Advertisement

arktos

, Volume 5, Issue 1, pp 15–29 | Cite as

Geomorphology and development of a high-latitude channel system: the INBIS channel case (NW Barents Sea, Arctic)

  • L. RuiEmail author
  • M. Rebesco
  • J. L. Casamor
  • J. S. Laberg
  • T. A. Rydningen
  • A. Caburlotto
  • M. Forwick
  • R. Urgeles
  • D. Accettella
  • R. G. Lucchi
  • I. Delbono
  • M. Barsanti
  • M. Demarte
  • R. Ivaldi
Original Article

Abstract

The INBIS (Interfan Bear Island and Storfjorden) channel system is a rare example of a deep-sea channel on a glaciated margin. The system is located between two trough mouth fans (TMFs) on the continental slope of the NW Barents Sea: the Bear Island and the Storfjorden–Kveithola TMFs. New bathymetric data in the upper part of this channel system show a series of gullies that incise the shelf break and minor tributary channels on the upper part of the continental slope. These gullies and channels appear far more developed than those on the rest of the NW Barents Sea margin, increasing in size downslope and eventually merging into the INBIS channel. Morphological evidence suggests that the Northern part of the INBIS channel system preserved its original morphology over the last glacial maximum (LGM), whereas the Southern part experienced the emplacement of mass transport glacigenic debris that obliterated the original morphology. Radiometric analyses were applied on two sediment cores to estimate the recent (~ 110 years) sedimentation rates. Furthermore, analysis of grain size characteristics and sediment composition of two cores shows evidence of turbidity currents. We associate these turbidity currents with density-driven plumes, linked to the release of meltwater at the ice-sheet grounding line, cascading down the slope. This type of density current would contribute to the erosion and/ or preservation of the gullies’ morphologies during the present interglacial. We infer that Bear Island and the shallow morphology around it prevented the flow of ice streams to the shelf edge in this area, working as a pin (fastener) for the surrounding ice and allowing for the development of the INBIS channel system on the inter-ice stream part of the slope. The INBIS channel system was protected from the burial by high rates of ice-stream derived sedimentation and only partially affected by the local emplacement of glacial debris, which instead dominated on the neighbouring TMF systems.

Keywords

INBIS Channel system Barents Sea Trough mouth fans Glaciated margin 210Pb dating method 

Notes

Acknowledgements

This research was supported by the Italian projects PNRA-EDIPO, the project PNRA-CORIBAR, the rewarding funding project ARCA and the project High North 17, and Spanish projects DEGLABAR (CTM2010-17386) and CORIBAR-ES (CTM2011-14807-E), funded by the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

