Acquisition and Consecutive Registration of Photogrammetric Point Clouds for Construction Progress Monitoring Using a 4D BIM

  • Sebastian TuttasEmail author
  • Alexander Braun
  • André Borrmann
  • Uwe Stilla
Original Article


Traditionally, progress monitoring of a construction site is carried out by multiple visual observations and manual records of the actual state. For automation of this procedure digital methods for comparison of the as-planned state and as-built state are proposed. This task can be performed by comparing a 4D Building Information Model (BIM) to actual acquired photogrammetric point clouds. A continuous monitoring requires a frequent acquisition and subsequent comparison of co-registered point clouds. We propose for this task a procedure consisting of three steps: (1) mounting photogrammetric ground control markers in the coordinate system of the construction site; (2) creating an image block using these control points only in this initial step; (3) registration of images from subsequent acquisitions based on 2D-features only. For evaluation, we have investigated two scenarios and two acquisitions techniques. Using a hand-held camera and an Unmanned Aerial Vehicle in total 14 acquisitions were recorded. In both scenarios the consecutive registration was successful and shows deviations of \(\sim \)3–5 cm of planes derived from the point clouds in relation to planes of the BIM.


Construction progress monitoring BIM Co-registration photogrammetric point clouds 


Die Durchführung der Baufortschrittskontrolle basiert herkömmlicherweise auf wiederholter visuellen Inspektion und hndischer Aufzeichnung des aktuellen Zustandes. Um diesen Prozess zu automatisieren kann, unter Verwendung digitaler Methoden, ein Vergleich von Soll- und Ist-Zustand durchgefhrt werden. Eine Mglichkeit dazu ist der Abgleich eines 4D Building Information Models (BIM) zu einer photogrammetrischen Punktwolke des aktuellen Zustands. Eine kontinuierliche Überwachung erfordert hierbei eine wiederholte Datenaufnahme und den fortlaufenden Abgleich der koregistrierten Punktwolken. Zu diesem Zweck wird folgende Vorgehensweise fr die Koregistrierung vorgeschlagen: (i) Anbringen von photogrammetrischen Markern, die das Baustellenkoordinatensystem realisieren; (ii) Aufnahme eines initialen Bildblocks unter Nutzung dieser Passinformation; (iii) Registrierung von Bilder darauffolgender Aufnahmedaten ausschlielich über 2D-Bildmerkmale; Zur Evaluierung wurden zwei Szenarien mit zwei unterschiedlichen Aufnahmearten herangezogen. Unter Verwendung einer handgetragenen Kamera sowie eines Unmanned Aerial Vehicle (UAV) wurden insgesamt 14 Zeitpunkte erfasst. In beiden Szenarien war die fortlaufende Koregistrierung erfolgreich und zeigte Abweichungen von \(\sim \)3 bis 5 cm zwischen Ebenen aus dem BIM und Ebenen, die aus der Punktwolke extrahiert wurden.


Baufortschrittskontrolle BIM Koregistrierung photogrammetrische Punktwolken 



This work is supported by the German Research Foundation (DFG) in the project “Baufortschrittskontrolle auf Basis integrierter Punktwolkeninterpretation und 4D-Bauwerksmodellierung” under Grants STI 545/6-1 and BO 3575/4-1. We would like to thank Leitner GmbH & Co Bauunternehmung KG and Kuehn Malvezzi Architects (Test Site A) and Baureferat H5, Landeshauptstadt München, Baugesellschaft Mickan mbH & Co KG, h4a Architekten, Wenzel \(+\) Wenzel and Stadtvermessungsamt München (Test Site B) for their support during the case studies. The authors also want to thank Konrad Eder for his support during data acquisition.


