Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

DNA-Driven Nanoparticle Assemblies for Biosensing and Bioimaging

  • 59 Accesses

Abstract

DNA molecules with superior flexibility, affinity and programmability have garnered considerable attention for the controllable assembly of nanoparticles (NPs). By controlling the density, length and sequences of DNA on NPs, the configuration of NP assemblies can be rationally designed. The specific recognition of DNA enables changes to be made to the spatial structures of NP assemblies, resulting in differences in tailorable optical signals. Comprehensive information on the fabrication of DNA-driven NP assemblies would be beneficial for their application in biosensing and bioimaging. This review analyzes the progress of DNA-driven NP assemblies, and discusses the tunable configurations determined by the structural parameters of DNA skeletons. The collective optical properties, such as chirality, fluorescence and surface enhanced Raman resonance (SERS), etc., of DNA-driven NP assemblies are explored, and engineered tailorable optical properties of these spatial structures are achieved. We discuss the development of DNA-directed NP assemblies for the quantification of DNA, toxins, and heavy metal ions, and demonstrate their potential application in the biosensing and bioimaging of tumor markers, RNA, living metal ions and phototherapeutics. We hihghlight possible challenges in the development of DNA-driven NP assemblies, and further direct potential prospects in the practical applications of macroscopical materials and photonic devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Zhang Y, Pal S, Srinivasan B, Vo T, Kumar S, Gang O (2015) Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. Nat Mater 14(8):840–847. https://doi.org/10.1038/nmat4296

  2. 2.

    Zhao Y, Sun M, Ma W, Kuang H, Xu C (2017) Biological Molecules-governed plasmonic nanoparticle dimers with tailored optical behaviors. J Phys Chem Lett 8(22):5633–5642. https://doi.org/10.1021/acs.jpclett.7b01781

  3. 3.

    Hu Y, Kahn JS, Guo W, Huang F, Fadeev M, Harries D, Willner I (2016) Reversible modulation of DNA-based hydrogel shapes by internal stress interactions. J Am Chem Soc 138(49):16112–16119. https://doi.org/10.1021/jacs.6b10458

  4. 4.

    Pu F, Ren J, Qu X (2018) Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem Soc Rev 47(4):1285–1306. https://doi.org/10.1039/c7cs00673j

  5. 5.

    Hu Q, Li H, Wang L, Gu H, Fan C (2019) DNA nanotechnology-enabled drug delivery systems. Chem Rev 119(10):6459–6506. https://doi.org/10.1021/acs.chemrev.7b00663

  6. 6.

    Wang Y, Zhu Y, Hu Y, Zeng G, Zhang Y, Zhang C, Feng C (2018) How to construct DNA hydrogels for environmental applications: advanced water treatment and environmental analysis. Small 14(17):e1703305. https://doi.org/10.1002/smll.201703305

  7. 7.

    Chou LY, Zagorovsky K, Chan WC (2014) DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat Nanotechnol 9(2):148–155. https://doi.org/10.1038/nnano.2013.309

  8. 8.

    Wu X, Hao C, Kumar J, Kuang H, Kotov NA, Liz-Marzan LM, Xu C (2018) Environmentally responsive plasmonic nanoassemblies for biosensing. Chem Soc Rev 47(13):4677–4696. https://doi.org/10.1039/c7cs00894e

  9. 9.

    Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C (2018) Complex silica composite nanomaterials templated with DNA origami. Nature 559(7715):593–598. https://doi.org/10.1038/s41586-018-0332-7

  10. 10.

    Maye MM, Kumara MT, Nykypanchuk D, Sherman WB, Gang O (2010) Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat Nanotechnol 5(2):116–120. https://doi.org/10.1038/nnano.2009.378

  11. 11.

    Zhao Y, Yang X, Li H, Luo Y, Yu R, Zhang L, Yang Y, Song Q (2015) Au nanoflower-Ag nanoparticle assembled SERS-active substrates for sensitive MC-LR detection. Chem Commun (Camb) 51(95):16908–16911. https://doi.org/10.1039/c5cc05868f

  12. 12.