References

  1. 1.
    Amblas D, Canals M, Urgeles R, Lastras G, Liquete C, Hughes-Clarke JE, Casamor JL, Calafat AM (2006) Morphogenetic mesoscale analysis of the northeastern Iberian margin, NW Mediterranean Basin. Mar Geol 234:3–20CrossRefGoogle Scholar
  2. 2.
    Amblas D, Gerber TP, De Mol B, Urgeles R, Garcia-Castellanos D, Canals M, Pratson LF, Robb N, Canning J (2012) Survival of a submarine canyon during long-term outbuilding of a continental margin. Geology 40:543–546CrossRefGoogle Scholar
  3. 3.
    Amundsen HB, Laberg JS, Vorren TO, Haflidason H, Forwick M, Buhl-Mortensen P (2015) Late Weichselian—Holocene evolution of the high-latitude Andøya submarine canyon, North-Norwegian continental margin. Mar Geol 363:1–14CrossRefGoogle Scholar
  4. 4.
    Andreassen K, Winsborrow M, Bjarnadóttir L, Rüther D, Borque J, Lucchi R, Caburlotto A (2009) Barents Sea and the West Spitsbergen Margin, UiT 2009. Marine Geophysical/Geological Cruise to Outer Bear Island trough, Kveithola trough and the West Spitsbergen Margin, Cruise Report. RV/Jan Mayen 2.-19.07.2009 University of Tromsø, p 33Google Scholar
  5. 5.
    Andreassen K, Winsborrow MCM, Bjarnadóttir LR, Rüther DC (2014) Ice stream retreat dynamics inferred from an assemblage of landforms in the northern Barents Sea. Quat Sci Rev 92:246–257CrossRefGoogle Scholar
  6. 6.
    Andreassen K, Bjarnadóttir LR, Rüther DC, Winsborrow MCM (2016) Retreat patterns and dynamics of the former Bear Island Trough Ice stream. Geol Soc Lond Mem 46:445–452CrossRefGoogle Scholar
  7. 7.
    Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8CrossRefGoogle Scholar
  8. 8.
    Appleby PG (1979) 210Pb dating of annually laminated lake sediment from Finland. Nature 280:53–55CrossRefGoogle Scholar
  9. 9.
    Batchelor CL, Dowdeswell JA (2015) Ice-sheet grounding-zone wedges (GZWs) on high-latitude continental margins. Mar Geol 363:65–92CrossRefGoogle Scholar
  10. 10.
    Batchelor CL, Dowdeswell JA, Ottensen D (2017) Submarine glacial landforms. In: Micallef A, Krastel S, Savini A (eds) Submarine geomorphology. Springer geology, Springer, Cham, Switzerland, pp 207–234Google Scholar
  11. 11.
    Bjarnadóttir LR, Rüther DC, Winsborrow MCM, Andreassen K (2013) Grounding-line dynamics during the last deglaciation of Kveithola, W Barents Sea, as revealed by seabed geomorphology and shallow seismic stratigraphy. Boreas 42:84–107CrossRefGoogle Scholar
  12. 12.
    Bjarnadóttir LR, Winsborrow MCM, Andreassen K (2017) Large subglacial meltwater features in the central Barents Sea. Geology 45:159–162CrossRefGoogle Scholar
  13. 13.
    Camerlenghi A, Flores JA, Sierro FJ, Colmenreo E, the SVAIS Scientific and Tchnical Staff (2007) SVAIS, the Development of an Ice Stream-dominated Sedimentary System: the Southern Svalbard Continental Margin. University of Barcelona, Cruise report, p 62Google Scholar
  14. 14.
    Canals M, Casamor JL, Lastras G, Monaco A, Acosta YJ, Berne S, Loubrieu B, Weaver P, Greham A, Dennielou B (2004) The role of Canyons in strata formation. Oceanography (Washington, DC) 17:80–91CrossRefGoogle Scholar
  15. 15.
    Caricchi C, Lucchi RG, Sagnotti L, Macrì P, Morigi C, Melis R, Caffau M, Rebesco M, Hanebuth TJJ (2018) Paleomagnetism and rock magnetism from sediments along a continental shelf-to-slope transect in the NW Barents Sea: Implications for geomagnetic and depositional changes during the past 15 thousand years. Glob Planet Change 160:10–27CrossRefGoogle Scholar
  16. 16.
    Carroll J, Lerche I (2003) Sedimentary processes: quantification using radionuclides. Elsevier, OxfordGoogle Scholar
  17. 17.
    Croudace IW, Rindby A, Guy Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geol Soc Spec Publ Lond 267:51–63CrossRefGoogle Scholar
  18. 18.
    Delbono I, Barsanti M, Schirone A, Conte F, Delfanti R (2016) 210Pb mass accumulation rates in the depositional area of the Magra River (Mediterranean Sea, Italy). Cont Shelf Res 124:35–48CrossRefGoogle Scholar
  19. 19.
    Dowdeswell JA, Kenyon N, Elverhoi A, Laberg JS, Mienert J, Siegert MJ (1996) Large-scale sedimentation on the glacier-influenced Polar North Atlantic margins: long range side-scan sonar evidence. Geophys Res Lett 23:3535–3538CrossRefGoogle Scholar
  20. 20.
    Dowdeswell JA, Elverhøi A, Spielhagen R (1998) Glacimarine sedimentary processes and facies on the Polar North Atlantic Margins. Quat Sci Rev 17:243–272CrossRefGoogle Scholar
  21. 21.
    Dowdeswell JA, Ó Cofaigh C, Taylor J, Kenyon NH, Mienert J, Wilken M (2002) On the architecture of high-latitude continental margins: the influence of ice-sheet and sea-ice processes in the Polar North Atlantic. In: Dowdeswell JA, ÓCofaigh C (eds) Glacier-Influenced Sedimentation on High-Latitude Continental Margins. Geological Society Special Publications, London, vol 203, pp 33–54Google Scholar
  22. 22.
    Dowdeswell JA, Evans J, Cofaigh C, Anderson JB (2006) Morphology and sedimentary processes on the continental slope of Pine Island Bay, Amundsen Sea, West Antarctic. Geol Soc Am Bull 118(5/6):606–619CrossRefGoogle Scholar
  23. 23.
    Dowdeswell JA, Bamber JL (2007) Keel depths of modern Antarctic icebergs and implications for sea-floor scouring in the geological record. Mar Geol 243:120–131CrossRefGoogle Scholar
  24. 24.
    Elverhøi A, Andersen ES, Dokken T, Hebbeln D, Spielhagen R, Svendsen JI, Sorflaten M, Rornes A, Hald M, Forsberg CF (1995) The growth and decay of the late Weichselian ice sheet in western Svalbard and adjacent areas based on provenance studies of marine sediments. Quat Res 44:303–316CrossRefGoogle Scholar
  25. 25.
    Elverhøi A, Dowdeswell JA, Funder S, Mangerud J, Stein R (1998) Glacial and oceanic history of the polar north Atlantic margins: an overview. Quat Sci Rev 17:1–10CrossRefGoogle Scholar
  26. 26.
    Fohrmann H, Backhaus JO, Blaume F, Rumohr J (1998) Sediments in bottom-arrested gravity plumes: Numerical case studies. J Phys Oceanogr 28:2250–2274CrossRefGoogle Scholar
  27. 27.
    Forwick M, Laberg JS, Hass HC, Osti G (2015) The Kongsfjorden channel system offshore NW Svalbard: downslope sedimentary processes in a contour-current-dominated setting. Arktos 1:1CrossRefGoogle Scholar
  28. 28.
    Fransner O, Noormets R, Flink AE, Hogan KA, Dowdeswell JA (2018) Sedimentary processes on the continental slope off Kvitøya and Albertini troughs north of Nordaustlandet, Svalbard—the importance of structural-geological setting in trough-mouth fan development. Mar Geol 402:194–208CrossRefGoogle Scholar
  29. 29.
    Gales JA, Forwick M, Laberg JS, Vorren TO, Larter RD, Graham AGC, Baeten NJ, Amundsen HB (2013) Arctic and Antarctic submarine gullies—a comparison of high latitude continental margins. Geomorphology 201:449–461CrossRefGoogle Scholar
  30. 30.
    García M, Batchelor CL, Dowdeswell JA, Hogan KA, Cofaigh Ó (2016) A glacier-influenced turbidite system and associated landform assemblage in the Greenland Basin and adjacent continental slope. In: Dowdeswell JA, Canals M, Jackobbson M, Todd BJ, Dowdeswell EK, Hogan KA (eds) Atlas of submarine glacial landforms: modern, quaternary and ancient. Geological Society, London, Memoirs, vol 46, pp 461–468Google Scholar
  31. 31.
    Harris PT, Whiteway T (2011) Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Mar Geol 285:69–86CrossRefGoogle Scholar
  32. 32.
