Advertisement

Numerical check of the Meyerhof bearing capacity equation for shallow foundations

  • Stefan Van BaarsEmail author
Technical Note
Part of the following topical collections:
  1. Topical Collection from GeoMEast 2017 – Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology

Abstract

Most geotechnical design codes and books use the equations of Meyerhof or Terzaghi to calculate shallow foundations. These equations are based on the failure mechanism published by Prandtl for shallow strip foundations. The common idea is that failure of a footing occurs in all cases according to a Prandtl-wedge failure mechanism. To check the failure mechanism and the equations of the currently used bearing capacity factors and correction factors, a large number of finite-element calculations of strip and circular footings have been made. The finite-element calculations show that in cases of soils with high friction angles, soils without cohesion or a surcharge, footings with inclined loading or circular footings, not the Prandtl-wedge failure mechanism, but other failure mechanisms occur. In addition, the currently used equations for the bearing capacity factors and correction factors are too high. Therefore, new equations have been presented in this article. For some correction factors, for example, the inclination factors and the cohesion slope factor, an analytical solution is found.

Keywords

Bearing capacity Footing Prandtl wedge Inclination factor Shape factor Slope factor 

References

  1. 1.
    Bolton MD (1979) Guide to soil mechanics. Macmillian Press, London, p 330Google Scholar
  2. 2.
    Brinch Hansen JA (1970) Revised and extended formula for bearing capacity. Bulletin No 28, Danish Geotechnical Institute Copenhagen, pp 5–11Google Scholar
  3. 3.
    Caquot A, and Kerisel J (1953) Sur le terme de surface dans le calcul des fondations en milieu pulverulent. Proceeding Third International Conference on Soil Mechanics and Foundation Engineering, Zurich, Switzerland, 1:336–337Google Scholar
  4. 4.
    Caquot A, Kerisel J (1966) Traité de Méchanique des sols, vol 349. Gauthier-Villars, Paris, p 353Google Scholar
  5. 5.
    Chen WF (1975) Limit analysis and soil plasticity. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Das BM (1999) Shallow foundations, bearing capacity and settlement. CRC Press, New York, p 89CrossRefGoogle Scholar
  7. 7.
    De Beer EE (1967) Proefondervindelijke bijdrage tot de studie van het grensdraagvermogen van zand onder funderingen op staal; Bepaling van de vormfactor sb. Annales des Travaux Publics de Belgique 68(6):481–506; 69(1):41–88; 4:321–360; 5:395–442; 6:495–522Google Scholar
  8. 8.
    De Beer EE, Ladany B (1961) Etude expérimentale de la capacité portante du sable sous des fondations circulaire établies en surface. Proc 5th Intern Conf Soil Mech Found EngParis 1:577–581Google Scholar
  9. 9.
    De Beer EE (1970) Experimental determination of the shape factors and the bearing capacity factors of sand. Géotechnique 20(4):387–411CrossRefGoogle Scholar
  10. 10.
    Eurocode 7 (2004) Geotechnical design—part 1: general rules, EN 1997-1, 159Google Scholar
  11. 11.
    Hertz H (1881) Ueber die Berührung fester elastischer Körper. J für die reine und angewandte Mathematik 92(1956):156–171Google Scholar
  12. 12.
    Ip KW (2005) Bearing capacity for foundation near slope, Master-thesis. Concordia University, Montreal, pp 61–64Google Scholar
  13. 13.
    Jumikis AR (1956) Rupture surfaces in sand under oblique loads. J Soil Mech Found Des ASCE 82(SM 1)Google Scholar
  14. 14.
    Keverling Buisman AS (1940) Grondmechanica. Waltman, Delft, p 243Google Scholar
  15. 15.
    Knudsen BS and Mortensen N (2016) Bearing capacity comparison of results from FEM and DS/EN 1997-1 DK NA 2013, Northern Geotechnical Meeting 2016, Reykjavik, pp 577–586Google Scholar
