Advertisement

Automotive and Engine Technology

, Volume 4, Issue 3–4, pp 93–99 | Cite as

Charge temperature evaluation in self-ignition events

  • P. GrünebergerEmail author
  • E. Winklhofer
Original Paper
  • 22 Downloads

Abstract

A thermodynamic method for the evaluation of charge “parcel” temperatures at the moment of self-ignition in SI engines has been applied to a series of combustion cycles which were ignited by pre-ignition events. The temperature evaluation method is based on measurement of the degree crank angle at which the rate of heat release surpasses the background noise level and numerical integration of the Livengood–Wu integral with ignition delay relations based on Arrhenius’ parameters for activation energy, temperature and pressure. A key variable of this method is the temperature “history” prior to self-ignition as such temperature history controls the heat input into the reactive gas. Results of the method, thus, provide a means to discuss pre-ignition events in view of potential root causes for charge heating including compression heating enhanced by hot spot heat transfer, the influence of intake air temperature or further mechanisms or sources of heat input.

Keywords

SI-engine Pre-ignition Self-ignition Temperature evaluation 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Heywood, J.: Internal Combustion Engine Fundamentals. McGraw-Hill International Editions, Singapore (1989)Google Scholar
  2. 2.
    Merker, G., Schwarz, C.: Grundlagen Verbrennungsmotoren. Springer Vieweg, Wiesbaden (2009)CrossRefGoogle Scholar
  3. 3.
    Yokoo T, et al. Research on the improvement of the knocking prediction accuracy by considering the effect of negative temperature coefficient for high compression ratio engine. In: Internationaler Kongress “Motorische Verbrennung”, 16./17. März, Ludwigsburg (2017)Google Scholar
  4. 4.
    Zhou, A., Dong, T., Akih-Kumgeh, B.: Simplifying ignition delay prediction for homogeneous charge compression ignition engine design and control. Int. J. Engine Res. 17(9), 957–968 (2016)CrossRefGoogle Scholar
  5. 5.
    Grüneberger, P., Hirsch, A., Philipp, H., Winklhofer, E.: Flame analysis supports combustion system development in normal SI engine test operation. In: Internationaler Kongress “Motorische Verbrennung”, 16./17. März, Ludwigsburg (2017)Google Scholar
  6. 6.
    Martin, C., et al.: Development of new test methods to describe knock and pre-ignition behaviour of fuel and oil in highly charged gasoline engines. In: Internationales Wiener Motorensymposium 2014: s.n. (2014)Google Scholar
  7. 7.
    Pischinger, S., Hoppe, F., Krieck, M. et al.: Behaviour of fuel and oil in highly charged gasoline engines “tailor-made fuels from biomass”. In: Internationales Wiener Motorensymposium 2016: s.n. (2016)Google Scholar
  8. 8.
    Adomeit, P., et al.: Effect of fuel and combustion system on the pre-ignition of boosted SI engines. s.l.: In: Internationales Wiener Motorensymposium (2013)Google Scholar
  9. 9.
    Luef, R., et al.: Development of a new test procedure to determine fuel and oil impact on irregular combustion phenomena with focus on highly boosted downsized S.I. Engines. s.l. In: 23rd Aachen colloquium automobile and engine technology (2014)Google Scholar
  10. 10.
    Spicher, U., et al.: Die Bedeutung des Motoröls bei der Entstehung der Vorentflammung. MTZ 77(1), 62–67 (2016)Google Scholar
  11. 11.
    Leach, B., et al.: Management of low speed pre-ignition via fuel and lubricant formulation. In: 26th Aachen colloquium automobile and engine technology: s.n. (2017)Google Scholar
  12. 12.
    Mayer, M., et al.: Vorentflammungseinfluss des Motoröls bei hochaufgeladenen Ottomotoren mit direkter Einspritzung. MTZ 77(6), 42–47 (2016)Google Scholar
  13. 13.
    Lauer, T., et al.: Modellansatz zur Entsehung von Vorentflammungen. MTZ (2014).  https://doi.org/10.1007/s35146-014-0020-6 CrossRefGoogle Scholar
  14. 14.
    Kassai, M., Shiraishi, T., Noda, T.: Fundamental mechanism analysis on the underlying processes of LSPI using experimental and modeling approaches. Springer, 2018. M. Günther and M. Sens (eds.), Knocking in Gasoline Engines,  https://doi.org/10.1007/978-3-319-69760-4_6 Google Scholar
  15. 15.
    Zahdeh, A.et al. Fundamental Approach to iInvestiage Pre-Igntion in Boosted SI Engines, SAE International,  https://doi.org/10.4271/2011-01-0340 CrossRefGoogle Scholar
  16. 16.
    AVL. AVL CalcGraf - Graphical Formula Editor. USER’S GUIDE, AT2653E Rev. 10 - 05/2018Google Scholar
  17. 17.
    Winklhofer, E, Kapus, P., Knorz, C., Moik, J. Ottomotren im Hochlasttest. 10. Tagung “Der Arbeitsprozess des Verbrennungsmotors” TU Graz, 2005Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.AVL List GmbHGrazAustria

Personalised recommendations