    Hjelstuen BO, Elverhøi A, Faleide JI (1996) Cenozoic erosion and sediment yield in the drainage area of the Storfjorden Fan. Glob Planet Change 12:95–117CrossRefGoogle Scholar
  33. 33.
    Hughes ALC, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45CrossRefGoogle Scholar
  34. 34.
    Hyvärinen H (1968) Late-Quaternary sediment cores from lakes on Bjørnøya. Geogr Ann 50:235–245Google Scholar
  35. 35.
    Ivaldi R, Demarte M, HIGH NORTH 17 Team (2017) HIGH NORTH 17 cruise report, Istituto Idrografico della Marina, pp 1–70Google Scholar
  36. 36.
    Jakobsson M et al (2012) The international bathymetric chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys Res Lett 39:12Google Scholar
  37. 37.
    Jessen SP, Rasmussen TL, Nielsen T, Solheim A (2010) A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000-0 cal years BP. Quat Sci Rev 29:1301–1312CrossRefGoogle Scholar
  38. 38.
    Jones GA, Keigwin LD (1988) Age determinations on sediment core PS1295-4, Supplement to Jones GA, Keigwin LD, 1988. Evidence from Fram Strait (78°N) for early deglaciation. Nature 336(6194):56–59CrossRefGoogle Scholar
  39. 39.
    Knies J, Vogt C, Stein R (1999) Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean. Geo-Mar Lett 18:195–202CrossRefGoogle Scholar
  40. 40.
    Knight P, Sugden D, Minty C (1994) Ice flow around large obstacles as indicated by basal ice exposed at the margin of the Greenland ice sheet. J Glaciol 40(135):359–367CrossRefGoogle Scholar
  41. 41.
    Koide M, Soutar A, Goldberg ED (1972) Marine geochronology with 210Pb. Earth Planet Sci Lett 14:442–446CrossRefGoogle Scholar
  42. 42.
    Laberg JS, Vorren TO (1995) Late Weichselian submarine debris flow deposits on the Bear Island Trough Mouth Fan. Mar Geol 127(1–4):45–72CrossRefGoogle Scholar
  43. 43.
    Laberg JS, Vorren TO (1996) The middle and late pleistocene evolution of the Bear Island Trough Mouth Fan. Glob Planet Change 12:309–330CrossRefGoogle Scholar
  44. 44.
    Laberg JS, Vorren TO (2000) Flow behaviour of the submarine glacigenic debris flows on the Bear Island Trough Mouth Fan, western Barents Sea. Sedimentology 47:1105–1117CrossRefGoogle Scholar
  45. 45.
    Laberg JS, Guidard S, Mienert J, Vorren TO, Haflidason H, Nygård A (2007) Morphology and morphogenesis of a high-latitude canyon; the Andøya Canyon, Norwegian Sea. Mar Geol 246:68–85CrossRefGoogle Scholar
  46. 46.
    Landvik JY, Bondevik S, Elverhøi A, Fjeldskaar W, Mangerud J, Salvigsen O, Siegert MJ, Svendsen JI, Vorren TO (1998) The last glacial maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quat Sci Rev 17:43–75CrossRefGoogle Scholar
  47. 47.
    Lantzsch H, Hanebuth TJJ, Horry J, Grave M, Rebesco M, Schwenk T (2017) Deglacial to Holocene history of ice-sheet retreat and bottom current strength on the western Barents Sea shelf. Quat Sci Rev 173:40–57CrossRefGoogle Scholar
  48. 48.
    Llopart J, Urgeles R, Camerlenghi A, Lucchi RG, De Mol B, Rebesco M, Pedrosa MT (2016) Slope instability of glaciated continental margins: Constraints from permeability-compressibility tests and hydrogeological modelling off Storfjorden, NW Barents Sea. In: Submarine Mass Movements and Their Consequences, 6th International Symposium, pp 95–104Google Scholar
  49. 49.
    Lucchi RG, Pedrosa MT, Camerlenghi A, Urgeles R, De Mol B, Rebesco M (2012) Recent submarine landslides on the continental slope of Storfjorden and Kveithola Trough-Mouth Fans (north west Barents Sea). In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research. Springer Science Book Series, Berlin, vol 31, pp 735–745CrossRefGoogle Scholar
  50. 50.
    Lucchi RG, Camerlenghi A, Rebesco M, Urgeles R, Sagnotti L, Macri P, Colmenero- Hildago E, Sierro FJ, Melis R, Morigi C, Barcena MA, Giorgetti G, Villa G, Persico D, Flores JA, Pedrosa MT, Caburlotto A (2013) Postglacial sedimentary processes on the Storfjorden and Kveithola trough-mouth fans: impact of extreme glacimarine sedimentation. Glob Planet Change 111:309–326CrossRefGoogle Scholar
  51. 51.
    Madrussani G, Rossi G, Rebesco M, Picotti S, Urgeles R, Llopart J (2018) Sediment properties in submarine mass-transport deposits using seismic and rock-physics off NW Barents Sea. Mar Geol 402:264–278CrossRefGoogle Scholar
  52. 52.
    Melis R, Carbonara K, Villa G, Morigi C, Bárcena MA, Giorgetti G, Caburlotto A, Rebesco M, Lucchi RG (2018) A new multi-proxy investigation of Late Quaternary palaeoenvironments along the north-western Barents Sea (Storfjorden Trough Mouth Fan). J Quat Sci 33:662–676CrossRefGoogle Scholar
  53. 53.
    Mienert J, Kenyon NH, Thiede J, Holender F-J (1993) Polar continental margins: studies off East Greenland. EOS Trans Am Geophys Union 74:225–236CrossRefGoogle Scholar
  54. 54.
    Mosher DC, Campbell DC, Gardner JV, Piper DJW, Chaytor JD, Rebesco M (2017) The role of deep-water sedimentary processes in shaping a continental margin: the Northwest Atlantic. Mar Geol 393:245–259CrossRefGoogle Scholar
  55. 55.
    Noormets R, Dowdeswell JA, Larter RD, Cofaigh C, Evans J (2009) Morphology of the upper continental slope in the Bellingshausen and Amundsen Seas—implications for sedimentary processes at the shelf edge of West Antarctica. Mar Geol 258:100–114CrossRefGoogle Scholar
  56. 56.
    Normark WR, Posamentier H, Mutti E (1993) Turbidite systems: state of the art and future directions. Rev Geophys V 31:91–116CrossRefGoogle Scholar
  57. 57.
    Normark WR, Carlson PR (2003) Giant submarine canyons: is size any clue to their importance in the rock record? In: Chan MA, Archer AW (eds) Extreme depositional environments: mega end members in geologic time, vol 370. Geological Society of America, Boulder, USA, pp 175–190Google Scholar
  58. 58.
    Ò Cofaigh C, Dowdeswell JA et al (2004) Timing and significance of glacially influenced mass-wasting in the submarine channels of the Greenland Basin. Mar Geol 207:39–54CrossRefGoogle Scholar
  59. 59.
    Ò Cofaigh C, Andrews JT, Jennings AE, Dowdeswell JA, Hogan KA, Kilfeather AA, Sheldon C (2013) Glacimarine lithofacies, provenance and depositional processes on a West Greenland trough-mouth fan. J Quat Sci 28:13–26CrossRefGoogle Scholar
  60. 60.
    O’Grady DB, Syvitsky JPM (2002) Large-scale morphology of Arctic continental slopes: the influence of sediment delivery on slope form. Geological Society Special Publications, London, vol 203, pp 11–31Google Scholar
  61. 61.
    Ottesen D, Rise L, Knies J, Olsen L, Henriksen S (2005) The Vestfjorden-Trænadjupet palaeo-ice stream drainage system, mid-Norwegian continental shelf. Mar Geol 218:175–189CrossRefGoogle Scholar
  62. 62.
    Patton H, Andreassen K, Bjarnadóttir LR, Dowdeswell JA, Winsborrow CM, Noormets R, Polyak L, Auriac A, Hubbard A (2015) Geophysical constraints on the dynamics and retreat of the Barents Sea Ice sheet as a palaeo-benchmark for models of marine ice-sheet deglaciation. Rev Geophys 53:1051–1098CrossRefGoogle Scholar
  63. 63.
    Patton H, Hubbard AL, Andreassen K, Auriac A, Whitehouse PL, Stroeven AP, Shackleton C, Winsborrow MCM, Heyman J, Hall AM (2017) Deglaciation of the Eurasian ice sheet complex. Quat Sci Rev 169:148–172 (ISSN 0277–3791)CrossRefGoogle Scholar
  64. 64.
    Peakall J, Kane AI, Masson DG, Keevil G, McCaffrey W, Corney R (2012) Global (latitudinal) variation in submarine channel sinuosity. Geology 40:11–14CrossRefGoogle Scholar
  65. 65.
