Advertisement

arktos

pp 1–8 | Cite as

Inheritance and style of rifting: incremental structural restoration of the Laptev Sea Rift System, north-eastern Russian Arctic

  • Christian BrandesEmail author
  • David C. Tanner
  • Dieter Franke
Case Report
  • 44 Downloads

Abstract

The Laptev Sea Rift System, on the north-eastern continental margin of the Russian Arctic, is a key area to understand the opening of the Eurasia Basin. The rifts developed since Cretaceous/Early Cenozoic times and consists of five, roughly north–south trending depocentres, controlled by major listric normal faults. Three cross-sections from the rift system were incrementally restored to quantify the amount of extension over time and to reconstruct the geological evolution. We show that since the beginning of rifting, fault activity in the Anisin Basin was unevenly distributed between two symmetrical graben systems. The central Ust’ Lena Rift has a completely different structure: regularly spaced west-dipping faults are interrupted by minor east-dipping faults in only three places. Fault dip decreases from west to east, from 60° to 30°, respectively.

Keywords

Laptev Rift Structural restoration Rifting Extension 

Notes

Acknowledgements

The authors acknowledges the use of the MOVE Software Suite granted by Petroleum Experts Limited, which we used to restore the cross-sections. We are grateful to an anonymous reviewer for the constructive comments.

