Advertisement

Geosynthetic barriers in regulations and recommendations in line with the ISO design guide?

  • Kent P. von MaubeugeEmail author
State-of-the-Art Paper
  • 40 Downloads

Abstract

Over the past 40 years, the advantages in utilizing geosynthetic barriers versus traditional barrier materials have been well documented, e.g. greater project economy, extended service lives, enhanced environmental protection, and greater site safety. Achievements such as conserving water resources and enabling beneficial site reuse have even given geosynthetic engineering a level of social importance. As such, the use of geosynthetic barriers has increasingly been required. This is especially true in modern waste management cell design, a barrier application that has been so successful, and it has influenced the design and specification of geosynthetics into mining, water and wastewater, and industrial applications. However, there are regions and applications in which the use of these barrier technologies should be more widely adopted. This paper highlights an overview of applications where geosynthetic barriers are used and where regulation or recommendations are available. The principles and practices of design using geosynthetic barriers take into account a number of different parameters considered by professionals engaged in the process. A design guide aims to assist the process by identifying the various characteristics of barrier types and comparing them with the requirements of a variety of different applications. It also offers design advice to professionals involved in the design of civil engineering and construction solutions using geosynthetics materials. Overall the intent is to encourage appropriate selection of materials and design methods to suit particular applications, rather than to redesign projects to suit predetermined materials. Many aspects of the design process have been considered as well as the particular parameters of various sites and applications. Further, this paper will describe both the process and outcomes of a new ISO design guide for barrier systems will describe some of the challenges and make recommendations how it can be used to improve regulations.

Keywords

Design guide Geosynthetic Barrier Specification Regulation 

Notes

Acknowledgements

It is indeed an honour and privilege to have been elected as the speaker for the honours lecture of the 2nd Robert Koerner Distinguished Lecture during the GeoMEast 2018 in Cairo, Egypt. I would like to express my very great appreciation to Prof. Dr. Robert M. Koerner for this nomination and thank the organization committee for accepting me as the speaker.

References

  1. 1.
    ASTM D4439 (2018) Standard terminology for geosynthetics. ASTM International, West Conshohocken 1:2015. https://www.beuth.de
  2. 2.
    ISO 10318 (2015) Geosynthetics – Part 1: Terms and definitions (ISO 10318-1:2015); Trilingual version EN ISO 10318-1:2015. https://www.beuth.de
  3. 3.
    Egloffstein TA, Heerten G, von Maubeuge KP (2010) Comparative life cycle assessment for clay geosynthetic barriers versus clay liners and other sealing systems used in river dykes, canals, storm water retention ponds and landfills. GBR-C 2K10. In: Third international symposium geosynthetic clay liners, Germany, 2010Google Scholar
  4. 4.
    Geosynthetic Materials Association (GMA) (2010) Geomembranes and geosynthetic clay liners (GCLs), August 2010. Industrial Fabrics Association International, RosevilleGoogle Scholar
  5. 5.
    DepV - Ministerium für Umwelt, Naturschutz und Reaktorsicherheit (2009) Verordnung zur Vereinfachung des Deponierechts vom 27. April 2009, Artikel 1 Verordnung über Deponien und Langzeitlager (Deponieverordnung – DepV). Bundesgesetzblatt Jg. 2009, Teil I Nr. 22. Bundesanzeigerverlag, KölnGoogle Scholar
  6. 6.
    Koerner RM (2012) Designing with geosynhtetics, 6th edn. Xlibris Publishing Co, BloomingtonGoogle Scholar
  7. 7.
    Smith ME (2013) Emerging issues in mining containment. In: Keynote lecture from Geosynthetics 2013 (Long Beach, California, USA). Industrial Fabrics Association InternationalGoogle Scholar
  8. 8.
    Christie M, Smith ME (2013) A brief history of heap leaching. In: Proceedings of 25th annual GRI conference. Geosynthetic Institute, FolsomGoogle Scholar
  9. 9.
    RiStWag (2016) FGSV Nr. 514. Richtlinien für bautechnische Maßnahmen an Straßen in Wasserschutzgebieten (Guidelines for construction projects in waterways of protected areas, FGSV). Research Society for Road and Traffic, GermanyGoogle Scholar
  10. 10.
    EN 15382 (2018) Geosynthetic barriers: characteristics required for use in transportation infrastructure. https://www.beuth.de
  11. 11.
    Egloffstein T, Vollmert L, von Maubeuge K (2015) Guideline for road noise barriers as longitudinal waste deposits: lined slopes with geosynthetics protecting the environment. In: Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development. ECSMGE 2015, ICE Publishing. ISBN 978-0-7277-6067-8.Google Scholar
  12. 12.
    MTSE (2018) FGSV-Nr. 559. Merkblatt über Bauweisen für technische Sicherungsmaßnahmen beim Einsatz von Böden und Baustoffen mit umweltrelevanten Inhaltsstoffen im Erdbau (Recommendation on construction methods for technical safety measures when using soils and building materials with environmentally relevant substances in earthworks). Forschungsgesellschaft für das Straßen- und VerkehrswesenGoogle Scholar
  13. 13.
    CUR - Civieltechnisch Centrum Uitvoering Research en Regelgeving (1999) Aan het werk met het „Bouwstoffen Besluit“Een handreiking voor het werken met het Boustoffenbesluit. Ministerie van Volkshuisvesting Ruimtelijke Ordening en MiliuebeheerGoogle Scholar
  14. 14.
    Swihart JJ, Haynes JA (2002) Deschutes—canal-lining demonstration project, year 10 final report, R-02-03. US Bureau of Reclamation, NovemberGoogle Scholar
  15. 15.
    EN 13361 (2018) Geosynthetic barriers—characteristics required for use in the construction of reservoirs and dams. https://www.beuth.de
  16. 16.
    Stark TD, Hynes JM (2009) Geomembranes for canal lining. In: Proceedings of geosynthetics 2009. Industrial Fabrics Association International, RosevilleGoogle Scholar
  17. 17.
    MAR (2008) Merkblatt Anwendung von Regelbauweisen für Böschungs- und Sohlensicherung an WasserstraßenGoogle Scholar
  18. 18.
    ISO/TR 18228-9:2018(E) Design using geosynthetics—part 9: barriersGoogle Scholar
  19. 19.
    GRI-GCL5 (2013) Test methods, required properties, and testing frequencies of geosynthetic clay liners (GCLs). Geosynthetic Institute, Folsom. https://geosynthetic-institute.org/grispecs/gcl5.pdf
  20. 20.
    Atchison P, von Maubeuge KP (2016) Development of a design guide for geosynthetics barriers, as part of the ISO design using geosynthetics development. EuroGeo6Google Scholar
  21. 21.
    Koerner RM, Koerner GR (2010) Generic specification for GCL manufacturing quality control; details and unsettled issues. GBR-C 2K10. In: Third international symposium geosynthetic clay liners, GermanyGoogle Scholar
  22. 22.
    GRI-GCL3 (2016) Standard specification for test methods, required properties, and testing frequencies of geosynthetic clay liners (GCLs). Geosynthetic Institute, Folsom. https://geosynthetic-institute.org/grispecs/gcl3.pdf
  23. 23.
    European Commission (1994) M/107 Mandate to CEN and CENELEC concerning the execution of standardisation work for harmonised standards on geotextiles. In: Dirctorate-general III industry; industrial affairs II: capital goods industries construction. http://ec.europa.eu/growth/tools-databases/mandates/index.cfm?useaction=select_attachments.download&doc_id=1169

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.NAUE GmbH & Co. KGEspelkampGermany

Personalised recommendations