    Zhao Y, Xu L, Ma W, Liu L, Wang L, Kuang H, Xu C (2014) Shell-programmed Au nanoparticle heterodimers with customized chiroptical activity. Small 10(22):4770–4777. https://doi.org/10.1002/smll.201401203

  13. 13.

    Zhao Y, Xu L, Ma W, Wang L, Kuang H, Xu C, Kotov NA (2014) Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. Nano Lett 14(7):3908–3913. https://doi.org/10.1021/nl501166m

  14. 14.

    Ma W, Kuang H, Xu L, Ding L, Xu C, Wang L, Kotov NA (2013) Attomolar DNA detection with chiral nanorod assemblies. Nat Commun 4:2689. https://doi.org/10.1038/ncomms3689

  15. 15.

    Zhao Y, Xu L, Liz-Marzán LM, Kuang H, Ma W, Asenjo-Garcı́a A, García de Abajo FJ, Kotov NA, Wang L, Xu C (2013) Alternating plasmonic nanoparticle heterochains made by polymerase Chain reaction and their optical properties. J Phys Chem Lett 4(4):641–647. https://doi.org/10.1021/jz400045s

  16. 16.

    Sun M, Qu A, Hao C, Wu X, Xu L, Xu C, Kuang H (2018) Chiral upconversion heterodimers for quantitative analysis and bioimaging of antibiotic-resistant bacteria in vivo. Adv Mater 30(50):e1804241. https://doi.org/10.1002/adma.201804241

  17. 17.

    Zhao Y, Xu L, Kuang H, Wang L, Xu C (2012) Asymmetric and symmetric PCR of gold nanoparticles: a pathway to scaled-up self-assembly with tunable chirality. J Mater Chem 22(12):5574. https://doi.org/10.1039/c2jm15800k

  18. 18.

    Hong F, Zhang F, Liu Y, Yan H (2017) DNA origami: scaffolds for creating higher order structures. Chem Rev 117(20):12584–12640. https://doi.org/10.1021/acs.chemrev.6b00825

  19. 19.

    Tanwar S, Haldar KK, Sen T (2017) DNA origami directed Au nanostar dimers for single-molecule surface-enhanced raman scattering. J Am Chem Soc 139(48):17639–17648. https://doi.org/10.1021/jacs.7b10410

  20. 20.

    Li Y, Liu Z, Yu G, Jiang W, Mao C (2015) Self-assembly of molecule-like nanoparticle clusters directed by DNA nanocages. J Am Chem Soc 137(13):4320–4323. https://doi.org/10.1021/jacs.5b01196

  21. 21.

    Tian Y, Wang T, Liu W, Xin HL, Li H, Ke Y, Shih WM, Gang O (2015) Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat Nanotechnol 10(7):637–644. https://doi.org/10.1038/nnano.2015.105

  22. 22.

    Zhang Y, Chao J, Liu H, Wang F, Su S, Liu B, Zhang L, Shi J, Wang L, Huang W, Wang L, Fan C (2016) Transfer of two-dimensional oligonucleotide patterns onto stereocontrolled plasmonic nanostructures through DNA-origami-based nanoimprinting lithography. Angew Chem 55(28):8036–8040. https://doi.org/10.1002/anie.201512022

  23. 23.

    Tian S, Neumann O, McClain MJ, Yang X, Zhou L, Zhang C, Nordlander P, Halas NJ (2017) Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection. Nano Lett 17(8):5071–5077. https://doi.org/10.1021/acs.nanolett.7b02338

  24. 24.

    Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO (2011) DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol 6(8):485–490. https://doi.org/10.1038/nnano.2011.100

  25. 25.

