Advertisement

arktos

pp 1–13 | Cite as

Ocean surface warming in Krossfjorden, Svalbard, during the last 60 years

  • Harikrishnan GuruvayoorappanEmail author
  • Arto Miettinen
  • Dmitry V. Divine
  • Matthias Moros
  • Lisa C. Orme
  • Rahul Mohan
Original Article

Abstract

A high-resolution marine sediment core NP16-Kro1-MCB from Krossfjorden, Western Svalbard is studied to investigate changes in sea surface conditions in the fjord during the last 60 years (1953–2014). The diatom-based reconstruction of August sea surface temperature (aSST) demonstrates a clear warming trend of 0.6 °C through the record. As inferred from Marginal Ice Zone (MIZ) diatoms, surface warming occurs in parallel with a decline in sea ice extent (SIE) during recent decades. Factor analysis identified variations in diatom assemblages representing different water masses, showing a dominance of Arctic water diatoms throughout the period and decadal variations in the sea ice assemblage during periods of peak sea ice extent. The strong dominance of Arctic water diatoms along with increasing aSST suggest prolonged open-water conditions and increased sea ice melting in the region throughout the observed period. The reconstructed ocean surface changes are in line with the background warming occurring over the Arctic region. A comparison with instrumental records from neighboring regions supports the quality of the reconstructions, including the average reconstructed aSST and the magnitude of the warming trend. We suggest that increased CO2 forcing together with ocean–atmospheric interaction have caused the increasing SST trend and decreasing sea ice presence in Krossfjorden rather than an increasing influence from Atlantic Water, which has amplified changes in many regions of Svalbard.

Keywords

Sea surface temperature Sea ice Diatoms Reconstruction Krossfjorden Svalbard 

Notes

Acknowledgements

We would like to thank the cruise leader Katrine Husum of NPI MoSJ-ICE 2016 cruise, and the captain and crew of RV Lance for assisting in sediment coring. This work was funded by the Research Council of Norway (Grant no. 248776/E10) and Ministry of Earth Science, Earth System Science Organization (MoES/Indo-Nor/PS-2/2015), through the OCTEL project. We thank Svetlana Divina for grain size distribution analysis and Katrine Husum for her valuable inputs. Harikrishnan Guruvayoorappan and Rahul Mohan would also like to thank the Director of National Centre for Polar and Ocean Research (NCPOR) for his constant encouragement and support to our project. This is NCPOR contribution No. J-44/2019-20.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

41063_2019_71_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)
41063_2019_71_MOESM2_ESM.docx (28 kb)
Supplementary material 2 (DOCX 28 kb)
41063_2019_71_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 12 kb)
41063_2019_71_MOESM4_ESM.jpg (258 kb)
Fig. 1. Figure showing 137Cs accumulation in the sediment from core top (0.5) to the bottom (31.5) (JPEG 258 kb)
41063_2019_71_MOESM5_ESM.png (62 kb)
Fig. 2. CTD-derived temperatures from the core location NP16-Kro1-MCB (PNG 61 kb)
41063_2019_71_MOESM6_ESM.jpg (2 mb)
Fig. 3. Station locations (JPEG 2016 kb)

References

  1. 1.
    Andersen C, Koc N, Jennings A, Andrews J (2004) Non uniform response of the major surface currents in the Nordic Seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography 19:PA2003.  https://doi.org/10.1029/2002PA000873 CrossRefGoogle Scholar
  2. 2.
    Andersen C, Koc N, Moros M (2004) A highly unstable Holocene climate in the subpolar North Atlantic: evidence from diatoms. Quat Sci Rev 23:2155–2166CrossRefGoogle Scholar
  3. 3.
    Berner KS, Koc N, Divine D, Godtliebsen F, Moros M (2008) A decadal-scale Holocene sea surface temperature record from the subpolar North Atlantic constructed using diatoms and statistics and its relation to other climate parameters. Paleoceanography 23:PA2210.  https://doi.org/10.1029/2006PA001339 CrossRefGoogle Scholar
  4. 4.
    Berner KS, Koc N, Godtliebsen F, Divine D (2011) Holocene climate variability of the Norwegian Atlantic Current during high and low solar insolation forcing. Paleoceanography 26:PA2220.  https://doi.org/10.1029/2010pa002002 CrossRefGoogle Scholar
  5. 5.
    Burman P (1989) A comparative study of ordinary cross-validation, v-fold cross-validation, and the repeated learning-testing methods. Biometrika 76:503–514CrossRefGoogle Scholar
  6. 6.
    Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60CrossRefGoogle Scholar
  7. 7.
    Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  8. 8.
    Caissie BA (2012) Diatoms as Recorders of Sea Ice in the Bering and Chukchi Seas: proxy development and application. Dissertation, University of MassachusettsGoogle Scholar
  9. 9.
    Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607.  https://doi.org/10.1029/2007gl029948 CrossRefGoogle Scholar
  10. 10.
    Divine DV, Dick C (2006) Historical variability of sea ice edge position in the Nordic Seas. J Geophys Res 111:C01001.  https://doi.org/10.1029/2004JC002851 CrossRefGoogle Scholar
  11. 11.
    Ebbesen H, Hald M, Eplet TH (2007) Lateglacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic. Quat Sci Rev 26:1999–2011CrossRefGoogle Scholar
  12. 12.
    Elverhøi A, Liestøl O, Nagy J (1980) Glacial erosion, sedimentation and microfauna in the inner part of Kongsfjorden, Spitsbergen. Nor Polarinst Skr 172:33–61Google Scholar
  13. 13.
    Elverhøi A, Lønne Ø, Seland R (1983) Glaciomarine sedimentation in a modern fjord environment, Spitsbergen. Polar Res 1:127–149.  https://doi.org/10.3402/polar.v1i2.6978 CrossRefGoogle Scholar
  14. 14.
    Forwick M, Laberg JS, Vorren TO, Jernas P (2015) Quaternary geology and geomorphology, fjord bathymetry and geology. In: Dallmann WK (ed) Geoscience atlas of Svalbard. Norwegian Polar Institute Report Series, vol 148, Norwegian Polar Institute, Tromsø. pp 53–88Google Scholar
  15. 15.
    Førland EJ, Benestad Rasmus, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Adv Meteorol.  https://doi.org/10.1155/2011/893790 CrossRefGoogle Scholar
  16. 16.
    Gjelten HM, Nordli Ø, Isaksen K, Førland EJ, Sviashchennikov PN, Wyszyński P, Prokhorova UV, Przybylak R, Ivanov BV, Urazgildeeva AV (2016) Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Res 35:29878.  https://doi.org/10.3402/polar.v35.29878 CrossRefGoogle Scholar
  17. 17.
    Hagen JO, Liestøl O, Roland E, Jørgensen T (1993) Glacier Atlas of Svalbard and Jan Mayen.: Norsk Polarinstitutt. Norsk PolarinstituttMeddelelser (129) UiOGoogle Scholar
  18. 18.
    Hald M, Ebbesen H, Forwick M, Godtliebsen F, Khomenko L, Korsun S, Olsen L, Vorren T (2004) Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin. Quat Sci Rev 23:2075–2088CrossRefGoogle Scholar
  19. 19.
    Hansen J, Ruedy R, Sato M and Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004.  https://doi.org/10.1029/2010RG000345
  20. 20.
    Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a High Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105CrossRefGoogle Scholar
  21. 21.
    Holdsworth G, Ponrchet M, Prantl FA, Meyerhof DP (1984) Radioactivity levels in a firm core from the Yukon Territory, Canada. Atmos Environ 18(2):461–466CrossRefGoogle Scholar
  22. 22.
    Howe JA, Moreton SG, Morris C, Morris P (2003) Multibeam bathymetry and the depositional environments of Kongsfjorden and Krossfjorden, western Spitsbergen, Svalbard. Polar Res 22:301–316.  https://doi.org/10.1111/j.1751-8369.2003.tb00114.x CrossRefGoogle Scholar
  23. 23.
    Hurrell J, National Center for Atmospheric Research Staff (eds) (2018) The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based). https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
  24. 24.
    Husum K, Howe J, Baltzer A, Forwick M, Jensen M, Jernas P, Korsun S, Miettinen A, Mohan R, Morigi C, Myhre PI, Prins M, Skirbekk K, Sternal B, Boos M, Dijkstra N, Troelstra S (2019) The marine sedimentary environments of Kongsfjorden, Svalbard: an archive of polar environmental change. Polar Res.  https://doi.org/10.33265/polar.v38.3380 CrossRefGoogle Scholar
  25. 25.
    Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge University Press, New YorkGoogle Scholar
  26. 26.
    Isaksson E, Divine D, Kohler J, Martma T, Pohjola V, Motoyama H, Watanabe O (2005) Climate oscillations as recorded in Svalbard ice core d18O records between 1200–1997 AD. Geogr Ann Ser A 87(1):203–214CrossRefGoogle Scholar
  27. 27.
    Jernas P, Klitgaard-Kristensen D, Husum K, Wilson L, Koc N (2013) Palaeoenvironmental changes of the last two millennia on the western and northern Svalbard shelf. Boreas 42:236–255CrossRefGoogle Scholar
  28. 28.
    Jiang H, Seidenkrantz M-S, Knudsen K, Eríkssons J (2002) Late-Holocene summer sea-surface temperatures based on a diatom record from the north Icelandic shelf. Holocene 12:137–147Google Scholar
  29. 29.
    Justwan A, Koc N, Jennings AE (2008) Evolution of the Irminger and East Icelandic Current systems through the Holocene, revealed by diatom-based sea surface temperature reconstructions. Quat Sci Rev 27:1571–1582CrossRefGoogle Scholar
  30. 30.
    Kim M, Jung JY, Laffly D, Kwon HY, Lee YK (2017) Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic. FEMS Microbiol Ecol 93:1–9CrossRefGoogle Scholar
  31. 31.
    Koc N, Jansen E, Haflidason H (1993) Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14-Ka based on diatoms. Quat Sci Rev 12:115–140CrossRefGoogle Scholar
  32. 32.
    Koc N, Karpuz N, Schrader H (1990) Surface sediment diatom distribution and holocene paleotemperature variations in the Greenland, Iceland and Norwegian Sea. Paleoceanography 5:557–580CrossRefGoogle Scholar
  33. 33.
    Kumar P, Pattanaik JK, Khare N, Balakrishnan S (2018) Geochemistry and provenance study of sediments from Krossfjorden and Kongsfjorden, Svalbard (Arctic Ocean). Polar Sci 18:72–82.  https://doi.org/10.1016/j.polar.2018.06.001 CrossRefGoogle Scholar
  34. 34.
    Ligowski R, Godlewski M, Łukowski A (1992) Sea ice diatoms and ice edge planktonic diatoms at the northern limit of the Weddell Sea pack ice. Polar Biol 5:9–20Google Scholar
  35. 35.
    Maturilli M, Herber A, König-Langlo G (2013) Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard. Earth Syst Sci Data 5:155–163.  https://doi.org/10.5194/essd-5-155-2013 CrossRefGoogle Scholar
  36. 36.
    Maturilli M, Herber A, König-Langlo G (2014) Surface radiation climatology for Ny Ålesund, Svalbard (78.9 N), basic observations for trend detection. Theor Appl Climatol 120:331.  https://doi.org/10.1007/s00704-014-1173-4 CrossRefGoogle Scholar