References

  1. 1.
    Autin J, Leroy S, Beslier M-O, d’Acremont E, Razin P, Ribodetti A, Bellahsen N, Robin C, Al Toubi K (2010) Continental break-up history of a deep magma-poor margin based on seismic reflection data (northeastern Gulf of Aden margin, offshore Oman). Geophys J Int 180:501–519CrossRefGoogle Scholar
  2. 2.
    Avetisov GP (1993) Some aspects of lithosphere dynamics of Laptev Sea. Phys Solid Earth 29:402–412 (English translation)Google Scholar
  3. 3.
    Berglar K, Franke D, Lutz R, Schreckenberger B, Damm V (2016) Initial opening of the Eurasian Basin, Arctic Ocean. Front Earth Sci 4:91CrossRefGoogle Scholar
  4. 4.
    Bondarenko GE, Soloviev AV, Tuchkova MI, Garver JI, Podgornyi II (2003) Age of detrital zircons from sandstones of the Mesozoic flysch formation in the South Anyui Suture Zone (western Chukotka). Lithol Min Resour 38:162–176CrossRefGoogle Scholar
  5. 5.
    Brandes C, Piepjohn K, Franke D, Sobolev N, Gaedicke C (2015) The Mesozoic - Cenozoic tectonic evolution of the New Siberian Islands, NE Russia. Geol Mag 152:480–491CrossRefGoogle Scholar
  6. 6.
    Brune S, Autin J (2013) The rift to break-up evolution of the Gulf of Aden: insights from 3D numerical lithospheric-scale modelling. Tectonophysics 607:65–79CrossRefGoogle Scholar
  7. 7.
    Brune S, Heine C, Pérez-Gussinyé M, Sobolev SV (2014) Rift migration explains continental margin asymmetry and crustal hyper-extension. Nat Commun 5:4014.  https://doi.org/10.1038/ncomms5014 CrossRefGoogle Scholar
  8. 8.
    Brune S (2014) Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup. Geochem Geophys Geosyst 15:3392–3415.  https://doi.org/10.1002/2014GC005446 CrossRefGoogle Scholar
  9. 9.
    Buck WR (1986) Small-scale convection induced by passive rifting: the cause for uplift of rift shoulders. Earth Planet Sci Lett 77:362–372CrossRefGoogle Scholar
  10. 10.
    Cramer B, Franke D (2005) Indications for an active petroleum system in the Laptev Sea, NE Siberia. J Pet Geol 28:369–384CrossRefGoogle Scholar
  11. 11.
    Colletta B, Le Quellec P, Letouzey J, Moretti I (1988) Longitudinal evolution of the Suez rift structure (Egypt). Tectonophysics 153:221–233CrossRefGoogle Scholar
  12. 12.
    Cook DB, Fujita K, McMullen CA (1986) Present-day plate interactions in Northeast Asia: North American, Eurasian, and Okhotsk plates. J Geodyn 6:33–51CrossRefGoogle Scholar
  13. 13.
    Cowie PA, Underhill JR, Behn MD, Lin J, Gill CE (2005) Spatio-temporal evolution of strain accumulation derived from multi-scale observations of Late Jurassic rifting in the northern North Sea: a critical test of models for lithospheric extension. Earth Planet Sci Lett 234:401–419CrossRefGoogle Scholar
  14. 14.
    DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478CrossRefGoogle Scholar
  15. 15.
    Doré AG, Lundin ER, Gibbons A, Sømme TO, Tørudbakken BO (2015) Transform margins of the Arctic: a synthesis and re-evaluation. Geol Soc Lond Spec Publ 431:63–94CrossRefGoogle Scholar
  16. 16.
    Drachev SS, Savostin LA, Groshev VG, Bruni IE (1998) Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic. Tectonophysics 298:357–393CrossRefGoogle Scholar
  17. 17.
    Drachev SS (2011) Tectonic setting, structure and petroleum geology of the Siberian Arctic offshore sedimentary basins. Geol Soc Mem 35:369–394CrossRefGoogle Scholar
  18. 18.
    Drachev SS (2016) Fold belts and sedimentary basins of the Eurasian Arctic. Arktos 2:21.  https://doi.org/10.1007/s41063-015-0014-8 CrossRefGoogle Scholar
  19. 19.
    Drachev SS, Mazur S, Campbell S, Green C, Tishchenko A (2018) Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results. J Geodyn 119:123–148CrossRefGoogle Scholar
  20. 20.
    Drachev SS, Shkarubo SI (2018) Tectonics of the Laptev shelf, Siberian Arctic. Geol Soc Spec Publ 460:263–283CrossRefGoogle Scholar
  21. 21.
    Franke D, Hinz K, Oncken O (2001) The Laptev Sea Rift. Mar Pet Geol 18:1083–1127CrossRefGoogle Scholar
  22. 22.
    Franke D, Hinz K, Reichert C (2004) Geology of the East Siberian Sea, Russian Arctic, from seismic images: structures, evolution, and implications for the evolution of the Arctic Ocean Basin. J Geophys Res 109:B07106.  https://doi.org/10.1029/2003JB002687 CrossRefGoogle Scholar
  23. 23.
    Franke D, Reichert C, Damm V, Piepjohn K (2008) The South Anyui suture, Northeast Arctic Russia, revealed by offshore seismic data. Nor J Geol 88:189–200Google Scholar
  24. 24.
