Advertisement

Computational Visual Media

, Volume 4, Issue 2, pp 185–195 | Cite as

Magic sheets: Visual cryptography with common shares

  • Naoki KitaEmail author
  • Kazunori Miyata
Open Access
Research Article
  • 357 Downloads

Abstract

Visual cryptography (VC) is an encryption technique for hiding a secret image in distributed and shared images (referred to as shares). VC schemes are employed to encrypt multiple images as meaningless, noisy patterns or meaningful images. However, decrypting multiple secret images using a unique share is difficult with traditional VC. We propose an approach to hide multiple images in meaningful shares. We can decrypt multiple images simultaneously using a common share, which we refer to as a magic sheet. The magic sheet decrypts multiple secret images depending on a given share. The shares are printed on transparencies, and decryption is performed by physically superimposing the transparencies. We evaluate the proposed method using binary, grayscale, and color images.

Keywords

visual cryptography (VC) information hiding secret sharing 

Notes

Acknowledgements

We thank all reviewers for their helpful comments. This work was supported by JSPS KAKENHI Grant Nos. 17J04232 and 16K12433.

References

  1. [1]
    Naor, M.; Shamir, A. Visual cryptography. In: Advances in Cryptology—EUROCRYPT’94. Lecture Notes in Computer Science, Vol. 950. De Santis, A. Ed. Springer Berlin Heidelberg, 1–12, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Shamir, A. How to share a secret. Communications of the ACM Vol. 22, No. 11, 612–613, 1979.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Hou, Y.-C. Visual cryptography for color images. Pattern Recognition Vol. 36, No. 7, 1619–1629, 2003.CrossRefGoogle Scholar
  4. [4]
    Liu, F.; Wu, C. Embedded extended visual cryptography schemes. IEEE Transactions on Information Forensics and Security Vol. 6, No. 2, 307–322, 2011.CrossRefGoogle Scholar
  5. [5]
    Kang, I.; Arce, G. R.; Lee, H. K. Color extended visual cryptography using error diffusion. IEEE Transactions on Image Processing Vol. 20, No. 1, 132–145, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Liu, B.; Martin, R. R.; Huang, J.-W.; Hu, S.-M. Structure aware visual cryptography. Computer Graphics Forum Vol. 33, No. 7, 141–150, 2014.CrossRefGoogle Scholar
  7. [7]
    Shyu, S. J.; Huang, S.-Y.; Lee, Y.-K.; Wang, R.-Z.; Chen, K. Sharing multiple secrets in visual cryptography. Pattern Recognition Vol. 40, No. 12, 3633–3651, 2007.CrossRefzbMATHGoogle Scholar
  8. [8]
    Fang, W.-P.; Lin, J.-C. Universal share for the sharing of multiple images. Journal of the Chinese Institute of Engineers Vol. 30, No. 4, 753–757, 2007.CrossRefGoogle Scholar
  9. [9]
    Meghrajani, Y. K.; Mazumdar, H. S. Universal share for multisecret image sharing scheme based on Boolean operation. IEEE Signal Processing Letters Vol. 23, No. 10, 1429–1433, 2016.CrossRefGoogle Scholar
  10. [10]
    Liu, F.; Yan, W. Q. Visual Cryptography for Image Processing and Security, 2nd edn. Springer International Publishing, 2015.CrossRefzbMATHGoogle Scholar
  11. [11]
    Mitra, N. J.; Pauly, M. Shadow art. ACM Transactions on Graphics Vol. 28, No. 5, Article No. 156, 2009.Google Scholar
  12. [12]
    Baran, I.; Keller, P.; Bradley, D.; Coros, S.; Jarosz, W.; Nowrouzezahrai, D.; Gross, M. Manufacturing layered attenuators for multiple prescribed shadow images. Computer Graphics Forum Vol. 31, No. 2pt3, 603–610, 2012.CrossRefGoogle Scholar
  13. [13]
    Alexa, M.; Matusik, W. Reliefs as images. ACM Transactions on Graphics Vol. 29, No. 4, Article No. 60, 2010.Google Scholar
  14. [14]
    Bermano, A.; Baran, I.; Alexa, M.; Matusk, W. Shadowpix: Multiple images from self shadowing. Computer Graphics Forum Vol. 31, No. 2pt3, 593–602, 2012.CrossRefGoogle Scholar
  15. [15]
    Mitra, N. J.; Chu, H.-K.; Lee, T.-Y.; Wolf, L.; Yeshurun, H.; Cohen-Or, D. Emerging images. ACM Transactions on Graphics Vol. 28, No. 5, Article No. 163, 2009.Google Scholar
  16. [16]
    Chu, H.-K.; Hsu, W.-H.; Mitra, N. J.; Cohen-Or, D.; Wong, T.-T.; Lee, T.-Y. Camouflage images. ACM Transactions on Graphics Vol. 29, No. 4, Article No. 51, 2010.Google Scholar
  17. [17]
    Papas, M.; Houit, T.; Nowrouzezahrai, D.; Gross, M.; Jarosz, W. The magic lens: Refractive steganography. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 186, 2012.Google Scholar
  18. [18]
    Pjanic, P.; Hersch, R. D. Color imaging and pattern hiding on a metallic substrate. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 130, 2015.Google Scholar
  19. [19]
    Chosson, S. M.; Hersch, R. D. Beating shapes relying on moiré level lines. ACM Transactions on Graphics Vol. 34, No. 1, Article No. 9, 2014.Google Scholar
  20. [20]
    Ostromoukhov, V. A simple and efficient error-diffusion algorithm. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 567–572, 2001.Google Scholar
  21. [21]
    Chang, J.; Alain, B.; Ostromoukhov, V. Structureaware error diffusion. ACM Transactions on Graphics Vol. 28, No. 5, Article No. 162, 2009.Google Scholar
  22. [22]
    Li, H.; Mould, D. Contrast-aware halftoning. Computer Graphics Forum Vol. 29, No. 2, 273–280, 2010.CrossRefGoogle Scholar
  23. [23]
    Liu, L.; Chen, W.; Zheng, W.; Geng, W. Structureaware error-diffusion approach using entropyconstrained threshold modulation. The Visual Computer Vol. 30, No. 10, 1145–1156, 2014.CrossRefGoogle Scholar
  24. [24]
    Pang, W.-M.; Qu, Y.; Wong, T.-T.; Cohen-Or, D.; Heng. P.-A. Structure-aware halftoning. ACM Transactions on Graphics Vol. 27, No. 3, Article No. 89, 2008.Google Scholar
  25. [25]
    Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing Vol. 13, No. 4, 600–612, 2004CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.

Authors and Affiliations

  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations