Advertisement

Acquiring non-parametric scattering phase function from a single image

  • Yuki Minetomo
  • Hiroyuki Kubo
  • Takuya Funatomi
  • Mikio Shinya
  • Yasuhiro Mukaigawa
Open Access
Research Article
  • 57 Downloads

Abstract

Acquiring accurate scattering properties is important for rendering translucent materials. In particular, the phase function, which determines the distribution of scattering directions, plays a significant role in the appearance of a material. We propose a distinctive scattering theory that approximates the effect of single scattering to acquire the non-parametric phase function from a single image. Furthermore, in various experiments, we measured the phase functions from several real diluted media and rendered images of these materials to evaluate the effectiveness of our theory.

Keywords

scattering phase function measurement rendering 

Notes

Acknowledgements

This work was partly supported by JSPS KAKENHI JP15K16027, JP26700013, and JP15H005918.

References

  1. [1]
    Jensen, H. W.; Marschner, S. R.; Levoy, M.; Hanrahan, P. A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 511–518, 2001.Google Scholar
  2. [2]
    Yan, L.-Q.; Zhou, Y.; Xu, K.; Wang, R. Accurate translucent material rendering under spherical Gaussian lights. Computer Graphics Forum Vol. 31, No. 7, 2267–2276, 2012.CrossRefGoogle Scholar
  3. [3]
    Song, Y.; Tong, X.; Pellacini, F.; Peers, P. SubEdit: A representation for editing measured heterogeneous subsurface scattering. ACM Transactions on Graphics Vol. 28, No. 3, Article No. 31, 2009.Google Scholar
  4. [4]
    Xu, K.; Gao, Y.; Li, Y.; Ju, T.; Hu, S.-M. Real-time homogenous translucent material editing. Computer Graphics Forum Vol. 26, No. 3, 545–552, 2007.CrossRefGoogle Scholar
  5. [5]
    Phong, B. T. Illumination for computer generated pictures. Communications of the ACM Vol. 18, No. 6, 311–317, 1975.CrossRefGoogle Scholar
  6. [6]
    Ward, G. J. Measuring and modeling anisotropic reflection. ACM SIGGRAPH Computer Graphics Vol. 26, No. 2, 265–272, 1992.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Lafortune, E. P. F.; Foo, S.-C.; Torrance, K. E.; Greenberg, D. P. Non-linear approximation of reflectance functions. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 117–126, 1997.Google Scholar
  8. [8]
    He, X. D.; Torrance, K. E.; Sillion, F. X.; Greenberg, D. P. A comprehensive physical model for light reflection. ACM SIGGRAPH Computer Graphics Vol. 25, No. 4, 175–186, 1991.CrossRefGoogle Scholar
  9. [9]
    Müller, G.; Bendels, G. H.; Klein, R. Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts. In: Proceedings of the 6th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage, 13–20, 2005.Google Scholar
  10. [10]
    Ben-Ezra, M.; Wang, J.; Wilburn, B.; Li, X.; Ma, L. An LED-only BRDF measurement device. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–8, 2008.Google Scholar
  11. [11]
    Marschner, S. R.; Westin, S. H.; Lafortune, E. P. F.; Torrance, K. E.; Greenberg, D. P. Image-based BRDF measurement including human skin. In: Proceedings of the 10th Eurographics Conference on Rendering, 131–144, 1999.Google Scholar
  12. [12]
    Matusik, W.; Pfister, H.; Brand, M.; McMillan, L. A data-driven reflectance model. ACM Transactions on Graphics Vol. 22, No. 3, 759–769, 2003.CrossRefGoogle Scholar
  13. [13]