    Franke D, Hinz K (2005) The structural style of sedimentary basins on the shelves of the Laptev Sea and western East Siberian Sea, Siberian Arctic. J Pet Geol 28:269–286CrossRefGoogle Scholar
  25. 25.
    Franke D, Hinz K (2009) Geology of the shelves surrounding the New Siberian Islands, Russian Arctic. Stephan Mueller Spec Publ Ser 4:35–44CrossRefGoogle Scholar
  26. 26.
    Gaina C, Roest WR, Müller RD (2002) Late Cretaceous–Cenozoic deformation of northeast Asia. Earth Planet Sci Lett 197:273–286CrossRefGoogle Scholar
  27. 27.
    Gaina C, Nikishin AM, Petrov EI (2015) Ultraslow spreading, ridge relocation and compressional events in the East Arctic region: a link to the Eurekan orogeny? Arktos 1:16.  https://doi.org/10.1007/s41063-015-0006-8 CrossRefGoogle Scholar
  28. 28.
    Gawthorpe RL, Leeder MR (2000) Tectono-sedimentary evolution of active extensional basins. Basin Res 12:195–218CrossRefGoogle Scholar
  29. 29.
    Gibbs AD (1983) Balanced cross-section construction from seismic sections in areas of extensional tectonics. J Struct Geol 5:153–160CrossRefGoogle Scholar
  30. 30.
    Groshong R (2006) Structural validation, restoration and prediction. In: 3-D structural geology: a practical guide to quantitative surface and subsurface map interpretation. Birkhäuser, Basel, pp 305–372 (ISBN 978-3-540-31054-9) CrossRefGoogle Scholar
  31. 31.
    Gupta S, Cowie PA, Dawers NH, Underhill JR (1998) A mechanism to explain rift-basin subsidence and stratigraphic patterns through fault-array evolution. Geology 26:595–598CrossRefGoogle Scholar
  32. 32.
    Hauge TA, Gray GG (1996) A critique of techniques for modelling normal-fault and rollover geometries. In: Buchanan PG, Nieuwland DA (eds) Modern developments in structural interpretation, validation and modelling, vol 99. Geological Society Special Publications, London, pp 89–97Google Scholar
  33. 33.
    Herman AB, Spicer RA (2010) Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, Northern Yakutiya). Paleogeogr Paleoclimatol Paleoecol 295:409–422CrossRefGoogle Scholar
  34. 34.
    Huismans RS, Beaumont C (2007) Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins. In: Karner GD, Manatschal G, Pinheiro LM (eds) Imaging, mapping and modelling continental lithosphere extension and breakup, vol 282. Geological Society, London, Special Publications, London, pp 111–138Google Scholar
  35. 35.
    Huismans RS, Beaumont C (2008) Complex rifted continental margins explained by dynamical models of depth-dependent lithospheric extension. Geology 36:163–166CrossRefGoogle Scholar
  36. 36.
    Huismans R, Beaumont C (2011) Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473:74–78CrossRefGoogle Scholar
  37. 37.
    Kos’ko MK, Trufanov GV (2002) Middle Cretaceous to Eopleistocene Sequences on the New Siberian Islands: an approach to interpret offshore seismic. Mar Pet Geol 19:901–919CrossRefGoogle Scholar
  38. 38.
    Kus J, Tolmacheva T, Dolezych M, Gaedicke C, Franke D, Brandes C, Blumenberg M, Piepjohn K, Pletsch T (2015) Organic matter type, origin and thermal maturity of Paleozoic, Mesozoic and Cenozoic successions of the New Siberian Islands, eastern Russian Arctic. Int J Coal Geol 152:125–146CrossRefGoogle Scholar
  39. 39.
    Kuzmichev AB (2009) Where does the South Anyui suture go in the New Siberian islands and Laptev Sea?: implications for the Amerasia basin origin. Tectonophysics 463:86–108CrossRefGoogle Scholar
  40. 40.
    Lizarralde D, Axen GJ, Brown HE, Fletcher JM, González-Fernández A, Harding AJ, Holbrook WS, Kent GM, Paramo P, Sutherland F, Umhoefer PJ (2007) Variation in styles of rifting in the Gulf of California. Nature 448:466–469CrossRefGoogle Scholar
  41. 41.
    Mazur S, Campbell S, Green C, Bouatmani R (2015) Extension across the Laptev Sea continental rifts constrained by gravity modelling. Tectonics 34:435–448CrossRefGoogle Scholar
  42. 42.
    McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32CrossRefGoogle Scholar
  43. 43.
    Minakov A, Faleide JI, Glebovsky VY, Mjelde R (2012) Structure and evolution of the northern Barents–Kara Sea continental margin from integrated analysis of potential fields, bathymetry and sparse seismic data. Geophys J Int 188:79–102CrossRefGoogle Scholar
  44. 44.
    Minster JB, Jordan TH (1978) Present-day plate motions. J Geophys Res 83:5331–5354CrossRefGoogle Scholar
  45. 45.
    Morley CK (1995) Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. In: Lambiase JJ (ed) Hydrocarbon habitat in Rift basins, vol 80. Geological Society Special Publication, London, pp 1–32Google Scholar
