arktos

, 3:1 | Cite as

Sea-ice dynamics in an Arctic coastal polynya during the past 6500 years

  • Jochen Knies
  • Irene Pathirana
  • Patricia Cabedo-Sanz
  • Ana Banica
  • Karl Fabian
  • Tine L. Rasmussen
  • Matthias Forwick
  • Simon T. Belt
Original Article

Abstract

The production of high-salinity brines during sea-ice freezing in circum-arctic coastal polynyas is thought to be part of northern deep water formation as it supplies additional dense waters to the Atlantic meridional overturning circulation system. To better predict the effect of possible future summer ice-free conditions in the Arctic Ocean on global climate, it is important to improve our understanding of how climate change has affected sea-ice and brine formation, and thus finally dense water formation during the past. Here, we show temporal coherence between sea-ice conditions in a key Arctic polynya (Storfjorden, Svalbard) and patterns of deep water convection in the neighbouring Nordic Seas over the last 6500 years. A period of frequent sea-ice melting and freezing between 6.5 and 2.8 ka BP coincided with enhanced deep water renewal in the Nordic Seas. Near-permanent sea-ice cover and low brine rejection after 2.8 ka BP likely reduced the overflow of high-salinity shelf waters, concomitant with a gradual slow down of deep water convection in the Nordic Seas, which occurred along with a regional expansion in sea-ice and surface water freshening. The Storfjorden polynya sea-ice factory restarted at ~0.5 ka BP, coincident with renewed deep water penetration to the Arctic and climate amelioration over Svalbard. The identified synergy between Arctic polynya sea-ice conditions and deep water convection during the present interglacial is an indication of the potential consequences for ocean ventilation during states with permanent sea-ice cover or future Arctic ice-free conditions.

Keywords

Arctic Storfjorden Polynya Holocene Sea ice 

Notes

Acknowledgements

This work is a contribution to the CASE Initial Training Network funded by the European Community’s 7th Framework Programme FP7 2007/2013, Marie-Curie Actions, under Grant Agreement No. 238111. The research is part of the Centre for Arctic Gas Hydrate, Environment and Climate and was supported by the Research Council of Norway through its Centres of Excellence funding scheme Grant No. 223259. We thank the reviewers for their help improving the manuscript significantly.

References

  1. 1.
    Aagaard K, Coachman L, Carmack E (1981) On the halocline of the Arctic Ocean. Deep Sea Res Part a Oceanogr Res Pap 28:529–545. doi:10.1016/0198-0149(81)90115-1 CrossRefGoogle Scholar
  2. 2.
    Aagaard K, Swift J, Carmack E (1985) Thermohaline circulation in the Arctic Mediterranean Seas. J Geophys Res 90:4833–4846CrossRefGoogle Scholar
  3. 3.
    Alonso-Garcia M, Andrews JT, Belt S, Cabedo-Sanz P, Darby D, Jaeger J (2013) A comparison between multi-proxy and historical data (AD 1990––1840) of drift-ice conditions on the East Greenland shelf (~66°N). The Holocene 23:1872–1883CrossRefGoogle Scholar
  4. 4.
    Bauch HA et al (2001) Chronology of the Holocene transgression at the North Siberian margin. Glob Planet Change 31:125–139CrossRefGoogle Scholar
  5. 5.
    Belt S, Brown TA, Navarro-Rodriguez A, Cabedo-Sanz P, Tonkin A, Ingle R (2012) A reproducible method for the extraction, identification and quantification of the Arctic sea ice proxy IP25 from marine sediments. Anal Methods 4:705–713CrossRefGoogle Scholar
  6. 6.
    Belt S, Müller J (2013) The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat Sci Rev 79:9–25. doi:10.1016/j.quascirev.2012.12.001 CrossRefGoogle Scholar
  7. 7.
    Belt ST, Cabedo-Sanz P, Smik L, Navarro-Rodriguez A, Berben SMP, Knies J, Husum K (2015) Identification of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth Planet Sci Lett 431:127–139. doi:10.1016/j.epsl.2015.09.020 CrossRefGoogle Scholar
  8. 8.
    Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27. doi:10.1016/j.orggeochem.2006.09.013 CrossRefGoogle Scholar
  9. 9.
    Blaschek M, Renssen H (2013) The impact of early Holocene Arctic shelf flooding on climate in an atmosphere-ocean-sea-ice model. Clim Past 9:2651–2667. doi:10.5194/cp-9-2651-2013 CrossRefGoogle Scholar
  10. 10.
    Broecker WS, Peng T-H (1982) Tracers in the sea. Lamont-Doherty Geological Observatory Columbia University, New YorkGoogle Scholar
  11. 11.
    Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic sea ice proxy IP25. Nat Commun. doi:10.1038/ncomms5197 Google Scholar
  12. 12.
    Cabedo-Sanz P, Belt S (2016) Seasonal sea ice variability in eastern Fram Strait over the last 2000 years. Arktos 2:22. doi:10.1007/s41063-41016-40023-41062 CrossRefGoogle Scholar
  13. 13.
    Cavalieri DJ, Martin S (1994) The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean. J Geophys Res Oceans 99:18343–18362. doi:10.1029/94jc01169 CrossRefGoogle Scholar
  14. 14.
    D’Andrea WJ, Vaillencourt DA, Balascio NL, Werner A, Roof SR, Retelle M, Bradley RS (2012) Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40:1007–1010. doi:10.1130/g33365.1 CrossRefGoogle Scholar
  15. 15.
    Dokken TM, Jansen E (1999) Rapid changes in the mechanism of ocean convection during the last glacial period. Nature 401:458–461. doi:10.1038/46753 CrossRefGoogle Scholar
  16. 16.
    Eicken H, Reimnitz E, Alexandrov V, Martin T, Kassens H, Viehoff T (1997) Sea-ice processes in the Laptev Sea and their importance for sediment export. Cont Shelf Res 2:205–233CrossRefGoogle Scholar
  17. 17.
    Forwick M, Vorren T (2009) Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeogr Palaeoclimatol Palaeoecol. doi:10.1016/j.palaeo.2009.06.026 Google Scholar
  18. 18.
    Funder S et al. (2011) A 10,000-year record of arctic ocean sea-ice variability-view from the beach. Science 333:747–750. doi:10.1126/science.1202760
  19. 19.
    Haarpaintner J, Gascard J-C, Haugan PM (2001) Ice production and brine formation in Storfjorden, Svalbard. J Geophys Res 106:14001–14013CrossRefGoogle Scholar
  20. 20.
    Hall I, Bianchi G, Evans J (2004) Centennial to millennial scale Holocene climate–deep water linkage in the North Atlantic. Quat Sci Rev 23:1529–1536CrossRefGoogle Scholar
  21. 21.
    Hölemann JA, Schirmacher M, Kassens H, Prange A (1999) Geochemistry of surficial and ice-rafted sediments from the Laptev Sea (Siberia) Estuarine. Coast Shelf Sci 49:45–59. doi:10.1006/ecss.1999.0485 CrossRefGoogle Scholar
  22. 22.
    Jensen H (2000) Resultater av kjemiske analyser av prøver av Svalbard kull og tilgrensende bergarter over, under og mellom kull fløtsene. NGU, TrondheimGoogle Scholar
  23. 23.
    Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterization of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanalytical Res 29(3):285–302. doi:10.1111/j.1751-908X.2005.tb00901.x CrossRefGoogle Scholar
  24. 24.
    Jungclaus JH, Backhaus JO, Fohrmann H (1995) Outflow of dense water from the Storfjord in Svalbard: a numerical model study. J Geophys Res Oceans 100:24719–24728. doi:10.1029/95jc02357 CrossRefGoogle Scholar
  25. 25.
    Killworth PD (1983) Deep convection in the World Ocean. Rev Geophys 21:1–26. doi:10.1029/RG021i001p00001 CrossRefGoogle Scholar
  26. 26.
    Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285. doi:10.1051/0004-6361:20041335 CrossRefGoogle Scholar
  27. 27.
    Loring DH, Dahle S, Naes K, Dos Santos J, Skei JM, Matishov GG (1998) Arsenic and other trace metals in sediments from the Kara Sea and the Ob and Yenisey Estuaries. Russia Aquat Geochem 4:233–252. doi:10.1023/A:1009691314353 CrossRefGoogle Scholar
  28. 28.
    Loring DH, Næs K, Dahle S, Matishov GG, Illin G (1995) Arsenic, trace metals, and organic micro contaminants in sediments from the Pechora Sea, Russia. Mar Geol 128:153–167. doi:10.1016/0025-3227(95)00091-C CrossRefGoogle Scholar
  29. 29.
    Mackensen A, Schmiedl G (2016) Brine formation recorded by stable isotopes of Recent benthic foraminifera in Storfjorden: palaeoceanographical implications. Boreas 45:552–566. doi:10.1111/bor.12174 CrossRefGoogle Scholar
  30. 30.
    Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E (2012) Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat Sci Rev 47:1–14. doi:10.1016/j.quascirev.2012.04.024 CrossRefGoogle Scholar
  31. 31.
    Navarro-Rodriguez A, Belt ST, Knies J, Brown TA (2013) Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: implications for palaeo sea ice reconstructions. Quat Sci Rev. doi:10.1016/j.quascirev.2012.11.025 Google Scholar
  32. 32.
    Ottesen RT et al (2010) Geochemical atlas of Norway, Part 2: Geochemical atlas of Spitsbergen. Chemical composition of overbank sediments. Norges geologiske undersøkelse/Norges vassdrags- og energidirektorat, TrondheimGoogle Scholar
  33. 33.
    Quadfasel D, Rudels B, Kurz K (1988) Outflow of dense water from a Svalbard fjord into the Fram Strait. Deep Sea Res Part A Oceanogr Res Pap 35:1143–1150. doi:10.1016/0198-0149(88)90006-4 CrossRefGoogle Scholar
  34. 34.
    Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat clim change. doi:10.1038/NCLIMATE2554 Google Scholar
  35. 35.
    Rasmussen TL, Thomsen E (2009) Stable isotope signals from brines in the Barents Sea: implications for brine formation during the last glaciation. Geology 37:903–906. doi:10.1130/g25543a.1 CrossRefGoogle Scholar
  36. 36.
    Rasmussen TL, Thomsen E (2014) Brine formation in relation to climate changes and ice retreat during the last 15,000 years in Storfjorden, Svalbard, 76–78°N. Paleoceanography 29:911–929. doi:10.1002/2014pa002643 CrossRefGoogle Scholar
  37. 37.
    Rasmussen TL, Thomsen E (2015) Palaeoceanographic development in Storfjorden, Svalbard, during the deglaciation and Holocene: evidence from benthic foraminiferal records. Boreas 44:24–44. doi:10.1111/bor.12098 CrossRefGoogle Scholar
  38. 38.
    Reigstad M, Carroll J, Slagstad D, Ellingsen I, Wassmann P (2011) Intra-regional comparison of productivity, carbon flux and ecosystem composition within the northern Barents Sea. Prog Oceanogr 90:33–46. doi:10.1016/j.pocean.2011.02.005 CrossRefGoogle Scholar
  39. 39.
    Reimann C, Matschullat J, Birke M, Salminen R (2009) Arsenic distribution in the environment: the effects of scale. Appl Geochem 24:1147–1167. doi:10.1016/j.apgeochem.2009.03.013 CrossRefGoogle Scholar
  40. 40.
    Reimer PJ et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  41. 41.
    Renssen H, Goosse H, Muscheler R (2006) Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Clim Past 2:79–90CrossRefGoogle Scholar
  42. 42.
    Sarnthein M, Van Kreveld S, Erlenkeuser H, Grootes PM, Kucera M, Pflaumann U, Schulz M (2003) Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75 degrees N. Boreas 32:447–461. doi:10.1080/03009480310003351 CrossRefGoogle Scholar
  43. 43.
    Schauer U (1995) The release of brine-enriched shelf water from Storfjord into the Norwegian Sea. J Geophys Res Oceans 100:16015–16028. doi:10.1029/95jc01184 CrossRefGoogle Scholar
  44. 44.
    Semenov VA, Park W, Latif M (2009) Barents Sea inflow shutdown: a new mechanism for rapid climate changes. Geophys Res Lett. doi:1029/2009gl038911Google Scholar
  45. 45.
    Skogseth R, Haugan PM, Haarpaintner J (2004) Ice and brine production in Storfjorden from four winters of satellite and in situ observations and modeling. J Geophys Res Oceans. doi:10.1029/2004jc002384 Google Scholar
  46. 46.
    Spielhagen RF et al (2011) Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331:450–453. doi:10.1126/science.1197397 CrossRefGoogle Scholar
  47. 47.
    Stuiver M, Reimer PJ (1993) Extended C-14 data-base and revised CALIB 3.0 C-14 AGE calibration program. Radiocarbon 35:215–230CrossRefGoogle Scholar
  48. 48.
    Sullivan KA, Aller RC (1996) Diagenetic cycling of arsenic in Amazon shelf sediments. Geochim Cosmochim Acta 60:1465–1477. doi:10.1016/0016-7037(96)00040-3 CrossRefGoogle Scholar
  49. 49.
    Tamura T, Ohshima KI (2011) Mapping of sea ice production in the Arctic coastal polynyas. J Geophys Res. doi:10.1029/2010jc006586 Google Scholar
  50. 50.
    Telesiński MM, Bauch HA, Spielhagen RF, Kandiano ES (2015) Evolution of the central Nordic Seas over the last 20 thousand years. Quat Sci Rev 121:98–109CrossRefGoogle Scholar
  51. 51.
    Telesiński MM, Spielhagen RF, Bauch HA (2014) Water mass evolution of the Greenland Sea since late glacial times. Clim Past 10:123–136. doi:10.5194/cp-10-123-2014 CrossRefGoogle Scholar
  52. 52.
    Vare L, Massé G, Gregory T, Smart C, Belt S (2009) Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quat Sci Rev 28:1354–1366. doi:10.1016/j.quascirev.2009.01.013 CrossRefGoogle Scholar
  53. 53.
    Vinther BM et al (2006) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res. doi:10.1029/2005jd006921 Google Scholar
  54. 54.
    Wedepohl KJ (1991) The composition of the upper earth’s crust and the natural cycles of selected metals. Metals in natural raw materials. Natural resources. In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim, pp 3–17Google Scholar
  55. 55.
    Werner K, Frank M, Teschner C, Mueller J, Spielhagen RF (2014) Neoglacial change in deep water exchange and increase of sea-ice transport through eastern Fram Strait: evidence from radiogenic isotopes. Quat Sci Rev 92:190–207. doi:10.1016/j.quascirev.2013.06.015 CrossRefGoogle Scholar
  56. 56.
    Werner K, Spielhagen RF, Bauch D, Hass HC, Kandiano E (2013) Atlantic water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: multiproxy evidence for a two-phase Holocene. Paleoceanography 28:283–295. doi:10.1002/palo.20028 CrossRefGoogle Scholar
  57. 57.
    Werner K, Spielhagen RF, Bauch D, Hass HC, Kandiano E, Zamelczyk K (2011) Atlantic Water advection to the eastern Fram Strait—multiproxy evidence for late Holocene variability. Palaeogeogr Palaeoclimatol Palaeoecol 308:264–276. doi:10.1016/j.palaeo.2011.05.030 CrossRefGoogle Scholar
  58. 58.
    Winkelmann D, Knies J (2005) Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. Geochem Geophys Geosyst. doi:10.1029/2005gc000916 Google Scholar
  59. 59.
    Xiao X, Fahl K, Müller J, Stein R (2015) Sea-ice distribution in the modern Arctic Ocean: biomarker records from trans-Arctic Ocean surface sediments. Geochim Cosmochim Acta 155:16–29CrossRefGoogle Scholar
  60. 60.
    Årthun M, Ingvaldsen RB, Smedsrud LH, Schrum C (2011) Dense water formation and circulation in the Barents Sea. Deep Sea Res Part I 58:801–817. doi:10.1016/j.dsr.2011.06.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jochen Knies
    • 1
    • 2
    • 3
  • Irene Pathirana
    • 1
    • 3
  • Patricia Cabedo-Sanz
    • 4
  • Ana Banica
    • 1
  • Karl Fabian
    • 1
    • 2
    • 3
  • Tine L. Rasmussen
    • 2
    • 3
  • Matthias Forwick
    • 3
  • Simon T. Belt
    • 4
  1. 1.Geological Survey of NorwayTrondheimNorway
  2. 2.CAGE-Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway in TromsøTromsøNorway
  3. 3.Department of GeosciencesUiT The Arctic University of Norway in TromsøTromsøNorway
  4. 4.Biogeochemistry Research Centre, School of Geography, Earth and Environmental SciencesUniversity of PlymouthPlymouthUK

Personalised recommendations