Advertisement

Behaviour of tapered piles subjected to lateral harmonic loading

  • Sonal Singh
  • Nihar Ranjan PatraEmail author
Technical Note
  • 59 Downloads

Abstract

In this study, the behaviour of conventional concrete tapered piles subjected to lateral harmonic excitation is assessed. For a constant volume of pile material, the tapered pile is modelled in two different series. The first series is modelled with a constant pile tip diameter and the second series comprises of constant length of the pile. The response curves of the soil–pile system under horizontal vibration are obtained from three-dimensional finite element numerical simulation. The dynamic properties of the soil–pile system, i.e., the stiffness and the damping ratio are calculated from the response curves. It is observed that the tapered piles in the first series exhibit 4.14–8.87% lower resonant frequency than cylindrical piles of the same volume of pile material, whereas the tapered piles in the second series display a resonant frequency 2.95–7.69% higher than that of the cylindrical piles. Further, the resonant amplitude and frequency obtained from the finite element simulation are compared with a modified analytical solution. The resonant frequencies obtained from the finite element simulation are within an error limit of ± 0.57–10% as compared to that obtained from the analytical approach.

Keywords

Dynamic response Tapered pile Finite element method Resonant frequency Stiffness Damping 

List of symbols

\(a,b\)

Parameters defined for calculation of damping ratio

\(A_{m}\)

Amplitude of the mth cycle

\(A_{m + 1}\)

Amplitude of the (m + 1)th cycle

\(A_{\text{st}}\)

Static displacement

\(A_{\text{T}}\)

Resonant amplitude used in the graphical method

\(a_{x}\)

Acceleration in m/s2

\(A_{x}\)

Horizontal displacement in m

\(\left( {A_{x} } \right)_{{\mathrm{max}}}\)

Amplitude at resonance

\(C_{\text{p}}\)

Damping coefficient of the pile

\(d\)

Embedment depth of the pile cap

\(D\)

Thickness of the pile cap

\(e\)

Eccentricity of the masses

\(E_{\text{p}} I_{\text{p}}\)

Bending stiffness of the pile segment j

\(f\)

Circular operating frequency in Hz

\(F\)

Restoring force of the pile

\(g\)

Acceleration due to gravity

\(G_{\text{s}}\)

Shear modulus of the soil adjacent to the segment j

\(h\)

Height of the element j

\(h_{n}^{\prime }\)

Non-dimensional parameter defined for calculation of soil resistance

\(K_{x}\)

Stiffness of the soil–pile system

\(m_{\text{p}}\)

Mass of the pile per unit length

\(M\)

Bending moment of the pile

\(M_{j1} ,M_{j2}\)

Bending moment at node 1 and 2 of element j, respectively

\(n\)

Mode number

\(N_{\text{st}}\)

Static load acting on the pile

\(p\left( z \right)\)

Soil reaction due to horizontal pile displacement \(u\left( z \right)\)

\(P\)

Applied harmonic load

\(u\left( z \right)\)

Horizontal pile displacement

\(u_{j1} ,u_{j2}\)

Displacement at node 1 and 2 of element j, respectively

\(U_{n}\)

Modal amplitude independent of \(z\)

\(V\)

Shear force

\(V_{j1} ,V_{j2}\)

Shear force at node 1 and 2 of element j, respectively

\(W\)

Weight of the eccentric masses

\(z\)

Depth along the pile length

\(\theta_{j1}\), \(\theta_{j2}\)

Rotation at node 1 and 2 of element j, respectively

\(\omega_{ndx}\)

Damped natural frequency

ζ

Damping ratio of the soil–pile system

\(\omega_{nx}\)

Undamped natural frequency

\(\mu\)

Magnification factor

ω

Angular excitation frequency (rad/s)

δ

Logarithmic decrement

\(\omega_{0}\)

Intersection of the natural frequency curve with x-axis

\(\theta\)