  16. 16.
    Lambe TW, Whitman RV (1969) Soil mechanics. John Wiley and Sons Inc., New YorkGoogle Scholar
  17. 17.
    Loukidis D, Chakraborty T, Salgado R (2008) Bearing capacity of strip footings on purely frictional soil under eccentric and inclined loads. Can Geotech J 45:768–787CrossRefGoogle Scholar
  18. 18.
    Meyerhof GG (1951) The ultimate bearing capacity of foundations. Géotechnique 2:301–332CrossRefGoogle Scholar
  19. 19.
    Meyerhof GG (1953) The bearing capacity of foundations under eccentric and inclined loads. In: Proceeding III Intl. Conf. on soil mechanics found. Eng, Zürich, 1, pp 440–445Google Scholar
  20. 20.
    Meyerhof GG (1957) The ultimate bearing capacity of foundations on slopes. In: Proceeding of the 4th Int. Conf. on soil mechanics and foundation engineering, London, pp 384–386Google Scholar
  21. 21.
    Meyerhof GG (1963) Some recent research on the bearing capacity of foundations. Can Geotech J 1(1):16–26CrossRefGoogle Scholar
  22. 22.
    Meyerhof GG (1965) Shallow foundations. J Soil Mech Found Div ASCE 91(2):21–32Google Scholar
  23. 23.
    Muhs H, Weiß K (1972) Versuche über die Standsicheheit flach gegründeter Einzelfundamente in nichtbindigem Boden, Mitteilungen der Deutschen Forschungsgesellschaft für Bodenmechanik (Degebo) an der Technischen Universität Berlin. Heft 28:122Google Scholar
  24. 24.
    Prandtl L (1920) Über die Härte plastischer Körper. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. Dieterichschen Buchhandlung, Göttingen, pp 74–85Google Scholar
  25. 25.
    Selig ET and McKee KE (1961) Static behavior of small footings. J Soil Mech Found Design ASCE 87(6):29–50Google Scholar
  26. 26.
    Reissner H (1924) Zum Erddruckproblem. In: Biezeno CB, Burgers JM (eds) Proceeding 1st Int Congress for applied mechanics. Delft, The Netherlands, pp 295–311Google Scholar
  27. 27.
    Sokolovski VV (1960) Statics of soil media. Butterworths Scientific Publications, New YorkGoogle Scholar
  28. 28.
    Tapper L, Martin CM, Byrne BW, Lehane BM (2015) Undrained vertical bearing capacity of perforated shallow foundations. Front Offshore Geotech Fig 7:816Google Scholar
  29. 29.
    Terzaghi K (1943) Theoretical soil mechanics. John Wiley & Sons Inc, New YorkCrossRefGoogle Scholar
  30. 30.
    Van Baars S (2014) The inclination and shape factors for the bearing capacity of footings. Soils Found 54(5):985–992CrossRefGoogle Scholar
  31. 31.
    Van Baars S (2015) The bearing capacity of footings on cohesionless soils. Electron J Geotech Eng 20:12945–12955 (ISSN 1089-3032) Google Scholar
  32. 32.
    Van Baars S (2016) Failure mechanisms and corresponding shape factors of shallow foundations. 4th Int. Conf. on New Development in Soil Mech. and Geotechn. Eng., Nicosia, pp 551–558Google Scholar
  33. 33.
    Van Baars S (2016) The influence of superposition and eccentric loading on the bearing capacity of shallow foundations. J Comput Mater Civil Engineering 1(3):121–131 (ISSN 2371-2325) Google Scholar
  34. 34.
    Vesic AS (1973) Analysis of ultimate loads of shallow foundations. J Soil Mech Found Div 99(1):45–76Google Scholar
  35. 35.
    Vesic AS (1975) Bearing capacity of shallow foundations. In: Winterkorn HF, Fang HY (eds) Foundation engineering handbook. Van Nostrand Reinhold, New York, pp 121–147Google Scholar
  36. 36.
    Zhu M, Michalowski RL (2005) Shape factors for limit loads on square and rectangular footings. J Geotech Geoenviron Eng ASCE 131:223–231CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Research Unit Engineering Science, Faculty of Science and TechnologyUniversity of LuxembourgLuxembourgGrand Duchy of Luxembourg

Personalised recommendations