Advertisement

Computational Visual Media

, Volume 4, Issue 3, pp 209–221 | Cite as

Relief generation from 3D scenes guided by geometric texture richness

  • Yongwei Miao
  • Yuliang Sun
  • Xudong Fang
  • Jiazhou Chen
  • Xudong Zhang
  • Renato Pajarola
Open Access
Research Article
  • 116 Downloads

Abstract

Typically, relief generation from an input 3D scene is limited to either bas-relief or high-relief modeling. This paper presents a novel unified scheme for synthesizing reliefs guided by the geometric texture richness of 3D scenes; it can generate both basand high-reliefs. The type of relief and compression coefficient can be specified according to the user’s artistic needs. We use an energy minimization function to obtain the surface reliefs, which contains a geometry preservation term and an edge constraint term. An edge relief measure determined by geometric texture richness and edge z-depth is utilized to achieve a balance between these two terms. During relief generation, the geometry preservation term keeps local surface detail in the original scenes, while the edge constraint term maintains regions of the original models with rich geometric texture. Elsewhere, in highreliefs, the edge constraint term also preserves depth discontinuities in the higher parts of the original scenes. The energy function can be discretized to obtain a sparse linear system. The reliefs are obtained by solving it by an iterative process. Finally, we apply non-linear compression to the relief to meet the user’s artistic needs. Experimental results show the method’s effectiveness for generating both bas- and high-reliefs for complex 3D scenes in a unified manner.

Keywords

geometric texture richness relief generation energy minimization bas-relief high-relief 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61272309. The 3D models are courtesy of the Aim@Shape and Archive3d.

