Advertisement

Computational Visual Media

, Volume 3, Issue 4, pp 305–313 | Cite as

Anisotropic deformation for local shape control

  • Matteo ColaianniEmail author
  • Christian Siegl
  • Jochen Süßmuth
  • Frank Bauer
  • Günther Greiner
Open Access
Research Article

Abstract

We present a novel approach to mesh deformation that enables simple context sensitive manipulation of 3D geometry. The method is based on locally anisotropic transformations and is extended to global control directions. This allows intuitive directional modeling within an easy to implement framework. The proposed method complements current sculpting paradigms by providing further possibilities for intuitive surface-based editing without the need for additional host geometries. We show the anisotropic deformation to be seamlessly transferable to free boundary parameterization methods, which allows us to solve the hard problem of flattening compression garments in the domain of apparel design.

Keywords

anisotropy modeling as-rigid-aspossible (ARAP) deformation parameterization 

Notes

Acknowledgements

We want to thank Blendswap artists Calore for the cobra, Metalix for the dog, and Nerotbf for the Roman bust.

References

  1. [1]
    Magnenat-Thalmann, N.; Laperrière, R.; Thalmann, D. Joint-dependent local deformations for hand animation and object grasping. In: Proceedings on Graphics Interface, 26–33, 1988.Google Scholar
  2. [2]
    Baran, I.; Popović, J. Automatic rigging and animation of 3D characters. ACM Transactions on Graphics Vol. 26, No. 3, Article No. 72, 2007.Google Scholar
  3. [3]
    Jacobson, A.; Sorkine, O. Stretchable and twistable bones for skeletal shape deformation. ACM Transactions on Graphics Vol. 30, No. 6, Article No. 165, 2011.Google Scholar
  4. [4]
    Nieto, J. R.; Susín, A. Cage based deformations: A survey. In: Deformation Models. Hidalgo, M.; Torres, A. M.; Gómez, J. V. Eds. Springer Netherlands, 75–99, 2013.CrossRefGoogle Scholar
  5. [5]
    Jacobson, A.; Baran, I.; Popović, J.; Sorkine-Hornung, O. Bounded biharmonic weights for realtime deformation. Communications of the ACM Vol. 57, No. 4, 99–106, 2014.CrossRefGoogle Scholar
  6. [6]
    Igarashi, T.; Moscovich, T.; Hughes, J. F. As-rigidas-possible shape manipulation. ACM Transactions on Graphics Vol. 24, No. 3, 1134–1141, 2005.CrossRefGoogle Scholar
  7. [7]
    Sorkine, O.; Alexa, M. As-rigid-as-possible surface modeling. In: Proceedings of the 5th Eurographics Symposium on Geometry Processing, 109–116, 2007.Google Scholar
  8. [8]
    Wang, Y.; Jacobson, A.; Barbič, J.; Kavan, L. Linear subspace design for real-time shape deformation. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 57, 2015.Google Scholar
  9. [9]
    Sumner, R. W.; Popović, J. Deformation transfer for triangle meshes. ACM Transactions on Graphics Vol. 23, No. 3, 399–405, 2004.CrossRefGoogle Scholar
  10. [10]
    Sumner, R. W.; Schmid, J.; Pauly, M. Embedded deformation for shape manipulation. ACM Transactions on Graphics Vol. 26, No. 3, Article No. 80, 2007.Google Scholar
  11. [11]
    Bærentzen, J. A.; Abdrashitov, R.; Singh, K. Interactive shape modeling using a skeleton-mesh corepresentation. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 132, 2014.Google Scholar
  12. [12]
    Usai, F.; Livesu, M.; Puppo, E.; Tarini, M.; Scateni, R. Extraction of the quad layout of a triangle mesh guided by its curve skeleton. ACM Transactions on Graphics Vol. 35, No. 1, Article No. 6, 2015.Google Scholar
  13. [13]
    Liu, L.; Zhang, L.; Xu, Y.; Gotsman, C.; Gortler, S. J. A local/global approach to mesh parameterization. Computer Graphics Forum Vol. 27, No. 5, 1495–1504, 2008.CrossRefGoogle Scholar
  14. [14]
    Zhang, Y.; Wang, C. C. L. WireWarping++: Robust and flexible surface flattening with length control. IEEE Transactions on Automation Science and Engineering Vol. 8, No. 1, 205–215, 2011.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Smith, J.; Schaefer, S. Bijective parameterization with free boundaries. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 70, 2015.Google Scholar
  16. [16]
    Krzywinski, S. Verbindung von Design und Konstruktion in der textilen Konfektion unter Anwendung von CAE. TUDpress, 2005.Google Scholar
  17. [17]
    Crane, K.; Desbrun, M.; Schröder, P. Trivial connections on discrete surfaces. Computer Graphics Forum Vol. 29, No. 5, 1525–1533, 2010.CrossRefGoogle Scholar
  18. [18]
    Colaianni, M.; Siegl, C.; Süßmuth, J.; Rott, F.; Greiner, G. Shape adaptive cut lines. In: Proceedings of the Eurographics Workshop on Graphics for Digital Fabrication, 49–55, 2016.Google Scholar

Copyright information

© The Author(s) 2017

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.

Authors and Affiliations

  • Matteo Colaianni
    • 1
    Email author
  • Christian Siegl
    • 1
  • Jochen Süßmuth
    • 2
  • Frank Bauer
    • 1
  • Günther Greiner
    • 1
  1. 1.Computer Graphics GroupUniversity Erlangen-NurembergErlangenGermany
  2. 2.Adidas AGHerzogenaurachGermany

Personalised recommendations