    Pedrosa MT, Camerlenghi A, De Mol B, Urgeles R, Rebesco M, Lucchi RG (2011) Seabed morphology and shallow sedimentary structure of the Storfjorden and Kveithola trough-mouth fans (North West Barents Sea). Mar Geol 286:65–81CrossRefGoogle Scholar
  66. 66.
    Petrini M, Colleoni F, Kirchner N, Hughes ALC, Camerlenghi A, Rebesco M, Lucchi RG, Forte E, Colucci RR, Noormets R (2018) Interplay of grounding-line dynamics and sub-shelf melting during retreat of the Bjørnøyrenna Ice Stream. Sci Rep 8:7196CrossRefGoogle Scholar
  67. 67.
    Pope EL, Talling PJ, Ò Cofaigh C (2018) The relationship between ice sheets and submarine mass movements in the Nordic Seas during the Quaternary. Earth Sci Rev 178:208–256CrossRefGoogle Scholar
  68. 68.
    Rasmussen T, Thomsen E, Ślubowska AM, Jessen S, Solheim A, Koc N (2007) Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP. Quat Res 67:100–114CrossRefGoogle Scholar
  69. 69.
    Rebesco M, Liu Y, Camerlenghi A, Winsborrow M, Laberg JS, Caburlotto A, Diviacco P, Accettella D, Sauli C, Wardell N, Tomini I (2011) Deglaciation of the western margin of the Barents Sea Ice Sheet—a swath bathymetric and sub-bottom seismic study from the Kveithola Trough. Mar Geol 279:141–147CrossRefGoogle Scholar
  70. 70.
    Rebesco M, Laberg JS, Pedrosa MT, Camerlenghi A, Lucchi RG, Zgur F, Wardell N (2014) Onset and growth of Trough-Mouth Fans on the North-Western Barents Sea margin—implications for the evolution of the Barents Sea/Svalbard Ice Sheet. Quat Sci Rev 92:227–234CrossRefGoogle Scholar
  71. 71.
    Rebesco M, Özmaral A, Urgeles R, Accettella D, Lucchi RG, Rüther D, Winsborrow M, Llopart J, Caburlotto A, Lantzsch H, Hanebuth TJJ (2016) Evolution of a high-latitude sediment drift inside a glacially-carved trough based on high-resolution seismic stratigraphy (Kveithola, NW Barents Sea). Quat Sci Rev 147:178–193CrossRefGoogle Scholar
  72. 72.
    Rise L, Bøe R, Riis F, Bellec VK, Laberg JS, Eidvin T, Elvenes S, Thorsnes T (2013) The Lofoten-Vesterålen continental margin, North Norway: canyons and mass-movement activity. Mar Pet Geol 45:134–149CrossRefGoogle Scholar
  73. 73.
    Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39:285–304CrossRefGoogle Scholar
  74. 74.
    Robbins JA, Edgington DN, Kemp ALW (1978) Comparative 210Pb, 137Cs, and pollen geochronologies of sediments from Lakes Ontario and Erie. Quat Res 10:256–278CrossRefGoogle Scholar
  75. 75.
    Rüther DC, Mattingsdal R, Andreassen K, Forwick M, Husum K (2011) Seismic architecture and sedimentology of a major grounding zone system deposited by the Bjørnøyrenna Ice Stream during Late Weichselian deglaciation. Quat Sci Rev 30:2776–2792CrossRefGoogle Scholar
  76. 76.
    Rüther DC, Bjarnadóttir LR, Junttila J, Husum K, Rasmussen TL, Lucchi RG, Andreassen K (2012) Pattern and timing of the northwestern Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition. Boreas 41:1–19CrossRefGoogle Scholar
  77. 77.
    Rydningen TA, Laberg JS, Kolstad V (2015) Seabed morphology and sedimentary processes on high-gradient trough mouth fans offshore Troms, northern Norway. Geomorphology 246:205–219CrossRefGoogle Scholar
  78. 78.
    Salvigsen O, Slettemark O (1995) Past glaciation and sea levels on Bjørnøya, Svalbard. Polar Res 14:245–251Google Scholar
  79. 79.
    Sanchez-Cabeza JA, Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200CrossRefGoogle Scholar
  80. 80.
    Shepard FP, Emery KO, (1941) Submarine topography off the california coast: canyons and tectonic interpretations. Geol Soc Am Spec Paper 31:171Google Scholar
  81. 81.
    Smith JN (2001) Why should we believe 210Pb sediment geochronologies? J Environ Radioact 55:121–123CrossRefGoogle Scholar
  82. 82.
    Stokes CR, Clark CD (2001) Paleo-ice streams. Quatern Sci Rev 20(13):1437–1457CrossRefGoogle Scholar