References

  1. [1]
    Botsch, M.; Pauly, M.; Kobbelt, L.; Alliez, P.; Lévy, B.; Bischoff, S.; Rössl, C. Geometric modeling based on polygonal meshes. In: Proceedings of the ACM SIGGRAPH 2007 Course, Article No. 1, 2007.Google Scholar
  2. [2]
    Sorkine, O.; Cohen-Or, D.; Lipman, Y.; Alexa, M.; Rössl, C.; Seidel, H.-P. Laplacian surface editing. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 175–184, 2004.Google Scholar
  3. [3]
    Yu, Y.; Zhou, K.; Xu, D.; Shi, X.; Bao, H.; Guo, B.; Shum, H.-Y. Mesh editing with Poisson-based gradient field manipulation. ACM Transactions on Graphics Vol. 23, No. 3, 644–651, 2004.CrossRefGoogle Scholar
  4. [4]
    Zhou, K.; Huang, J.; Snyder, J.; Liu, X.; Bao, H.; Guo, B.; Shum, H.-Y. Large mesh deformation using the volumetric graph Laplacian. ACM Transactions on Graphics Vol. 24, No. 3, 496–503, 2005.CrossRefGoogle Scholar
  5. [5]
    Lipman, Y.; Sorkine, O.; Levin, D.; Cohen-Or, D. Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics Vol. 24, No. 3, 479–487, 2005.CrossRefGoogle Scholar
  6. [6]
    Botsch, M.; Sorkine, O. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics Vol. 14, No. 1, 213–230, 2008.CrossRefGoogle Scholar
  7. [7]
    Miao, Y.-W.; Feng, J.-Q.; Wang, J.-R.; Pajarola, R. A multi-channel salience based detail exaggeration technique for 3D relief surfaces. Journal of Computer Science and Technology Vol. 27, No. 6, 1100–1109, 2012.CrossRefGoogle Scholar
  8. [8]
    Kerber, J.; Wang, M.; Chang, J.; Zhang, J. J.; Belyaev, A.; Seidel, H.-P. Computer assisted relief generation—A survey. Computer Graphics Forum Vol. 31, No. 8, 2363–2377, 2012.CrossRefGoogle Scholar
  9. [9]
    Cho, W.; Sachs, E.-M.; Patrikalakis, N.-M.; Troxel, D.-E. A dithering algorithm for local composition control with three-dimensional printing. Computer- Aided Design Vol. 35, No. 9, 851–867, 2003.CrossRefGoogle Scholar
  10. [10]
    Jee, H. J.; Sachs, E. A visual simulation technique for 3D printing. Advances in Engineering Software Vol. 31, No. 2, 97–106, 2000.CrossRefGoogle Scholar
  11. [11]
    Cignoni, P.; Montani, C.; Scopigno, R. Computerassisted generation of bas- and high-reliefs. Journal of Graphics Tools Vol. 2, No. 3, 15–28, 1997.CrossRefGoogle Scholar
  12. [12]
    Zhang, Y.-W.; Zhou, Y.-Q.; Zhao, X.-F.; Yu, G. Realtime bas-relief generation from a 3D mesh. Graphical Models Vol. 75, No. 1, 2–9, 2013.CrossRefGoogle Scholar
  13. [13]
    Miao, Y.; Lin, H. Visual saliency guided global and local resizing for 3D models. In: Proceedings of the 13th International Conference on Computer-Aided Design and Computer Graphics, 212–219, 2013.Google Scholar
  14. [14]
    Wang, K.; Torkhani, F.; Montanvert, A. A fast roughness-based approach to the assessment of 3D mesh visual quality. Computers & Graphics Vol. 36, No. 7, 808–818, 2012.CrossRefGoogle Scholar
  15. [15]
    Weyrich, T.; Deng, J.; Barnes, C.; Rusinkiewicz, S.; Finkelstein, A. Digital bas-relief from 3D scenes. ACM Transactions on Graphics Vol. 26, No. 3, Article No. 32, 2007.CrossRefGoogle Scholar
  16. [16]
    Ji, Z.; Ma, W.; Sun, X. Bas-relief modeling from normal images with intuitive styles. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 5, 675–685, 2014.CrossRefGoogle Scholar
  17. [17]
    Ji, Z.; Sun, X.; Li, S.; Wang, Y. Real-time bas-relief generation from depth-and-normal maps on GPU. Computer Graphics Forum Vol. 33, No. 5, 75–83, 2014.CrossRefGoogle Scholar
  18. [18]
    Zhang, Y.-W.; Zhang, C.; Wang, W.; Chen, Y. Adaptive bas-relief generation from 3D object under illumination. Computer Graphics Forum Vol. 35, No. 7, 311–321, 2016.CrossRefGoogle Scholar
  19. [19]
    Arpa, S.; Süsstrunk, S.; Hersch, R. D. High reliefs from 3D scenes. Computer Graphics Forum Vol. 34, No. 2, 253–263, 2015.CrossRefGoogle Scholar
  20. [20]
    Belhumeur, P. N.; Kriegman, D. J.; Yuille, A. L. The bas-relief ambiguity. International Journal of Computer Vision Vol. 35, No. 1, 33–44, 1999.CrossRefGoogle Scholar
  21. [21]
    Kerber, J.; Tevs, A.; Belyaev, A.; Zayer, R.; Seidel, H.-P. Feature sensitive bas relief generation. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, 148–154, 2009.Google Scholar
  22. [22]
    Bian, Z.; Hu, S.-M. Preserving detailed features in digital bas-relief making. Computer Aided Geometric Design Vol. 28, No. 4, 245–256, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Zhou, S; Liu, L. Realtime digital bas-relief modeling. Journal of Computer-Aided Design & Computer Graphics Vol. 22, No. 3, 434–439, 2010.Google Scholar
  24. [24]
    Sun, X.; Rosin, P. L.; Martin, R. R.; Langbein, F. C. Bas-relief generation using adaptive histogram equalization. IEEE Transactions on Visualization and Computer Graphics Vol. 15, No. 4, 642–653, 2009.CrossRefGoogle Scholar
  25. [25]
    Zhang, Y. W.; Zhou, Y. Q.; Li, X. L.; Liu, H.; Zhang, L. L. Bas-relief generation and shape editing through gradient-based mesh deformation. IEEE Transactions on Visualization and Computer Graphics Vol. 21, No. 3, 328–338, 2015.CrossRefGoogle Scholar
  26. [26]
    Schüller, C.; Panozzo, D.; Sorkine-Hornung, O. Appearance-mimicking surfaces. ACM Transactions on Graphics Vol. 33, No. 6, Article No. 216, 2014.CrossRefzbMATHGoogle Scholar
  27. [27]
    Meyer, M.; Desbrun, M.; Schröder, P.; Barr, A. H. Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and mathematics III. Hege, H. C.; Polthier, K. Eds. Springer-Verlag, 35–57, 2003.CrossRefGoogle Scholar
  28. [28]
    Vallet, B.; Lévy, B. Spectral geometry processing with manifold harmonics. Computer Graphics Forum Vol. 27, No. 2, 251–260, 2008.CrossRefGoogle Scholar
  29. [29]
    Lavoué, G. A local roughness measure for 3D meshes and its application to visual masking. ACM Transactions on Applied Perception Vol. 5, No. 4, Article No. 21, 2009.CrossRefGoogle Scholar
  30. [30]
    Intel Math Kernel Library (Intel MKL). Available at https://doi.org/soft-ware.intel.com/en-us/intel-mk.

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Yongwei Miao
    • 1
    • 2
  • Yuliang Sun
    • 2
  • Xudong Fang
    • 2
  • Jiazhou Chen
    • 2
  • Xudong Zhang
    • 2
  • Renato Pajarola
    • 3
  1. 1.College of Information Science and TechnologyZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.College of Computer Science and TechnologyZhejiang University of TechnologyHangzhouChina
  3. 3.Department of InformaticsUniversity of ZürichZürichSwitzerland

Personalised recommendations