  1. Bae H, Golparvar-Fard M, White J (2013) High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications. Vis Eng 1(1):1–13. doi: 10.1186/2213-7459-1-3 CrossRefGoogle Scholar
  2. Besl PJ, McKay ND (1992) Method for registration of 3-D shapes. In: Proceedings of SPIE, vol 1611, pp 586–606Google Scholar
  3. Borrmann A, Knig M, Koch C, Beetz J (2015) Building information modeling. VDI-Buch, Springer Fachmedien Wiesbaden. doi: 10.1007/978-3-658-05606-3_40
  4. Bosché F (2010) Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction. Adv Eng Inform 24(1):107–118. doi: 10.1016/j.aei.2009.08.006 CrossRefGoogle Scholar
  5. Bosché F (2012) Plane-based registration of construction laser scans with 3D/4D building models. Adv Eng Inform 26(1):90–102. doi: 10.1016/j.aei.2011.08.009 CrossRefGoogle Scholar
  6. Bosché F, Haas C, Akinci B (2009) Automated recognition of 3D CAD objects in site laser scans for project 3D status visualization and performance control. J Comput Civ Eng 23(6):311–318. doi: 10.1061/(ASCE)0887-3801(2009)23:6(311) CrossRefGoogle Scholar
  7. Braun A, Borrmann A, Tuttas S, Stilla U (2015) A concept for automated construction progress monitoring using BIM-based geometric constraints and photogrammetric point clouds. J Inf Technol Constr 20:68–79Google Scholar
  8. Braun A, Borrmann A, Tuttas S, Stilla U (2016) Classification of detection states in construction progress monitoring. In: Christodoulou S, Scherer R (eds) 11th European conference on product and process modelling 2016, Limassol, Cyprus, pp 473–479Google Scholar
  9. Golparvar-Fard M, Bohn J, Teizer J, Savarese S, Peña Mora F (2011a) Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques. Autom Constr 20(8):1143–1155. doi: 10.1016/j.autcon.2011.04.016
  10. Golparvar-Fard M, Peña Mora F, Savarese S (2011b) Monitoring changes of 3D building elements from unordered photo collections. In: IEEE international conference on computer vision workshops (ICCV Workshops), 2011, pp 249–256. doi: 10.1109/ICCVW.2011.6130250
  11. Golparvar-Fard M, Peña Mora F, Savarese S (2012) Automated progress monitoring using unordered daily construction photographs and IFC-based building information models. J Comput Civ Eng 29(1):04014,025-1–04014,025-19. doi: 10.1061/(ASCE)CP.1943-5487.0000205 Google Scholar
  12. Han KK, Golparvar-Fard M (2015) BIM-assisted structure-from-motion for analyzing and visualizing construction progress deviations through daily site images and BIM. In: OBrien W, Ponticelli S (eds) Computing in civil engineering 2015, pp 596–603. doi: 10.1061/9780784479247.074
  13. Han K, Lin J, Golparvar-Fard M (2015) A formalism for utilization of autonomous vision-based systems and integrated project models for construction progress monitoring. In: Proceedings of 2015 Conference on autonomous and robotic construction of infrastructure, pp 118–131Google Scholar
  14. Ham Y, Han K, Lin J, Golparvar-Fard M (2016) Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Vis Eng 4(1):1–8CrossRefGoogle Scholar
  15. Hirschmüller H (2008) Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30(2):328–341. doi: 10.1109/TPAMI.2007.1166 CrossRefGoogle Scholar
  16. Karsch K, Golparvar-Fard M, Forsyth D (2014) ConstructAide: analyzing and visualizing construction sites through photographs and building models. Assoc Comput Mach Trans Graph 33(6):176:1–176:11. doi: 10.1145/2661229.2661256 Google Scholar
  17. Kim H, Kano N (2008) Comparison of construction photograph and VR image in construction progress. Autom Constr 17(2):137–143. doi: 10.1016/j.autcon.2006.12.005 CrossRefGoogle Scholar
  18. Kim C, Kim B, Kim H (2013a) 4D CAD model updating using image processing-based construction progress monitoring. Autom Constr 35:44–52. doi: 10.1016/j.autcon.2013.03.005
  19. Kim C, Son H, Kim C (2013b) Automated construction progress measurement using a 4D building information model and 3D data. Autom Constr 31:75–82. doi: 10.1016/j.autcon.2012.11.041 CrossRefGoogle Scholar
  20. Koutsoudis A, Arnaoutoglou F, Pavlidis G (2015) Structure from motion-multiple view stereovision (SFM/MVS)—an introduction on how to perform SFM/MVS. In: Digital technologies in cultural heritage & tourism (DIGARCH) 2015 NOTES, pp 1–16Google Scholar
