Experimental and numerical modeling of the sand–steel interface behavior under monotonic loading

  • Mohamed KhemissaEmail author
  • Naoui Tallah
  • Boubakeur Bencheikh
Technical Paper


This paper presents and analyzes the experimental and numerical results of a series of direct shear tests performed under monotonic loading on a dune sand presenting two forms of compactness, one loose and the other dense, in contact with a rigid stainless steel plate presenting two forms of roughness, one smooth and the other rough. Experimental direct shear tests were performed using a shear box similar to Casagrande shear box. Calculations were carried out using two elastoplastic behavior models implemented into a finite elements computer program. Experimental and numerical results made it possible to determine the shear strength parameter characteristics of the sand–steel interface, and show a good agreement between the experimental and predicted data. In addition, for all considered normal stress levels, the rough interface is more advantageous than the smooth interface, and more true with dense sand than with loose sand of same type.


Soil–structure interface Dune sand Stainless steel plate Direct shear test Factor of form 



This research study was financially supported by the Ministry of Higher Education and Scientific Research, Algeria (CNEPRU Project No A01L02UN280120140033 from Jan. 2015 to Dec. 2018).


  1. 1.
    Sharma N, Dasgupta K, Dey A (2018) A state-of-the-art review on seismic SSI studies on building structures. Innov Infrastructure Solut 3:22. CrossRefGoogle Scholar
  2. 2.
    Frank R (2017) Some aspects of research and practice for piles design in France. Innov Infrastructure Solut 2:32. CrossRefGoogle Scholar
  3. 3.
    Kavitha PE, Beena KS, Narayanan KP (2016) A review on soil–structure interaction analysis of laterally loaded piles. Innov Infrastructure Solut 1:14. CrossRefGoogle Scholar
  4. 4.
    Das Braja M (2016) Use of geogrid in the construction of railroads. Innov Infrastructure Solut 1:15. CrossRefGoogle Scholar
  5. 5.
    Shehata HF (2016) Retaining walls with relief shelves. Innov Infrastructure Solut 1:4. CrossRefGoogle Scholar
  6. 6.
    Zhang G, Zhang J (2009) State of the art: mechanical behavior of soil–structure interface. Prog Nat Sci 19(10):1187–1196. CrossRefGoogle Scholar
  7. 7.
    Li Yao-Kun, Han Xiao-Lei, Ji Jing, Dong-Long Fu, Qiu Yan-Kun, Dai Bai-Cheng, Lin Chao (2015) Behavior of interfaces between granular soil and structure: a state-of-the-art review. Open Civ Eng J 9:213–223. CrossRefGoogle Scholar
  8. 8.
    Bacas BM, Canizal J, Konietzky H (2015) Shear strength behavior of geotextile/geomembrane interfaces. J Rock Mech Geotech Eng 7(6):638–645. CrossRefGoogle Scholar
  9. 9.
    De Gennaro V, Frank R (2002) Elasto-plastic analysis of the interface behaviour between granular media and structure. Comput Geotech 29(7):547–572. CrossRefGoogle Scholar
  10. 10.
    Ghionna VN, Mortara G (2002) An elastoplastic model for sand–structure interface behaviour. Géotechnique 52(1):41–50. CrossRefGoogle Scholar
  11. 11.
    Hammoud F, Boumekik A (2006) Experimental study of the behaviour of interfacial shearing between cohesive soils and solid materials at large displacement. Asian J Civil Eng (Building and Housing) 7(1):63–80.
  12. 12.
    Hu L, Pu J (2004) Testing and modeling of soil–structure interface. J Geotech Geoenv Eng 130(8):851–860. CrossRefGoogle Scholar
  13. 13.
    Palmeira EM (2009) Soil–geosynthetic interaction: modelling and analysis. Geotext Geomembr 27(5):368–390. CrossRefGoogle Scholar
  14. 14.
    Shahrour I, Rezaie F (1997) An elastoplastic constitutive relation for the soil–structure interface under cyclic loading. Comput Geotech 21(1):21–39. CrossRefGoogle Scholar
  15. 15.
    Tiwari B, Ajmera B, Kaya G (2010) Shear strength reduction at soil structures interface. In: Proceedings of GeoFlorida 2010: advances in analysis, modeling & design (GSP 199) ASCE, pp 1747–1756.
  16. 16.
    Zeghal M, Edil TB (2002) Soil–structure interaction analysis: modeling the interface. Can Geotech J 39(3):620–628. CrossRefGoogle Scholar
  17. 17.
    Esfandiari J, Selamat MR (2012) Laboratory investigation on the effect of transverse member on pull out capacity of metal strip reinforcement in sand. Geotext Geomembr 35:41–49. CrossRefGoogle Scholar