  83. 83.
    Vorren TO, Lebesbye E, Andreassen K, Larsen KB (1989) Glacigenic sediments on a passive continental margin as exemplified by the Barents Sea. Mar Geol 85:251–272CrossRefGoogle Scholar
  84. 84.
    Vorren TO, Laberg JS (1996) Late glacial air temperature, oceanographic and ice sheet interactions in the southern Barents Sea region. In: Andrews JT, Austin WEN, Bergsten H, Jennings AE (eds) Late quaternary palaeoceanography of the north atlantic margins, vol 111. Geological Society, Special Publication, London, pp 303–321Google Scholar
  85. 85.
    Vorren TO, Laberg JS, Blaume F, Dowdeswell JA, Kenyoh NH, Mienert J, Rumohr J, Werner F (1998) The Norwegian-Greenland sea continental margins: morphology and late quaternary sedimentary processes and environment. Quat Sci Rev 17:273–302CrossRefGoogle Scholar
  86. 86.
    Vorren TO, Laberg JS (2001) Late Quaternary sedimentary processes and environment on the Norwegian-Greenland Sea continental margins, Sedimentary Environments Offshore Norway—Palaeozoic to Recent. Norwegian Petroleum Society Special Publications, Elsevier, Berlin, vol 10, pp 451–456Google Scholar
  87. 87.
    Vorren TO, Rydningen TA, Baeten NJ, Laberg JS (2015) Chronology and extent of the Lofoten-Vesterålen sector of the Scandinavian Ice Sheet from 26 to 16 cal. Ka BP. Boreas 44:445–458CrossRefGoogle Scholar
  88. 88.
    Wang YY, Zhan XC, Yuan JH, Fan XT (2011) The evaluation of uncertainty in the results for elements rubidium, strontium, yttrium and zirconium in silicate geological samples by polarized energy dispersive X-ray fluorescence spectrometry. Guang Pu Xue Yu Guang Pu Fen Xi 31(6):1707–1711Google Scholar
  89. 89.
    Wilken M, Mienert J (2006) Submarine glacigenic debris flows, deep-sea channels and past ice-stream behaviour of the East Greenland continental margin. Quat Sci Rev 25:784–810CrossRefGoogle Scholar
  90. 90.
    Winsborrow MCM, Andreassen K, Corner GD, Laberg JS (2010) Deglaciation of a marine-based ice sheet: Late Weichselian palaeo-ice dynamics and retreat in the southern Barents Sea reconstructed from onshore and offshore glacial geomorphology. Quat Sci Rev 29:424–442CrossRefGoogle Scholar
  91. 91.
    Wohlfarth B, Björck S, Possnert G (1995) The Swedish time scale—a potential calibration tool for the radio-carbon time scale during the Late Weichselian. Radio-carbon 37(2):347–60Google Scholar
  92. 92.
    Zecchin M, Rebesco M, Lucchi RG, Caffau M, Lantzsch H, Hanebuth TJJ (2016) Buried iceberg-keel scouring features in the southern Spitsbergenbanken, NW Barents Sea. Mar Geol 382:68–79CrossRefGoogle Scholar
  93. 93.
    Zecchin M, Rebesco M (2018) Glacigenic and glacimarine sedimentation from shelf to trough settings in the NW Barents Sea. Mar Geol 402:184–193CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • L. Rui
    • 1
    • 7
    Email author
  • M. Rebesco
    • 1
  • J. L. Casamor
    • 2
  • J. S. Laberg
    • 4
  • T. A. Rydningen
    • 4
  • A. Caburlotto
    • 1
  • M. Forwick
    • 4
  • R. Urgeles
    • 3
  • D. Accettella
    • 1
  • R. G. Lucchi
    • 1
  • I. Delbono
    • 5
  • M. Barsanti
    • 5
  • M. Demarte
    • 6
  • R. Ivaldi
    • 6
  1. 1.OGS Istituto Nazionale di Oceanografia e di Geofisica SperimentaleSgonicoItaly
  2. 2.GRC Geociències Marines, Universitat de BarcelonaBarcelonaSpain
  3. 3.Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelonaSpain
  4. 4.Department of GeosciencesUiT The Arctic University of Norway in TromsøTromsöNorway
  5. 5.Marine Environment Research CentreENEALa SpeziaItaly
  6. 6.Italian Navy Hydrographic InstituteGenoaItaly
  7. 7.University of TriesteTriesteItaly

Personalised recommendations