Advertisement

SAR-SIFT for Matching Multiple SAR Images and Radargrammetry

  • Clémence DuboisEmail author
  • Andrea Nascetti
  • Antje Thiele
  • Mattia Crespi
  • Stefan Hinz
Original Article

Abstract

This article presents a new application of the SAR-SIFT algorithm proposed by Dellinger et al. (IEEE Trans Geosci Remote Sens 53:453–466, 2015) for the automatic generation of tie points (TPs). In particular, SAR-SIFT is applied on stereo-SAR images to extract corresponding points and determine their 3D position. Furthermore, the potential of the combined use of the SAR-SIFT with the SAR-stereo model for extracting reliable TPs is analysed, by evaluating their absolute accuracy in 2D and 3D. The tests are performed with TerraSAR-X HR SpotLight data acquired over Trento, Italy. Single and multiple image pairs have been considered. 3D accuracy assessment of the extracted points is performed relying on LiDAR data; the results show a planimetric accuracy up to 1 m and an elevation accuracy of about 2 m.

Keywords

SAR-SIFT applications 2D/3D tie points Accuracy assessment Stereo Radargrammetry 

Zusammenfassung

SAR-SIFT für das Matching von Multiplen SAR Bildern und Radargrammetry. In diesem Artikel wird eine neue Einsatzmöglichkeit mit dem Ziel der automatischen Extraktion von Verknüpfungspunkten (Tie Points: TPs) des SAR-SIFT-Algorithmus präsentiert, der von Dellinger et al. (2015) vorgestellt wurde. Der SAR-SIFT-Algorithmus wird auf SAR-Stereobildpaare zur Extraktion homologer Punkte angewandt, deren 3D-Koordinaten mithilfe des SAR-Stereomodells ermittelt werden. Das Potential der kombinierten Anwendung des SAR-SIFT mit dem SAR-Stereomodell zur Extraktion zuverlässiger TPs wird anhand ihrer absoluten 2D/3D-Punktgenauigkeit untersucht. Die Untersuchungen werden auf TerraSAR-X HR-SpotLight-Daten von Trento (Italien) durchgeführt. Sowohl einzelne als auch multiple radargrammetrische Bildpaare werden betrachtet. Die 3D-Genauigkeit der extrahierten Punkte wird anhand von LiDAR-Daten bewertet. Die Ergebnisse weisen eine Lagegenauigkeit von bis zu 1 m und eine Höhengenauigkeit von circa 2 m auf.

Notes

Acknowledgements

The authors would like to thank the Karlsruhe House of Young Scientist (KHYS) for giving C. Dubois the financial support to stay at DICEA for the development of this methodology. The authors are indebted to Prof. Uwe Soergel and DLR for supplying the TerraSAR-X SpotLight imagery used in this work in the frame of the project Evaluation of DEM derived from TerraSAR-X data organised by the ISPRS Working Group VII/2 SAR Interferometry.

References

  1. Capaldo P, Fratarcangeli F, Nascetti A, Mazzoni A, Porfiri M, Crespi M (2014) Centimeter range measurement using amplitude data of TerraSAR-X imagery. Int Arch Photogramm Remote Sens Spatial Inf Sci XL(7): 55–61Google Scholar
  2. Chureesampant K, Susaki J (2014) Automatic GCP extraction of fully polarimetric SAR images. IEEE Trans Geosci Remote Sens 52(1):137–148CrossRefGoogle Scholar
  3. Dellinger F, Delon J, Gousseau Y, Michel J, Tupin F (2015) SAR-sift: a sift-like algorithm for SAR images. IEEE Trans Geosci Remote Sens 53(1):453–466CrossRefGoogle Scholar
  4. Dubois C (2015) Interferometric synthetic aperture RADAR and radargrammetry towards the categorization of building changes. PhD thesis. Karlsruhe, Karlsruher Institut für Technologie (KIT), Dissertation. 2015Google Scholar
  5. Fjortoft R, Lopes A, Marthon P, Cubero-Castan E (1998) An optimal multiedge detector for SAR image segmentation. IEEE Trans Geosci Remote Sens 36(3):793–802CrossRefGoogle Scholar
  6. Gonzalez JH, Bachmann M, Böer J, Fiedler H, Krieger G, Zink M (2009) TanDEM-X mission and DEM accuracy. In: Proceedings of wave propagation in communication, microwaves systems and navigation, WFMN 2009Google Scholar
  7. Jacobsen K (2004) Analysis of digital elevation models based on space information. In: EARSEL symposium, Dubrovnik, CroatiaGoogle Scholar
  8. Koppe W, Wenzel R, Henning S, Janoth J, Hummel P, Raggam H (2012) Quality assessment of TerraSAR-X derived ground control points. In: IEEE international geoscience and remote sensing symposium, pp 3580–3583Google Scholar
  9. Leberl FW (1990) Radargrammetric image processing. Artech House, BostonGoogle Scholar
  10. Liu J-Z, Yu X-C (2008) Research on SAR image matching technology based on SIFT. Int Arch Photogramm Remote Sens Spatial Inf Sci XXXVII(B1):403–408Google Scholar
  11. Lowe DG (1999) Object recognition from local scale-invariant features. In: IEEE international conference on computer vision, vol 2, pp 1150–1157Google Scholar
  12. Mittermayer J, Wollstadt S, Prats-Iraola P, Scheiber R (2014) The TerraSAR-X staring spotlight mode concept. IEEE Trans Geosci Remote Sens 52(6):3695–3706CrossRefGoogle Scholar
  13. Nascetti A, Capaldo P, Fratarcangeli F, Mazzoni A, Crespi M (2015a) Monitoring ground displacements at centimeter level exploiting TerraSAR-X range measurements. In: IEEE international geoscience and remote sensing symposium, pp 1401–1404Google Scholar
  14. Nascetti A, Capaldo P, Porfiri M, Pieralice F, Fratarcangeli F, Benenati L, Crespi M (2015b) Fast terrain modelling for hydrogeological risk mapping and emergency management: the contribution of high-resolution satellite SAR imagery. Geomat Nat Hazards Risk 6(5–7):554–582CrossRefGoogle Scholar
  15. Reinartz P, Müller R, Schwind P, Suri S, Bamler R (2011) Orthorectification of VHR optical satellite data exploiting the geometric accuracy of TerraSAR-X data. ISPRS J Photogramm Remote Sens 66(1):124–132CrossRefGoogle Scholar
  16. Suri S, Schwind P, Uhl J, Reinhartz P (2010) Modifications in the SIFT operator for effective SAR image matching. Int J Image Data Fusion 1(3):243–256CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V. 2017

Authors and Affiliations

  • Clémence Dubois
    • 1
    Email author
  • Andrea Nascetti
    • 2
  • Antje Thiele
    • 3
    • 4
  • Mattia Crespi
    • 2
  • Stefan Hinz
    • 3
  1. 1.Department Geoscientific Information, International Cooperation, Sub-Department Geo-Hazard Assessment, Remote SensingFederal Institute for Geosciences and Natural ResourcesHannoverGermany
  2. 2.Department of Civil, Constructional and Environmental EngineeeringUniversity of Rome ‘La Sapienza’RomeItaly
  3. 3.Institute of Photogrammetry and Remote SensingKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB)EttlingenGermany

Personalised recommendations