  18. 18.
    Ezzein FM, Bathurst RJ (2014) A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil. Geotext Geomembr 42(3):246–255. CrossRefGoogle Scholar
  19. 19.
    Ferreira FB, Vieira CS, Lopes ML (2015) Direct shear behaviour of residual soil-geosynthetic interfaces-influence of soil moisture content, soil density and geosynthetic type. Geosynth Int 22(3):257–272. CrossRefGoogle Scholar
  20. 20.
    Horpibulsuk S, Niramitkronburee A (2010) Pullout resistance of bearing reinforcement embedded in sand. Soils Found 50(2):215–226. CrossRefGoogle Scholar
  21. 21.
    Jayawickrama P, Lawson W, Wood T, Surles J (2014) Pullout resistance factors for steel MSE reinforcements embedded in Gravelly backfill. J Geotech Geoenv Eng 141:1–10. CrossRefGoogle Scholar
  22. 22.
    Khemissa M, Safer S, Sahli M, Meddah A (2004) Etude des performances de quelques éléments de terre armée. In: Proceedings of the international conference on geotechnical engineering, Geo-Beyrouth, University of Lebanon, pp 269–274Google Scholar
  23. 23.
    Liu CN, Ho YH, Huang JW (2009) Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotext Geomembr 27(1):19–30. CrossRefGoogle Scholar
  24. 24.
    Park J, Qiu T, Kim Y (2013) Field and laboratory investigation of pullout resistance of steel anchors in rock. J Geotech Geoenv Eng 139(12):2219–2224. CrossRefGoogle Scholar
  25. 25.
    Rousé PC, Fannin RJ, Taiebat M (2014) Sand strength for back-analysis of pull-out tests at large displacement. Géotechnique 64(4):320–324. CrossRefGoogle Scholar
  26. 26.
    Suksiripattanpong C, Horpibulsuk S, Chinkulkijniwat A, Chai JC (2013) Pullout resistance of bearing reinforcement embedded in coarse-grained soils. Geotext Geomembr 36:44–54. CrossRefGoogle Scholar
  27. 27.
    Bacas BM, Konietzky H, Berini JC, Sagaseta C (2011) A new constitutive model for textured geomembrane/geotextile interfaces. Geotext Geomembr 29(2):137–148. CrossRefGoogle Scholar
  28. 28.
    Boulon M, Ghionna VN, Mortara G (2003) A strain-hardening elastoplastic model for sand–structure interface under monotonic and cyclic loading. Math Comput Model 37(5–6):623–630. CrossRefGoogle Scholar
  29. 29.
    Fakharian K, Evgin E (2000) Elasto-plastic modelling of stress-path-dependent behaviour of interfaces. Int J Numer Anal Meth Geomech 24(2):183–199.;2-3CrossRefGoogle Scholar
  30. 30.
    Liu H, Song E, Ling HI (2006) Constitutive modeling of soil–structure interface through the concept of critical state soil mechanics. Mech Res Commun 33(4):515–531. CrossRefGoogle Scholar
  31. 31.
    Zhou A, Lu T (2009) Elasto-plastic constitutive model of soil–structure interface in consideration of strain softening and dilation. Acta Mech Solida Sin 22(2):171–179. CrossRefGoogle Scholar
  32. 32.
    Bencheikh B (1991) Interaction sols-structures: modélisation et résolution numérique. Doctoral thesis, Université des Sciences et de Technologie de Lille, France.
  33. 33.
    Shahrour I, Bencheikh B (1992) Analysis of the soil–structure interaction under monotonic and cyclic Loadings. In: Hirsch Ch, Zienkiewicz E, Onate E (eds) Proceedings of the 1st European conference on numerical methods in engineering, 7–11 September 1992, Brussels, Belgium, pp 269–275Google Scholar
  34. 34.
    Brinkgreve RBJ, Vermeer PA (2002) PLAXIS: finite element code for soil and rock analyses (version 8.2). Balkema, Rotterdam, Brookfield, NetherlandsGoogle Scholar
  35. 35.
    Alimi I, Bacot J, Lareal P, Long, NT, Schlosser F (1977) Etude de l’adhérence sol-armature. In: Proceedings of the 9th international conference on soil mechanics and foundations engineering, Tokyo, Japan, vol 1, pp 11–14Google Scholar
  36. 36.
    Schlosser F, Guilloux A (1981) Le frottement dans le renforcement des sols. Rev Fr Géotech 16:65–77. CrossRefGoogle Scholar
  37. 37.
    Khemissa M, Safer S, Aidjouli S (2015) Roughness’s shapes comparative analysis of some reinforced earth elements under monotonous loading. Alexandria Eng J 54(3):577–582. CrossRefGoogle Scholar
  38. 38.
    Mestat P, Prat M (1999) Ouvrages en interaction. Hermès (Eds), FranceGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Geomaterials Development LaboratoryUniversity of M’silaM’silaAlgeria
  2. 2.Mechanics and Materials Development LaboratoryUniversity of DjelfaDjelfaAlgeria

Personalised recommendations