    Zhang L, Jean SR, Li X, Sack T, Wang Z, Ahmed S, Chan G, Das J, Zaragoza A, Sargent EH, Kelley SO (2018) Programmable metal/semiconductor nanostructures for mRNA-modulated molecular delivery. Nano Lett 18(10):6222–6228. https://doi.org/10.1021/acs.nanolett.8b02263

  26. 26.

    Yan W, Xu L, Xu C, Ma W, Kuang H, Wang L, Kotov NA (2012) Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J Am Chem Soc 134(36):15114–15121. https://doi.org/10.1021/ja3066336

  27. 27.

    Gorris HH, Wolfbeis OS (2013) Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew Chem 52(13):3584–3600. https://doi.org/10.1002/anie.201208196

  28. 28.

    Kumar M, Zhang P (2009) Highly sensitive and selective label-free optical detection of DNA hybridization based on photon upconverting nanoparticles. Langmuir 25(11):6024–6027. https://doi.org/10.1021/la900936p

  29. 29.

    Kumar M, Zhang P (2010) Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles. Biosens Bioelectron 25(11):2431–2435. https://doi.org/10.1016/j.bios.2010.03.038

  30. 30.

    Sun M, Ma W, Xu L, Wang L, Kuang H, Xu C (2014) Chirality of self-assembled metal-semiconductor nanostructures. J Mater Chem C 2(15):2702–2706. https://doi.org/10.1039/C4TC00040D

  31. 31.

    Li LL, Wu P, Hwang K, Lu Y (2013) An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J Am Chem Soc 135(7):2411–2414. https://doi.org/10.1021/ja310432u

  32. 32.

    Li S, Xu L, Ma W, Wu X, Sun M, Kuang H, Wang L, Kotov NA, Xu C (2016) Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles. J Am Chem Soc 138(1):306–312. https://doi.org/10.1021/jacs.5b10309

  33. 33.

    Li S, Xu L, Sun M, Wu X, Liu L, Kuang H, Xu C (2017) Hybrid nanoparticle pyramids for intracellular dual micrornas biosensing and bioimaging. Adv Mater. https://doi.org/10.1002/adma.201606086

  34. 34.

    Qu A, Sun M, Xu L, Hao C, Wu X, Xu C, Kotov NA, Kuang H (2019) Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proc Natl Acad Sci USA 116(9):3391–3400. https://doi.org/10.1073/pnas.1810764116

  35. 35.

    Ma W, Fu P, Sun M, Xu L, Kuang H, Xu C (2017) Dual quantification of microRNAs and telomerase in living cells. J Am Chem Soc 139(34):11752–11759. https://doi.org/10.1021/jacs.7b03617

  36. 36.

    Sun M, Xu L, Ma W, Wu X, Kuang H, Wang L, Xu C (2016) Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy. Adv Mater 28(5):898–904. https://doi.org/10.1002/adma.201505023

  37. 37.

    Wu X, Xu L, Ma W, Liu L, Kuang H, Kotov NA, Xu C (2016) Propeller-like nanorod-upconversion nanoparticle assemblies with intense chiroptical activity and luminescence enhancement in aqueous phase. Adv Mater 28(28):5907–5915. https://doi.org/10.1002/adma.201601261

  38. 38.

    Tang L, Wang Y, Li J (2015) The graphene/nucleic acid nanobiointerface. Chem Soc Rev 44(19):6954–6980. https://doi.org/10.1039/c4cs00519h

  39. 39.

    Parvin N, Jin Q, Wei Y, Yu R, Zheng B, Huang L, Zhang Y, Wang L, Zhang H, Gao M, Zhao H, Hu W, Li Y, Wang D (2017) Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection. Adv Mater. https://doi.org/10.1002/adma.201606755

  40. 40.

    Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv Mater 21(31):3159–3164. https://doi.org/10.1002/adma.200803633

  41. 41.

    Meng X, Wang H, Chen N, Ding P, Shi H, Zhai X, Su Y, He Y (2018) A graphene-silver nanoparticle-silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria. Anal Chem 90(9):5646–5653. https://doi.org/10.1021/acs.analchem.7b05139

  42. 42.