  37. 37.
    Meslard F, Bourrin F, Many G, Kerhervé P (2018) Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard) Estuarine. Coast Shelf Sci 204:212–224.  https://doi.org/10.1016/j.ecss.2018.02.020 CrossRefGoogle Scholar
  38. 38.
    Miettinen A (2018) Diatoms in Arctic regions: potential tools to decipher environmental changes. Polar Sci 18:220–226CrossRefGoogle Scholar
  39. 39.
    Miettinen A, Divine D, Koc N, Godtliebsen F, Hall IR (2012) Multicentennial variability of the sea surface temperature gradient across the subpolar North Atlantic over the last 2.8 kyr. J Clim 25:4205–4219CrossRefGoogle Scholar
  40. 40.
    Miettinen A, Divine DV, Husum K, Koc N, Jennings A (2015) Exceptional ocean surface conditions on the SE Greenland shelf during the medieval climate anomaly. Paleoceanography 30:1657–1674CrossRefGoogle Scholar
  41. 41.
    Muckenhuber S, Nilsen F, Korosov A, Sandven S (2016) Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data. Cryosphere 10:149–158CrossRefGoogle Scholar
  42. 42.
    Nilsen F, Cottier F, Skogseth R, Mattsson S (2008) Fjord shelf exchange controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853CrossRefGoogle Scholar
  43. 43.
    Nilsen F, Skogseth R, Vaardal-Lunde J, Inall M (2016) A simple shelf circulation model—intrusion of Atlantic water on the West Spitsbergen Shelf. J Phys Oceanogr 46:1209–1230CrossRefGoogle Scholar
  44. 44.
    Nuth C, Kohler J, König M, Deschwanden AV, Hagen JO, Kääb A, Moholdt G, Pettersson R (2013) Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere. ISSN 1994-0416. 7(5):s 1603–1621.  https://doi.org/10.5194/tc-7-1603
  45. 45.
    Oksman M, Weckstrom K, Miettinen A, Ojala AEK, Salonen VP (2017) Late Holocene shift towards enhanced oceanic variability in a High Arctic Svalbard fjord (79°N). Arktos 3:4.  https://doi.org/10.1007/s41063-017-0032-9 CrossRefGoogle Scholar
  46. 46.
    Oksman M, Juggins S, Miettinen A, Witkowski A, Weckström K (2019) The biogeography and ecology of common diatom species in the northern North Atlantic, and their implications for paleoceanographic reconstructions. Mar Micropaleontol 148:1–28.  https://doi.org/10.1016/j.marmicro.2019.02.002 CrossRefGoogle Scholar
  47. 47.
    Orme LC, Miettinen A, Divine D, Husum K, Pearce C, van Nieuwenhove N, Born A, Mohan R, Seidenkrantz M-S (2018) Subpolar North Atlantic sea surface temperature since 6 ka BP: indications of anomalous ocean-atmosphere interactions at 4–2 ka BP. Quat Sci Rev 194:128–142CrossRefGoogle Scholar
  48. 48.
    Pavlov AK, Tverberg V, Ivanov BV, Nilsen F, Falk- Petersen S, Granskog MA (2013) Warming of Atlantic water in two west Spitsbergen fjords over the last century (1912–2009). Polar Res 32:11206.  https://doi.org/10.3402/polar.v32i0.11206 CrossRefGoogle Scholar
  49. 49.
    Pinglot J-F, Pourchet M, Lefauconnier B, Hagen JO, Isaksson E, Vaikmäe R, Kamiyama K (1999) Investigations of temporal change of the accumulation in Svalbard glaciers deducted from nuclear tests and Chernobyl reference layers. Polar Res 18(2):315–321CrossRefGoogle Scholar
  50. 50.
    Piquet AMT, van de Poll WH, Visser RJW, Wiencke C, Bolhuis H, Buma AGJ (2014) Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences 11:2263–2279CrossRefGoogle Scholar
  51. 51.
    Polyak L, Alley RB, Andrews JT, Brigham-Grette J, Cronin TM, Darby DA, Dyke AS, Fitzpatrick JJ, Funder S, Holland M, Jennings AE, Miller GH, O’Regan M, Savelle J, Serreze M, St. John K, White JWC, Wolff E (2010) History of sea ice in the Arctic. Quat Sci Rev 29:1757–1778CrossRefGoogle Scholar
  52. 52.