  46. 46.
    Nikishin AM, Petrov EI, Malyshev NA (2014) Geological structure and history of the Arctic Ocean. EAGE, Houten, p 88Google Scholar
  47. 47.
    Nunns AG (1991) Structural restoration of seismic and geologic sections in extensional regimes. Am Assoc Pet Geol Bull 75:278–297Google Scholar
  48. 48.
    Piepjohn K, Lorenz H, Franke D, Brandes C, von Gosen W, Gaedicke C, Labrousse L, Sobolev N, Sobolev P, Suan G, Mrugalla S, Talarico F, Tolmacheva T (2017) The Mesozoic structural evolution of the New Siberian Islands. In: Pease V, Coakley B (eds) Circum-Arctic lithosphere evolution, vol 460. Geological Society, London, Special Publications, London, pp 239–262.  https://doi.org/10.1144/SP460.1 Google Scholar
  49. 49.
    Pitman WC, Talwani M (1972) Sea-floor spreading in the North Atlantic. GSA Bull 83:619–646CrossRefGoogle Scholar
  50. 50.
    Regenauer-Lieb K, Rosenbaum G, Weinberg RF (2008) Strain localisation and weakening of the lithosphere during extension. Tectonophysics 458:96–104CrossRefGoogle Scholar
  51. 51.
    Schultz-Ela DD (1992) Restoration of cross-sections to constrain deformation processes of extensional terranes. Mar Pet Geol 9:372–388CrossRefGoogle Scholar
  52. 52.
    Sobolev P, Franke D, Gaedicke C, Kus J, Scheeder G, Piepjohn K, Brandes C, Blumenberg M, Mouly B (2016) Reconnaissance study of organic geochemistry and petrology of Paleozoic-Cenozoic potential hydrocarbon source rocks from the New Siberian Islands, Arctic Russia. Mar Pet Geol 78:30–47CrossRefGoogle Scholar
  53. 53.
    Sokolov SD, Tuchkova MI, Ganelin AV, Bondarenko GE, Layer P (2015) Tectonics of the South Anyui Suture, Northeastern Asia. Geotectonics 49:3–26CrossRefGoogle Scholar
  54. 54.
    Sutra E, Manatschal G, Mohn G, Unternehr P (2013) Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem Geophys Geosyst 14:2575–2597CrossRefGoogle Scholar
  55. 55.
    Taylor B, Goodliffe AM, Martinez F (1999) How continents break up: insights from Papua New Guinea. J Geophys Res 104:7497–7512CrossRefGoogle Scholar
  56. 56.
    Tommasi A, Vauchez A (2001) Continental rifting parallel to ancient collisional belts: an effect of the mechanical anisotropy of the lithospheric mantle. Earth Planet Sci Lett 185:199–210CrossRefGoogle Scholar
  57. 57.
    Turcotte DL, Emerman SH (1983) Mechanics of active and passive rifting. Tectonophysics 94:39–50CrossRefGoogle Scholar
  58. 58.
    Van Wijk JW, Blackman DK (2005) Dynamics of continental rift propagation: the end-member modes. Earth Planet Sci Lett 229:247–258CrossRefGoogle Scholar
  59. 59.
    Vauchez A, Barruol G, Tommasi A (1997) Why do continents break-up parallel to ancient orogenic belts? Terra Nova 9:62–66CrossRefGoogle Scholar
  60. 60.
    Vink GE (1982) Continental rifting and the implications for plate tectonic reconstructions. J Geophys Res 87:10677–10688CrossRefGoogle Scholar
  61. 61.
    Wernicke B (1995) Low-angle normal faults and seismicity: a review. J Geophys Res 100(B10):20159–20174CrossRefGoogle Scholar
  62. 62.
    Williams G, Vann I (1987) The geometry of listric normal faults and deformation in their hanging walls. J Struct Geol 9:789–795CrossRefGoogle Scholar
  63. 63.
    Yamada Y, McClay K (2003) Application of geometric models to inverted listric fault systems in sandbox experiments. Paper 1: 2D hanging wall deformation and section restoration. J Struct Geol 25:1551–1560.  https://doi.org/10.1016/S0191-8141(02)00181-5 CrossRefGoogle Scholar
  64. 64.
    Yamada Y, McClay K (2003) Application of geometric models to inverted listric fault systems in sandbox experiments. Paper 2: insights for possible along strike migration of material during 3D hanging wall deformation. J Struct Geol 25:1331–1336.  https://doi.org/10.1016/S0191-8141(02)00160-8 CrossRefGoogle Scholar
  65. 65.
    Ziesch J, Aruffo C, Tanner DC, Beilecke T, Dance T, Henk A, Weber B, Tenthorey E, Lippmann A, Krawczyk CM (2017) Geological structure and kinematics of normal faults in the Otway Basin, Australia, based on quantitative analysis of 3-D seismic reflection data. Basin Res 29:129–148CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für GeologieLeibniz Universität HannoverHannoverGermany
  2. 2.Leibniz Institute for Applied Geophysics (LIAG)HannoverGermany
  3. 3.Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)HannoverGermany

Personalised recommendations