M, Smeraldi E. How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. Eur Neuropsychopharmacol. 2007;17(9):587–94.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Lamont EW, Legault-Coutu D, Cermakian N, Boivin DB. The role of circadian clock genes in mental disorders. Dialogues Clin Neurosci. 2007;9(3):333–42.

    PubMed  Google Scholar 

  51. 51.

    McClung CA. Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther. 2007;114(2):222–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Barnard AR, Nolan PM. When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet. 2008;4(5):e1000040.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Kripke DF, Nievergelt CM, Joo E, Shekhtman T, Kelsoe JR. Circadian polymorphisms associated with affective disorders. J Circadian Rhythms. 2009;7(2):2.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Mendlewicz J. Disruption of the circadian timing systems: molecular mechanisms in mood disorders. CNS Drugs. 2009;23(Suppl 2):15–26.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Archer SN, Robilliard DL, Skene DJ, Smits MG, Williams A, Arendt J, Von Schantz M. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep. 2003;26:413–5.

    PubMed  Google Scholar 

  56. 56.

    Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, Mignot E. A CLOCK polymorphism associated with human diurnal preference. Sleep. 1998;21(6):569–76.

    CAS  PubMed  Google Scholar 

  57. 57.

    Mishima K, Tozawa T, Satoh K, Saitoh H, Mishima Y. The 3111T/C polymorphism of hClock is associated with evening preference and delayed sleep timing in a Japanese population sample. Am J Med Genet B Neuropsychiatr Genet. 2005;133B(1):101–4.

    PubMed  Article  Google Scholar 

  58. 58.

    Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, McElroy SL, Keck PE Jr, Schork NJ, Kelsoe JR. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(3):234–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, Monk TH, Devlin B, Nimgaonkar VL. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav. 2006;5(2):150–7.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E, Smeraldi E. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet. 2003;123B(1):23–6.

    PubMed  Article  Google Scholar 

  61. 61.

    Gould TD, Manji HK. Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology. 2005;30(7):1223–37.

    CAS  PubMed  Google Scholar 

  62. 62.

    McClung CA, Sidiropoulou K, Vitaterna M, Takahashi JS, White FJ, Cooper DC, Nestler EJ. Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci USA. 2005;102(26):9377–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J, Oehrlein N, Birnbaum S, et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA. 2007;104(15):6406–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Liu X, Uchiyama M, Shibui K, Kim K, Kudo Y, Tagaya H, Suzuki H, Okawa M. Diurnal preference, sleep habits, circadian sleep propensity and melatonin rhythm in healthy human subjects. Neurosci Lett. 2000;280(3):199–202.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Bailey SL, Heitkemper MM. Circadian rhythmicity of cortisol and body temperature: morningness–eveningness effects. Chronobiol Int. 2001;18(2):249–61.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Kerkhof GA, Van Dongen HP. Morning-type and evening-type individuals differ in the phase position of their endogenous circadian oscillator. Neurosci Lett. 1996;218(3):153–6.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Mongrain V, Lavoie S, Selmaoui B, Paquet J, Dumont M. Phase relationships between sleep–wake cycle and underlying circadian rhythms in morningness–eveningness. J Biol Rhythms. 2004;19(3):248–57.

    PubMed  Article  Google Scholar 

  68. 68.

    Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol. 2008;23(7):571–85.

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Burgess HJ, Revell VL, Molina TA, Eastman CI. Human phase response curves to three days of daily melatonin: 0.5 mg versus 3.0 mg. J Clin Endocrinol Metab. 2010;95(7):3325–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Mundey K, Benloucif S, Harsanyi K, Dubocovich ML, Zee PC. Phase-dependent treatment of delayed sleep phase syndrome with melatonin. Sleep. 2005;28(10):1271–8.

    PubMed  Google Scholar 

  71. 71.

    Kato K, Hirai K, Nishiyama K, Uchikawa O, Fukatsu K, Ohkawa S, Kawamata Y, Hinuma S, Miyamoto M. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology. 2005;48(2):301–10.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Richardson GS, Zee PC, Wang-Weigand S, Rodriguez L, Peng X. Circadian phase-shifting effects of repeated ramelteon administration in healthy adults. J Clin Sleep Med. 2008;4(5):456–61.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Kamgar-Parsi B, Wehr TA, Gillin JC. Successful treatment of human non-24-hour sleep–wake syndrome. Sleep. 1983;6(3):257–64.

    CAS  PubMed  Google Scholar 

  74. 74.

    Uchiyama M, Mayer G, Okawa M, Meier-Ewert K. Effects of vitamin B12 on human circadian body temperature rhythm. Neurosci Lett. 1995;192(1):1–4.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazuo Mishima.

Ethics declarations

Disclosure of potential conflicts of interest

The author has no conflict of interest.

Ethical approval

All study procedures by the author’s research group in this review were in accordance with the 1964 Helsinki Declaration and was approved by the Ethics Committee of the National Center of Neurology and Psychiatry.

Informed consent

Written consent was obtained from all participants following explanations about the study and its purposes.

Funding

Part of this study is the result of the project entitled ‘‘Understanding of Molecular and Environmental Bases for Brain Health’’ carried out under the Strategic Research Program for Brain Sciences from the Ministry of Education, Culture, Sports, Science and Technology of Japan. This study was also supported by Grants-in-Aid for Scientific Research (#21390335, #22791161, and #24621015) from the Japan Society for the Promotion of Science, and an Intramural Research Grant (#23-3) for Neurological and Psychiatric Disorders from the National Center of Neurology and Psychiatry.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishima, K. Pathophysiology and strategic treatment of sighted non-24-h sleep–wake rhythm disorders. Sleep Biol. Rhythms 15, 11–20 (2017). https://doi.org/10.1007/s41105-016-0076-4

Download citation

Keywords

  • Circadian rhythm
  • Sleep disorder
  • Biological clock
  • Free-running
  • Chronotherapy