    Mukaigawa, Y.; Sumino, K.; Yagi, Y. Multiplexed illumination for measuring BRDF using an ellipsoidal mirror and a projector. In: Computer Vision–ACCV 2007. Lecture Notes in Computer Science, Vol. 4844. Yagi, Y.; Kang, S. B.; Kweon, I. S.; Zha, H. Eds. Springer Berlin Heidelberg, 246–257, 2007.Google Scholar
  14. [14]
    Ghosh, A.; Heidrich, W.; Achutha, S.; O’Toole, M. A basis illumination approach to BRDF measurement. International Journal of Computer Vision Vol. 90, No. 2, 183–197, 2010.CrossRefGoogle Scholar
  15. [15]
    Donner, C.; Jensen, H. W. Light diffusion in multilayered translucent materials. ACM Transactions on Graphics Vol. 24, No. 3, 1032–1039, 2005.CrossRefGoogle Scholar
  16. [16]
    Papas, M.; Regg, C.; Jarosz, W.; Bickel, B.; Jackson, P.; Matusik, W.; Marschner, S.; Gross, M. Fabricating translucent materials using continuous pigment mixtures. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 146, 2013.Google Scholar
  17. [17]
    Munoz, A.; Echevarria, J. I.; Seron, F. J.; Lopez-Moreno, J.; Glencross, M.; Gutierrez, D. BSSRDF estimation from single images. Computer Graphics Forum Vol. 30, No. 2, 455–464, 2011.CrossRefGoogle Scholar
  18. [18]
    Gu, J.; Nayar, S. K.; Grinspun, E.; Belhumeur, P. N.; Ramamoorthi, R. Compressive structured light for recovering inhomogeneous participating media. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 3, 1–1, 2013.Google Scholar
  19. [19]
    Khungurn, P.; Schroeder, D.; Zhao, S.; Bala, K.; Marschner, S. Matching real fabrics with microappearance models. ACM Transactions on Graphics Vol. 35, No. 1, Article No. 1, 2015.Google Scholar
  20. [20]
    Gkioulekas, I.; Xiao, B.; Zhao, S.; Adelson, E. H.; Zickler, T.; Bala, K. Understanding the role of phase function in translucent appearance. ACM Transactions on Graphics Vol. 32, No. 5, Article No. 147, 2013.Google Scholar
  21. [21]
    Henyey, L. G.; Greenstein, J. L. Diffuse radiation in the galaxy. The Astrophysical Journal Vol. 93, 70–83, 1941.CrossRefzbMATHGoogle Scholar
  22. [22]
    Fuchs, C.; Chen, T.; Goesele, M.; Theisel, H.; Seidel, H.-P. Density estimation for dynamic volumes. Computers & Graphics Vol. 31, No. 2, 205–211, 2007.CrossRefGoogle Scholar
  23. [23]
    Narasimhan, S. G.; Gupta, M.; Donner, C.; Ramamoorthi, R.; Nayar, S. K.; Jensen, H. W. Acquiring scattering properties of participating media by dilution. ACM Transactions on Graphics Vol. 25, No. 3, 1003–1012, 2006.CrossRefGoogle Scholar
  24. [24]
    Mukaigawa, Y.; Raskar, R.; Yagi, Y. Analysis of scattering light transport in translucent media. IPSJ Transactions on Computer Vision and Applications Vol. 3, 122–133, 2011.CrossRefGoogle Scholar
  25. [25]
    Kattawar, G. W. A three-parameter analytic phase function for multiple scattering calculations. Journal of Quantitative Spectroscopy and Radiative Transfer Vol. 15, No. 9, 839–849, 1975.CrossRefGoogle Scholar
  26. [26]
    Gkioulekas, I.; Zhao, S.; Bala, K.; Zickler, T.; Levin, A. Inverse volume rendering with material dictionaries. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 162, 2013.Google Scholar
  27. [27]
    Hawkins, T.; Einarsson, P.; Debevec, P. Acquisition of time-varying participating media. ACM Transactions on Graphics Vol. 24, No. 3, 812–815, 2005.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Yuki Minetomo
    • 1
  • Hiroyuki Kubo
    • 1
  • Takuya Funatomi
    • 1
  • Mikio Shinya
    • 2
    • 3
  • Yasuhiro Mukaigawa
    • 1
  1. 1.Nara Institute of Science and TechnologyNaraJapan
  2. 2.Toho UniversityChibaJapan
  3. 3.Dwango CG ResearchTokyoJapan

Personalised recommendations