    Ma W, Sun M, Fu P, Li S, Xu L, Kuang H, Xu C (2017) A chiral-nanoassemblies-enabled strategy for simultaneously profiling surface glycoprotein and microRNA in living cells. Adv Mater. https://doi.org/10.1002/adma.201703410

  43. 43.

    Zhao Y, Cui L, Sun Y, Zheng F, Ke W (2018) Ag/CdO NPs engineered magnetic electrochemical aptasensor for prostatic specific antigen detection. ACS Appl Mater Interface. https://doi.org/10.1021/acsami.8b18887

  44. 44.

    Zhao Y, Zheng F, Ke W, Zhang W, Shi L, Liu H (2019) Gap-Tethered Au@AgAu raman tags for the ratiometric detection of MC–LR. Anal Chem 91(11):7162–7172. https://doi.org/10.1021/acs.analchem.9b00348

  45. 45.

    Streit JK, Fagan JA, Zheng M (2017) A low energy route to DNA-wrapped carbon nanotubes via replacement of bile salt surfactants. Anal Chem 89(19):10496–10503. https://doi.org/10.1021/acs.analchem.7b02637

  46. 46.

    Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA III, Rothemund PW, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5(1):61–66. https://doi.org/10.1038/nnano.2009.311

  47. 47.

    He W, Dai J, Li T, Bao Y, Yang F, Zhang X, Uyama H (2018) Novel strategy for the investigation on chirality selection of single-walled carbon nanotubes with DNA by electrochemical characterization. Anal Chem 90(21):12810–12814. https://doi.org/10.1021/acs.analchem.8b03323

  48. 48.

    Chen Y, Liu H, Ye T, Kim J, Mao C (2007) DNA-directed assembly of single-wall carbon nanotubes. J Am Chem Soc 129:8696–8697

  49. 49.

    Freeley M, Attanzio A, Cecconello A, Amoroso G, Clement P, Fernandez G, Gesuele F, Palma M (2018) Tuning the coupling in single-molecule heterostructures: DNA-programmed and reconfigurable carbon nanotube-based nanohybrids. Adv Sci (Weinh) 5(10):1800596. https://doi.org/10.1002/advs.201800596

  50. 50.

    Gui R, He W, Jin H, Sun J, Wang Y (2018) DNA assembly of carbon dots and 5-fluorouracil used for room-temperature phosphorescence turn-on sensing of AFP and AFP-triggered simultaneous release of dual-drug. Sens Actuators B 255:1623–1630. https://doi.org/10.1016/j.snb.2017.08.178

  51. 51.

    Qian ZS, Shan XY, Chai LJ, Chen JR, Feng H (2015) A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens Bioelectron 68:225–231. https://doi.org/10.1016/j.bios.2014.12.057

  52. 52.

    Xia Y, Wang L, Li J, Chen X, Lan J, Yan A, Lei Y, Yang S, Yang H, Chen J (2018) A ratiometric fluorescent bioprobe based on carbon dots and acridone derivate for signal amplification detection exosomal microRNA. Anal Chem 90(15):8969–8976. https://doi.org/10.1021/acs.analchem.8b01143

  53. 53.

    Xu L, Gao Y, Kuang H, Liz-Marzan LM, Xu C (2018) MicroRNA-directed intracellular self-assembly of chiral nanorod dimers. Angew Chem 57(33):10544–10548. https://doi.org/10.1002/anie.201805640

  54. 54.

    Jiang X, Tan Z, Lin L, He J, He C, Thackray BD, Zhang Y, Ye J (2018) Surface-enhanced raman nanoprobes with embedded standards for quantitative cholesterol detection. Small Methods. https://doi.org/10.1002/smtd.201800182

  55. 55.

    Zeng Y, Ren JQ, Shen AG, Hu JM (2018) Splicing nanoparticles-based “Click” SERS could aid multiplex liquid biopsy and accurate cellular imaging. J Am Chem Soc 140(34):10649–10652. https://doi.org/10.1021/jacs.8b04892

  56. 56.

    Zhao Y, Liu L, Kuang H, Wang L, Xu C (2014) SERS-active Ag@Au core–shell NP assemblies for DNA detection. RSC Adv 4(99):56052–56056. https://doi.org/10.1039/c4ra11112e

  57. 57.

    Zhang K, Wang Y, Wu M, Liu Y, Shi D, Liu B (2018) On-demand quantitative SERS bioassays facilitated by surface-tethered ratiometric probes. Chem Sci 9(42):8089–8093. https://doi.org/10.1039/c8sc03263g

  58. 58.

    Lin L, Zapata M, Xiong M, Liu Z, Wang S, Xu H, Borisov AG, Gu H, Nordlander P, Aizpurua J, Ye J (2015) Nanooptics of plasmonic nanomatryoshkas: shrinking the size of a core-shell junction to subnanometer. Nano Lett 15(10):6419–6428. https://doi.org/10.1021/acs.nanolett.5b02931

  59. 59.

    Tang L, Li S, Han F, Liu L, Xu L, Ma W, Kuang H, Li A, Wang L, Xu C (2015) SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens Bioelectron 71:7–12. https://doi.org/10.1016/j.bios.2015.04.013

  60. 60.

    Gao F, Liu L, Cui G, Xu L, Wu X, Kuang H, Xu C (2017) Regioselective plasmonic nano-assemblies for bimodal sub-femtomolar dopamine detection. Nanoscale 9(1):223–229. https://doi.org/10.1039/c6nr08264e

  61. 61.

    Wu X, Xu L, Liu L, Ma W, Yin H, Kuang H, Wang L, Xu C, Kotov NA (2013) Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J Am Chem Soc 135(49):18629–18636. https://doi.org/10.1021/ja4095445

  62. 62.

    Osberg KD, Rycenga M, Harris N, Schmucker AL, Langille MR, Schatz GC, Mirkin CA (2012) Dispersible gold nanorod dimers with sub-5 nm gaps as local amplifiers for surface-enhanced Raman scattering. Nano Lett 12(7):3828–3832. https://doi.org/10.1021/nl301793k

  63. 63.

    Li S, Xu L, Ma W, Kuang H, Wang L, Xu C (2015) Triple raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection. Small 11(28):3435–3439. https://doi.org/10.1002/smll.201403356

  64. 64.

    Shen X, Asenjo-Garcia A, Liu Q, Jiang Q, Garcia de Abajo FJ, Liu N, Ding B (2013) Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett 13(5):2128–2133. https://doi.org/10.1021/nl400538y

  65. 65.

    Kun L, Zhihong N, Nana Z, Wei L, Michael R, Eugenia K (2010) Step-growth polymerization of inorganic nanoparticles. Science 329(5988):197–200

  66. 66.

    Fang W, Jia S, Chao J, Wang L, Duan X, Liu H, Li Q, Zuo X, Wang L, Wang L, Liu N, Fan C (2019) Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. Sci Adv 5(eaau4506):1–8

  67. 67.

    Zhao S, Ma W, Xu L, Wu X, Kuang H, Wang L, Xu C (2015) Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented–AU pyramid superstructure. Biosens Bioelectron 68:593–597. https://doi.org/10.1016/j.bios.2015.01.056

  68. 68.

    Ma W, Sun M, Xu L, Wang L, Kuang H, Xu C (2013) A SERS active gold nanostar dimer for mercury ion detection. Chem Commun (Camb) 49(44):4989–4991. https://doi.org/10.1039/c3cc39087j

  69. 69.

    Qu A, Wu X, Xu L, Liu L, Ma W, Kuang H, Xu C (2017) SERS- and luminescence-active Au–Au-UCNP trimers for attomolar detection of two cancer biomarkers. Nanoscale 9(11):3865–3872. https://doi.org/10.1039/c6nr09114h

  70. 70.

    Lu Y, Ma Y, Zhang T, Yang Y, Wei L, Chen Y (2018) Monolithic 3D cross-linked polymeric graphene materials and the likes: preparation and their redox catalytic applications. J Am Chem Soc 140(37):11538–11550. https://doi.org/10.1021/jacs.8b06414

  71. 71.

    Zhang Y, Zeng GM, Tang L, Chen J, Zhu Y, He XX, He Y (2015) Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection. Anal Chem 87(2):989–996. https://doi.org/10.1021/ac503472p

  72. 72.

    Zhao Y, Yang Y, Luo Y, Yang X, Li M, Song Q (2015) Double detection of mycotoxins based on sers labels embedded Ag@Au core-shell nanoparticles. ACS Appl Mater Inter 7(39):21780–21786. https://doi.org/10.1021/acsami.5b07804

  73. 73.

    Zheng F, Ke W, Shi L, Liu H, Zhao Y (2019) Plasmonic Au–Ag janus nanoparticle engineered ratiometric surface-enhanced raman scattering aptasensor for Ochratoxin A detection. Anal Chem 91(18):11812–11820. https://doi.org/10.1021/acs.analchem.9b02469

  74. 74.

    Ma W, Xu L, de Moura AF, Wu X, Kuang H, Xu C, Kotov NA (2017) Chiral inorganic nanostructures. Chem Rev 117(12):8041–8093. https://doi.org/10.1021/acs.chemrev.6b00755

  75. 75.

    Hao C, Xu L, Ma W, Wang L, Kuang H, Xu C (2014) Assembled plasmonic asymmetric heterodimers with tailorable chiroptical response. Small 10(9):1805–1812. https://doi.org/10.1002/smll.201303755

  76. 76.

    Hao C, Xu L, Sun M, Ma W, Kuang H, Xu C (2018) Chirality on hierarchical self-assembly of Au@AuAg Yolk-Shell nanorods into core-satellite superstructures for biosensing in human cells. Adv Funct Mater. https://doi.org/10.1002/adfm.201802372

  77. 77.

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Hogele A, Simmel FC, Govorov AO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483(7389):311–314. https://doi.org/10.1038/nature10889

  78. 78.

    Sun M, Hao T, Li X, Qu A, Xu L, Hao C, Xu C, Kuang H (2018) Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice. Nat Commun 9(1):4494. https://doi.org/10.1038/s41467-018-06946-z

  79. 79.

    Yang L, Chen Y, Pan W, Wang H, Li N, Tang B (2017) Visualizing the conversion process of alcohol-induced fatty liver to steatohepatitis in vivo with a fluorescent nanoprobe. Anal Chem 89(11):6196–6201. https://doi.org/10.1021/acs.analchem.7b01144

  80. 80.

    Zhao X, Xu L, Sun M, Ma W, Wu X, Kuang H, Wang L, Xu C (2016) Gold-quantum dot core-satellite assemblies for lighting up microRNA in vitro and in vivo. Small 12(34):4662–4668. https://doi.org/10.1002/smll.201503629

  81. 81.

    Qu A, Xu L, Sun M, Liu L, Kuang H, Xu C (2017) Photoactive hybrid AuNR-Pt@Ag2S core-satellite nanostructures for near-infrared quantitive cell imaging. Adv Funct Mater 27(46):1703408. https://doi.org/10.1002/adfm.201703408

  82. 82.

    Zhao Y, Hao C, Ma W, Yong Q, Yan W, Kuang H, Wang L, Xu C (2011) Magnetic bead-based multiplex DNA sequence detection of genetically modified organisms using quantum dot-encoded silicon dioxide nanoparticles. J Phys Chem C 115(41):20134–20140. https://doi.org/10.1021/jp206443p

  83. 83.

    Xu LJ, Lei ZC, Li J, Zong C, Yang CJ, Ren B (2015) Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. J Am Chem Soc 137(15):5149–5154. https://doi.org/10.1021/jacs.5b01426

  84. 84.

    Ma W, Xu L, Wang L, Xu C, Kuang H (2019) Chirality-based biosensors. Adv Func Mater. https://doi.org/10.1002/adfm.201805512

  85. 85.

    Li A, Tang L, Song D, Song S, Ma W, Xu L, Kuang H, Wu X, Liu L, Chen X, Xu C (2016) A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale 8(4):1873–1878. https://doi.org/10.1039/c5nr08372a

  86. 86.

    Yuan A, Wu X, Li X, Hao C, Xu C, Kuang H (2019) Au@gap@AuAg nanorod side-by-side assemblies for ultrasensitive SERS detection of mercury and its transformation. Small. https://doi.org/10.1002/smll.201901958

  87. 87.

    Xu L, Yan W, Ma W, Kuang H, Wu X, Liu L, Zhao Y, Wang L, Xu C (2015) SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers. Adv Mater 27(10):1706–1711. https://doi.org/10.1002/adma.201402244

  88. 88.

    Wang Y, Wang S, Lu C, Yang X (2018) Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125. Sens Actuators B 262:9–16. https://doi.org/10.1016/j.snb.2018.01.235

  89. 89.

    Hao T, Wu X, Xu L, Liu L, Ma W, Kuang H, Xu C (2017) Ultrasensitive detection of prostate-specific antigen and thrombin based on gold-upconversion nanoparticle assembled pyramids. Small. https://doi.org/10.1002/smll.201603944

  90. 90.

    Zhao Y, Yang Y, Zhao J, Weng P, Pang Q, Song Q (2016) Dynamic chiral nanoparticle assemblies and specific chiroplasmonic analysis of cancer cells. Adv Mater 28(24):4877–4883. https://doi.org/10.1002/adma.201600369

  91. 91.

    Tang L, Li S, Xu L, Ma W, Kuang H, Wang L, Xu C (2015) Chirality-based Au@Ag nanorod dimers sensor for ultrasensitive PSA detection. ACS Appl Mater Inter 7(23):12708–12712. https://doi.org/10.1021/acsami.5b01259

  92. 92.

    Shu Y, Zheng N, Zheng A-Q, Guo T-T, Yu Y-L, Wang J-H (2019) Intracellular zinc quantification by fluorescence imaging with a FRET system. Anal Chem 91(6):4157–4163. https://doi.org/10.1021/acs.analchem.9b00018

  93. 93.

    Gao R, Xu L, Hao C, Xu C, Kuang H (2019) Circular polarized light activated chiral satellite nanoprobes for the imaging and analysis of multiple metal ions in living cells. Angew Chem Interface Ed 58(12):3913–3917. https://doi.org/10.1002/anie.201814282

  94. 94.

    Gao F, Sun M, Ma W, Wu X, Liu L, Kuang H, Xu C (2017) A singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly. Adv Mater. https://doi.org/10.1002/adma.201606864

  95. 95.

    Sun M, Xu L, Qu A, Zhao P, Hao T, Ma W, Hao C, Wen X, Colombari FM, de Moura AF, Kotov NA, Xu C, Kuang H (2018) Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat Chem 10(8):821–830. https://doi.org/10.1038/s41557-018-0083-y

Download references

Acknowledgements

This work was supported financially by the Natural Science Foundation of Jiangsu Province (BK20171136), National First-class Discipline Program of Food Science and Technology (JUFSTR20180302).

Author information

Correspondence to Yuan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “DNA Nanotechnology: From Structure to Functionality”; edited by Chunhai Fan, Yonggang Ke.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Shi, L., Kuang, H. et al. DNA-Driven Nanoparticle Assemblies for Biosensing and Bioimaging. Top Curr Chem (Z) 378, 18 (2020). https://doi.org/10.1007/s41061-020-0282-z

Download citation

Keywords

  • DNA
  • Nanoparticles
  • Assembly
  • Optical properties
  • Biosensing
  • Bioimaging