Advertisement

Automotive and Engine Technology

, Volume 3, Issue 3–4, pp 169–177 | Cite as

Corrosion resistance of brazed aluminum in ethanol/water mixtures at high temperatures

  • S. WoernerEmail author
  • T. Kaiser
  • L. Beck
  • T. Grosskopf
  • C. Kuenzel
Original Paper
  • 32 Downloads

Abstract

This study investigated the corrosion of aluminum in various ethanol/water mixtures. It has been shown that a critical corrosion temperature exists at which a sudden exothermic corrosion occurs. This critical corrosion temperature is dependent on presence of water and increases with increasing water concentration. This corrosion is independent of the atmosphere. Furthermore, it was demonstrated that denaturants in ethanol with a carbonyl group will further increase the critical corrosion temperature. This increase is due to a reaction of water and carbonyl to carbonyl-hydrate which reacts with the aluminum oxide surface forming a passivation layer. The critical corrosion temperature has been defined by the reaction of aluminum with ethanol. Thereby, the same energy is always released, independent of the water concentration. However, the presence of water influences the activation energy of this reaction. The observed corrosion of aluminum depends on the exposed surface area. Consequently, with increasing surface area, a higher statistical failure rate is observed. This is most likely due to defects in the passivation layer of aluminum.

Keywords

Aluminum corrosion Compatibility in ethanol/water Denaturant as corrosion inhibitor High temperatures 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Teng, H., Regner, G., Cowland, C., Waste heat recovery of heavy-duty diesel engines by organic rankine cycle part 1: hybrid energy system of diesel and rankine engines. SAE International Publications: 2007-01-0537 (2007)Google Scholar
  2. 2.
    El Chammas, R., Clodic, D., Combined cycle for hybrid vehicles. SAE International Publications: 2005-01-1171 (2005)Google Scholar
  3. 3.
    Sprouse, I.I.I., C.E. and Depick, C.: Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Appl. Therm. Eng. 51, 711–722 (2013)CrossRefGoogle Scholar
  4. 4.
    Latz, G., Erlandsson, O., Skare, T., Contet, A., Andersson, S., Munch, K.: Performance analysis of a reciprocating piston expander and a plate type exhaust gas recirculation boiler in a water-based Rankine cycle for heat recovery from a heavy duty diesel engine. Energies. 9(7), 495–509 (2016)CrossRefGoogle Scholar
  5. 5.
    Dingel, O., Töpfer, T., Neukirchner, H., Seebode, J.: Anforderungen und Effizienzpotentiale von Systmen zur Abgaswärmerückgewinnung bei Anwendung in PKW, Nfz und mobilen Arbeitsmaschinen, in 10. MTZ-Fachtagung: Der Antrieb von morgen, pp. 14–17. Wolfsburg, MTZ (2015)Google Scholar
  6. 6.
    Badr, O., Naik, S., O’Callaghan, P.W., Probert, S.D.: Expansion machine for a low power-output steam Rankine-cycle engine. Appl. Energy. 39, 93–116 (1991)CrossRefGoogle Scholar
  7. 7.
    Steinberg, P.: Waermemanagement des Kraftfahrzeugs VII: Energiemanagement. Haus der Technik, Aachen (2010)Google Scholar
  8. 8.
    Schwöbel, J.A.H., Preißinger, M., Brüggemann, D., Klamt, A.: High-throughput screening of working fluids for the organic Rankine cycle (ORC) based on conductor-like screening model for realistic solvation (COSMO-RS) and thermodynamic process simulations. Ind. Eng. Chem. Res. 56(3), 788–798 (2017)CrossRefGoogle Scholar
  9. 9.
    Menne, A., Struzyna, R.: Abschlussbericht zum Thema Definition und Erprobung von Fluiden zum Einsatz in Waste-Recovery-Anlagen. FVV, Frankfurt (2013)Google Scholar
  10. 10.
    Scholz, M., Ellermeier, J.: Korrosionsverhalten unterschiedlicher Aluminiumlegierungen in ethanolhaltigem Ottokraftstoff unter erhöhten Temperaturen. Materialwissenschaften und Werkstofftechnik 37(10), 842–851 (2006)CrossRefGoogle Scholar
  11. 11.
    Yoo, Y.H., Park, I.J., Kim, J.G., Kwak, D.H., Ji, W.S.: Corrosion characteristics of aluminum alloy in bio-ethanol blended gasoline fuel: part 1. The corrosion properties of aluminum alloy in high temperature fuels. Fuel. 90(3), 1208–1214 (2011)CrossRefGoogle Scholar
  12. 12.
    Krüger, L., Tuchscheerer, F., Mandel, M., Müller, S., Liebisch, S.: Corrosion behaviour of aluminium alloys in ethanol fuels. Mater. Sci. 47, 2798–2806 (2011)CrossRefGoogle Scholar
  13. 13.
    Eppel, K., Scholz, M., Troßmann, T., Berger, C.: Corrosion of metals for automotive applications in ethanol blended biofuels. Energy. Mater. 3(4), 227–231 (2008)CrossRefGoogle Scholar
  14. 14.
    Lindner, J.: Alcoholate corrosion of aluminium in ethanol blends. In: School of Chemical and Engineering, p. 70. KTH Royal Institute of Technology Stockholm, Sweden (2012)Google Scholar
  15. 15.
    Aluminium: and alloys—Chemical composition and form of wrought products—part 3: chemical composition and form of products, in EN 573-3. 2013Google Scholar
  16. 16.
    Reitz, R., Bewertung der Werkstoff- und Medienbeständigkeit von Metallen im Kontakt mit Arbeitsmedien für WHR Systeme, in Informationstagung Motoren/Turbomaschinen. Forschungsvereinigung Verbrennungsmotoren e.V. (FVV), Leipzig (2017)Google Scholar
  17. 17.
    NIST, Reference fluid thermodynamic and transport properties database (REFPROP). (2013)Google Scholar
  18. 18.
    Vargel, C., Corrosion of aluminium. Elsevier, Amsterdam, Netherlands (2004)CrossRefGoogle Scholar
  19. 19.
    Hart, R.: The formation of films on aluminium immersed in water. Trans. Faraday Soc. 57, 1020–1027 (1957)CrossRefGoogle Scholar
  20. 20.
    Inoue, M., Kondo, Y., Inui, T.: An ethylene glycol derivate of boehmite. Inorg. Chem. 27(2), 215–221 (1988)CrossRefGoogle Scholar
  21. 21.
    Inoue, M., Kominami, H., Inui, T.: Reaction of aluminium alkoxides with various glycols and the layer structure of their products. J. Chem. Soc. Dalton Trans. 12, 3331–3336 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • S. Woerner
    • 1
    Email author
  • T. Kaiser
    • 1
  • L. Beck
    • 1
  • T. Grosskopf
    • 1
  • C. Kuenzel
    • 1
  1. 1.Modine Europe GmbHFilderstadtGermany

Personalised recommendations