Rotation amplitude of the pile

\((\alpha_{h} )_{1} , (\alpha_{h} )_{2}\)

Real and imaginary part of the soil reaction, respectively

\(\omega_{\text{T}}\)

Resonant frequency used in graphical method

\(\omega\)

Circular excitation frequency

\(\alpha_{h}\)

Soil resistance factor

\(\alpha_{hn}\)

Soil resistance factor in nth mode

Ω

Natural frequency

References

  1. 1.
    El Naggar MH, Wei JQ (1999) Axial capacity of tapered piles established from model tests. Can Geotech J 36(6):1185–1194CrossRefGoogle Scholar
  2. 2.
    El Naggar MH, Sakr M (2000) Evaluation of axial performance of tapered piles from centrifuge tests. Can Geotech J 37(6):1295–1308CrossRefGoogle Scholar
  3. 3.
    Manandhar S, Yasufuku N (2013) Vertical bearing capacity of tapered piles in sands using cavity expansion theory. Soils Found 53(6):853–867.  https://doi.org/10.1016/j.sandf.2013.10.005 CrossRefGoogle Scholar
  4. 4.
    Paik K, Lee J, Kim D (2011) Axial response and bearing capacity of tapered piles in sandy soil. Geotech Test J 34(2):122–130.  https://doi.org/10.1520/GTJ102761 CrossRefGoogle Scholar
  5. 5.
    Sakr M, El Naggar MH, Nehdi M (2004) Load transfer of fibre-reinforced polymer (FRP) composite tapered piles in dense sand. Can Geotech J 41(1):70–88.  https://doi.org/10.1139/t03-067 CrossRefGoogle Scholar
  6. 6.
    Zil’berberg SD, Sherstnev AD (1990) Construction of compaction tapered pile foundations (from the experience of the “Vladspetsstroi” trust). Soil Mech Found Eng 27(3):96–101CrossRefGoogle Scholar
  7. 7.
    Rybnikov AM (1990) Experimental investigations of bearing capacity of bored-cast-in-place tapered piles. Soil Mech Found Eng 27(2):48–52.  https://doi.org/10.1007/BF02306100 CrossRefGoogle Scholar
  8. 8.
    Khan MK, El Naggar MH, Elkasabgy M (2008) Compression testing and analysis of drilled concrete tapered piles in cohesive-frictional soil. Can Geotech J 45(3):377–392.  https://doi.org/10.1139/T07-107 CrossRefGoogle Scholar
  9. 9.
    Kodikara JK, Moore ID (1993) Axial response of tapered piles in cohesive-frictional ground. J Geotech Eng 119(4):675–693.  https://doi.org/10.1061/(ASCE)0733-9410(1993)119:4(675) CrossRefGoogle Scholar
  10. 10.
    Liu J, He J, Wu YP, Yang QG (2012) Load transfer behaviour of a tapered rigid pile. Géotechnique 62(7):649–652.  https://doi.org/10.1680/geot.11.T.001 CrossRefGoogle Scholar
  11. 11.
    Kodikara JK, Kong KH, Haque A (2006) Numerical evaluation of side resistance of tapered piles in mudstone. Géotechnique 56(7):505–510.  https://doi.org/10.1680/geot.2006.56.7.505 CrossRefGoogle Scholar
  12. 12.
    Hataf N, Shafaghat A (2015) Optimizing the bearing capacity of tapered piles in realistic scale using 3D finite element method. Geotech Geol Eng 33(6):1465–1473.  https://doi.org/10.1007/s10706-015-9912-6 CrossRefGoogle Scholar
  13. 13.
    Kurian NP, Shah SJ (1995) Studies on the behaviour of axially loaded tapered piles by the finite element method. Int J Numer Anal Methods Geomech 19(12):869–888. ​ https://doi.org/10.1002/nag.1610191204 CrossRefGoogle Scholar
  14. 14.