    Renner AHH, Dodd PA, Fransson, A (2018) An assessment of MOSJ: the state of the marine climate system around Svalbard and Jan Mayen, Norwegian Polar Institute, Tromsø (Report series/Norwegian Polar Institute; no 048)Google Scholar
  53. 53.
    Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature.  https://doi.org/10.1038/nature09051 CrossRefGoogle Scholar
  54. 54.
    Schrader HJ, Gersonde R (1978) Diatoms and Silicoflagellates. Micropaleontological counting methods and techniques-an exercise on an eight meters section of the lower Pliocene of Capo Rossello. Utrecht Micropaleontol Bull 17:129–176Google Scholar
  55. 55.
    Solomon S et al (eds) Climate change (2007) The physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  56. 56.
    Slubowska M, Koc N, Rasmussen T, Klitgaard-Kristensen D (2005) Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80°N. Paleoceanography 20:PA4014.  https://doi.org/10.1029/2005pa001141 CrossRefGoogle Scholar
  57. 57.
    Slubowska-Wodengen M, Rasmussen TL, Koc N, Klitgaard- Kristensen D, Nilsen F, Solheim A (2007) Advection of Atlantic Water to the western and northern Svalbard shelf since 17,500 cal yr BP. Quat Sci Rev 26:463–478CrossRefGoogle Scholar
  58. 58.
    Spielhagen RF, Werner K, Sørensen SA, Zamelczyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern heat transfer to the Arctic by Warm Atlantic Water. Science 331:450–453CrossRefGoogle Scholar
  59. 59.
    Streuff K, Forwick M, Szczuciński W, Andreassen K, ÓCofaigh C (2015) Submarine landform assemblages and sedimentary processes related to glacier surging in Kongsfjorden, Svalbard. Arktos 1:14.  https://doi.org/10.1007/s41063-015-0003-y CrossRefGoogle Scholar
  60. 60.
    Svendsen H, Beszczynska-Moller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Orbaek JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166Google Scholar
  61. 61.
    ter Braak CJF, Juggins S (1993) Weighted averaging partial leastsquares regression (WA-PLS)—an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269:485–502CrossRefGoogle Scholar
  62. 62.
    Trachsel M, Telford RJ (2016) Technical note: estimating unbiased transfer-function performances in spatially structured environments. Clim Past 12:1215–1223CrossRefGoogle Scholar
  63. 63.
    Tverberg V, Nøst OA, Lydersen C, Kovacs KM (2014) Winter sea ice melting in the Atlantic Water subduction area, Svalbard Norway. J Geophys Res 119(9):5945–5967.  https://doi.org/10.1002/2014jc010013 CrossRefGoogle Scholar
  64. 64.
    Vihtakari M (2019) PlotSvalbard: PlotSvalbard—plot research data from Svalbard on maps. R package version 0.8.5. https://github.com/MikkoVihtakari/PlotSvalbard
  65. 65.
    von Quillfeldt C, Ambrose W, Clough L (2003) High number of diatom species in first-year ice from the Chukchi Sea. Polar Biol 26:806–818CrossRefGoogle Scholar
  66. 66.
    Werner K, Spielhagen RF, Bauch D, Hass HC, Kandiano E (2013) Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: multiproxy evidence for a two-phase Holocene. Paleoceanography 28:283–295CrossRefGoogle Scholar
  67. 67.
    Zhuravskiy D, Ivanov B, Pavlov AI (2012) Ice conditions at Gronfjorden Bay, Svalbard, from 1974 to 2008. Polar Geogr 35:169–176.  https://doi.org/10.1080/1088937x.2012.662535 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Norwegian Polar Institute, Fram CentreTromsøNorway
  2. 2.National Centre for Polar and Ocean ResearchVasco da GamaIndia
  3. 3.Goa University, School of Earth, Ocean and Atmospheric Sciences (SEOAS)Taleigao PlateauIndia
  4. 4.Ecosystems and Environment Research Programme, University of HelsinkiHelsinkiFinland
  5. 5.Leibniz Institute for Baltic Sea ResearchRostockGermany
  6. 6.ICARUS, Department of GeographyMaynooth UniversityMaynoothIreland

Personalised recommendations