  21. Maalek R, Lichti D, Ruwanpura J (2015) Robust classification and segmentation of planar and linear features for construction site progress monitoring and structural dimension compliance control. ISPRS Ann Photogramm Remote Sens Spat Inf Sci II-3/W5:129–136. doi: 10.5194/isprsannals-II-3-W5-129-2015
  22. Pătrăucean V, Armeni I, Nahangi M, Yeung J, Brilakis I, Haas C (2015) State of research in automatic as-built modelling. Adv Eng Inform 29(2):162–171. doi: 10.1016/j.aei.2015.01.001 CrossRefGoogle Scholar
  23. Rankohi S, Waugh L (2014) Image-based modeling approaches for projects status comparison. In: Canadian Society Civil Engineering (CSCE) 2014 General Conference, vol 30Google Scholar
  24. Rothermel M, Wenzel K, Fritsch D, Haala N (2012) SURE: Photogrammetric surface reconstruction from imagery. In: Low-cost 3D workshopGoogle Scholar
  25. Snavely N, Seitz SM, Szeliski R (2006) Photo tourism: exploring photo collections in 3D. Assoc Comput Mach Trans Graph 25(3):835–846. doi: 10.1145/1141911.1141964 Google Scholar
  26. Son H, Kim C (2010) 3D structural component recognition and modeling method using color and 3D data for construction progress monitoring. Autom Constr 19(7):844–854. doi: 10.1016/j.autcon.2010.03.003 CrossRefGoogle Scholar
  27. Tang P, Rasheed SH (2013) Simulation for characterizing a progressive registration algorithm aligning as-built 3D point clouds against as-designed models. In: Proceedings of the 2013 winter simulation conference: simulation: making decisions in a complex world, pp 3169–3180Google Scholar
  28. Turkan Y, Bosché F, Haas CT, Haas R (2012) Automated progress tracking using 4D schedule and 3D sensing technologies. Autom Constr 22:414–421. doi: 10.1016/j.autcon.2011.10.003 CrossRefGoogle Scholar
  29. Turkan Y, Bosché F, Haas CT, Haas R (2013) Toward automated earned value tracking using 3D imaging tools. J Constr Eng Manag 139(4):423–433. doi: 10.1061/(ASCE)CO.1943-7862.0000629 CrossRefGoogle Scholar
  30. Turkan Y, Bosché F, Haas CT, Haas R (2014) Tracking of secondary and temporary objects in structural concrete work. Constr Innov Inf Process Manag 14(2):145–167CrossRefGoogle Scholar
  31. Tuttas S, Braun A, Borrmann A, Stilla U (2014) Comparison of photogrammetric point clouds with BIM building elements for construction progress monitoring. Int Arch Photogramm Remote Sens Spat Inf Sci XL-3:341–345. doi: 10.5194/isprsarchives-XL-3-341-2014
  32. Tuttas S, Braun A, Borrmann A, Stilla U (2015) Validation of BIM components by photogrammetric point clouds for construction site monitoring. ISPRS Ann Photogramm Remote Sens Spat Inf Sci II-3/W4:231–237. doi: 10.5194/isprsannals-II-3-W4-231-2015
  33. Tuttas S, Braun A, Borrmann A, Stilla U (2016) Evaluation of acquisition strategies for image-based construction site monitoring. Int Arch Photogramm Remote Sens Spat Inf Sci XLI-B5:733–740. doi: 10.5194/isprs-archives-XLI-B5-733-2016
  34. Wu C (2013) Towards linear-time incremental structure from motion. In: 2013 International conference on 3D vision, pp 127–134. doi: 10.1109/3DV.2013.25
  35. Xu Y, He J, Tuttas S, Stilla U (2015) Reconstruction of scaffolding components from photogrammetric point clouds of a construction site. ISPRS Ann Photogramm Remote Sens Spat Inf Sci II-3/W5:401–408. doi: 10.5194/isprsannals-II-3-W5-401-2015
  36. Xu Y, Tuttas S, Heogner L, Stilla U (2016) Classification of photogrammetric point clouds of scaffolds for construction site monitoring using subspace clustering and PCA. Int Arch Photogramm Remote Sens Spat Inf Sci XLI-B3:725–732. doi: 10.5194/isprs-archives-XLI-B3-725-2016
  37. Zollmann S, Hoppe C, Kluckner S, Poglitsch C, Bischof H, Reitmayr G (2014) Augmented reality for construction site monitoring and documentation. Proc IEEE 102(2):137–154. doi: 10.1109/JPROC.2013.2294314 CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V. 2017

Authors and Affiliations

  • Sebastian Tuttas
    • 1
    Email author
  • Alexander Braun
    • 2
  • André Borrmann
    • 2
  • Uwe Stilla
    • 1
  1. 1.Photogrammetry and Remote SensingTechnical University of MunichMunichGermany
  2. 2.Computational Modeling and SimulationTechnical University of MunichMunichGermany

Personalised recommendations