    El Naggar MH, Wei JQ (1999) Response of tapered piles subjected to lateral loading. Can Geotech J 36:52–71.  https://doi.org/10.1139/cgj-36-1-52 CrossRefGoogle Scholar
  15. 15.
    Sakr M, El Naggar MH, Nehdi M (2005) Lateral behaviour of composite tapered piles in dense sand. Proc ICE Geotech Eng 158(3):145–157.  https://doi.org/10.1680/geng.2005.158.3.145 CrossRefGoogle Scholar
  16. 16.
    Kong GQ, Yang Q, Liu HL, Liang RY (2013) Numerical study of a new belled wedge pile type under different loading modes. Eur J Environ Civ Eng 17:37–41.  https://doi.org/10.1080/19648189.2013.834586 CrossRefGoogle Scholar
  17. 17.
    Saha S, Ghosh DP (1986) Vertical vibration of tapered piles. J Geotech Eng 112(3):290–302CrossRefGoogle Scholar
  18. 18.
    Xie J, Vaziri HH (1991) A methodology for computing the response of non-uniform piles to vertical vibrations. Comput Struct 40(3):639–650CrossRefGoogle Scholar
  19. 19.
    Ghazavi M (2008) Response of tapered piles to axial harmonic loading. Can Geotech J 45(11):1622–1628.  https://doi.org/10.1139/T08-073 CrossRefGoogle Scholar
  20. 20.
    Wu W, Jiang G, Dou B, Leo CJ (2013) Vertical dynamic impedance of tapered pile considering compacting effect. Math Probl Eng.  https://doi.org/10.1155/2013/304856 CrossRefGoogle Scholar
  21. 21.
    Bryden C, Arjomandi K, Valsangkar A (2018) Dynamic axial stiffness and damping parameters of tapered piles. Int J Geomech 18(7):1–8.  https://doi.org/10.1061/(ASCE)GM.1943-5622.0001185 CrossRefGoogle Scholar
  22. 22.
    Dehghanpoor A, Ghazavi M (2012) Response of tapered piles under lateral harmonic vibrations. Int J Geomate 2(2):261–265Google Scholar
  23. 23.
    Novak M (1974) Dynamic stiffness and damping of piles. Can Geotech J 11(4):574–598.  https://doi.org/10.1139/t74-059 CrossRefGoogle Scholar
  24. 24.
    Horvath JS, Trochalides T (2004) A half century of tapered pile usage at the John F. Kennedy International Airport. Papers no. 1105, 5th case histories conference in geotechnical engineering, New YorkGoogle Scholar
  25. 25.
    Brinkgreve RBJ, Engin E, Swolfs WM (2013) PLAXIS 3D 2013 user manual. Plaxis bv, DelftGoogle Scholar
  26. 26.
    Bureau of Indian Standards (1981) Guide for lateral dynamic load test on piles. Reaffirmed 2003. IS 9716, New DelhiGoogle Scholar
  27. 27.
    Novak M (1971) Data reduction from nonlinear response curves. J Eng Mech Div 97(4):1187–1204Google Scholar
  28. 28.
    Manna B, Baidya DK (2010) Nonlinear dynamic response of piles under horizontal excitation. J Geotech Geoenviron Eng 136(12):1600–1609.  https://doi.org/10.1061/(ASCE)GT.1943-5606.0000388 CrossRefGoogle Scholar
  29. 29.
    Veletsos AS, Verbič B (1973) Vibration of viscoelastic foundations. Earthq Eng Struct Dyn 2(1):87–102.  https://doi.org/10.1002/eqe.4290020108 CrossRefGoogle Scholar
  30. 30.
    Baranov VA (1967) On the calculation of excited vibrations of an embedded foundation. Vopr Dyn Proch 14:195–209Google Scholar
  31. 31.
    Nogami T, Novak M (1977) Resistance of soil to a horizontally vibrating pile. Earthq Eng Struct Dyn 5(3):249–261.  https://doi.org/10.1002/eqe.4290050304 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations