Topics in Current Chemistry

, 378:15 | Cite as

Carbon Nanotubes in Biomedicine

  • Viviana Negri
  • Jesús Pacheco-Torres
  • Daniel Calle
  • Pilar López-LarrubiaEmail author
Part of the following topical collections:
  1. Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications


Nowadays, biomaterials have become a crucial element in numerous biomedical, preclinical, and clinical applications. The use of nanoparticles entails a great potential in these fields mainly because of the high ratio of surface atoms that modify the physicochemical properties and increases the chemical reactivity. Among them, carbon nanotubes (CNTs) have emerged as a powerful tool to improve biomedical approaches in the management of numerous diseases. CNTs have an excellent ability to penetrate cell membranes, and the sp2 hybridization of all carbons enables their functionalization with almost every biomolecule or compound, allowing them to target cells and deliver drugs under the appropriate environmental stimuli. Besides, in the new promising field of artificial biomaterial generation, nanotubes are studied as the load in nanocomposite materials, improving their mechanical and electrical properties, or even for direct use as scaffolds in body tissue manufacturing. Nevertheless, despite their beneficial contributions, some major concerns need to be solved to boost the clinical development of CNTs, including poor solubility in water, low biodegradability and dispersivity, and toxicity problems associated with CNTs’ interaction with biomolecules in tissues and organs, including the possible effects in the proteome and genome. This review performs a wide literature analysis to present the main and latest advances in the optimal design and characterization of carbon nanotubes with biomedical applications, and their capacities in different areas of preclinical research.


Carbon nanotubes Biomedical research Preclinical applications Cancer Neurodegeneration Imaging Theranostic compounds Tissue engineering 



Atomic force microscopy




Blood–brain barrier


Bioluminescence imaging




Contrast agent(s)


Carbon nanotube(s)




Deoxyribonucleic acid




Electron microscopy


Fourier-transformed infrared spectroscopy






Hyaluronic acid


Magnetic resonance imaging


Multi-walled carbon nanotube(s)


Nerve growth factor


Near-infrared radiation




Polyethylene glycol


Positron emission tomography


Polo-like kinase 1


Photothermal therapy


Ribonucleic acid


Stem cells


Sodium dodecyl benzene sulfonate


Scanning electron microscopy


Small interfering ribonucleic acid


Single-photon emission computed tomography


Scanning tunneling microscopy


Single-walled carbon nanotube(s)


Transmission electron microscopy


X-ray photoelectron spectroscopy



This study was funded by grants from the Ministry of Economy, Industry and Competitivity (SAF2017-83043-R), and by the Program MULTITARGET&VIEW-CM from Community of Madrid, Spain (S2017/BMD-3688), involving contributions from FEDER and FSE funds.

Authors Contributions

Pilar López-Larrubia had the idea for the article. Viviana Negri, Jesús Pacheco-Torres, Daniel Calle, and Pilar Lopez-Larrubia performed the literature search and data analysis, drafted and critically revised the work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Ahsan MA, Jabbari V, Islam MT, Turley RS, Dominguez N, Kim H, Castro E, Hernandez-Viezcas JA, Curry ML, Lopez J, Gardea-Torresdey JL, Noveron JC (2019) Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of Bisphenol A from water. Sci Total Environ 673:306–317. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ahsan MA, Jabbari V, Imam MA, Castro E, Kim H, Curry ML, Valles-Rosales DJ, Noveron JC (2020) Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci Total Environ 698:134214. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cova CM, Zuliani A, Santiago ARP, Caballero A, Muñoz-Batista MJ, Luque R (2018) Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J Mater Chem A 6:21516–21523CrossRefGoogle Scholar
  4. 4.
    Franco A, Cebrián-García S, Rodríguez-Padrón D, Puente-Santiago AR, Muñoz-Batista MJ, Caballero A, Balu AM, Romero AA, Luque R (2018) Encapsulated laccases as effective electrocatalysts for oxygen reduction reactions. ACS Sustain Chem Eng 6:11058–11062CrossRefGoogle Scholar
  5. 5.
    Ahsan MA, Jabbari V, El-Gendy AA, Curry ML, Noveron JC (2019) Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl Surf Sci 597:142608Google Scholar
  6. 6.
    Ahsan MA, Deemer E, Fernandez-Delgado O, Wang H, Curry ML, El-Gendy AA, Noveron JC (2019) Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catal Commun 130:105753CrossRefGoogle Scholar
  7. 7.
    Ahsan MA, Fernandez-Delgado O, Deemer E, Wang H, El-Gendy AA, Curry ML, Noveron JC (2019) Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J Mol Liq 290:111059CrossRefGoogle Scholar
  8. 8.
    Ostovar S, Franco A, Puente-Santiago AR, Pinilla-de Dios M, Rodriguez-Padron D, Shaterian HR, Luque R (2018) Efficient mechanochemical bifunctional nanocatalysts for the conversion of isoeugenol to vanillin. Front Chem 6:77. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rodríguez-Padrón D, Puente-Santiago AR, Balu AM, Muñoz-Batista MJ, Luque R (2019) Environmental catalysis: present and future. ChemCatChem 11:18–38CrossRefGoogle Scholar
  10. 10.
    Pacheco-Torgal F, Diamanti MV, Nazari A, Goran-Granqvist C, Pruna A, Amirkhanian SE (2018) Nanotechnology in eco-efficient construction: materials, processes and applications. Woodhead Publishing, SawstonGoogle Scholar
  11. 11.
    Sanad MF, Shalan AE, Bazid SM, Serea ESA, Hashem EM, Nabih S, Ahsan MA (2019) A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 9:31021–31029CrossRefGoogle Scholar
  12. 12.
    Chen S, Li R, Li X, Xie J (2018) Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 132:188–213. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang Y, Chawla A, Zhang J, Esa A, Jang HL, Khademhosseini A (2019) Applications of nanotechnology for regenerative medicine; healing tissues at the nanoscale. Principles of Regenerative Medicine, pp 485–504CrossRefGoogle Scholar
  14. 14.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  15. 15.
    Simon J, Flahaut E, Golzio M (2019) Overview of carbon nanotubes for biomedical applications. Materials (Basel). CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Galano A (2010) Carbon nanotubes: promising agents against free radicals. Nanoscale 2(3):373–380PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79(7):1297–1300CrossRefGoogle Scholar
  19. 19.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680CrossRefGoogle Scholar
  20. 20.
    Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975CrossRefGoogle Scholar
  21. 21.
    Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79(8):1172–1174CrossRefGoogle Scholar
  22. 22.
    White CT, Todorov TN (1998) Carbon nanotubes as long ballistic conductors. Nature 393(6682):240–242CrossRefGoogle Scholar
  23. 23.
    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56CrossRefGoogle Scholar
  24. 24.
    Hills G, Lau C, Wright A, Fuller S, Bishop MD, Srimani T, Kanhaiya P, Ho R, Amer A, Stein Y, Murphy D, Arvind Chandrakasan A, Shulaker MM (2019) Modern microprocessor built from complementary carbon nanotube transistors. Nature 572(7771):595–602. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wan X, Dong J, Xing DY (1998) Optical properties of carbon nanotubes. Phys Rev B 58:4. CrossRefGoogle Scholar
  26. 26.
    Hone JL, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, Fisher JE (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A 74:5. CrossRefGoogle Scholar
  27. 27.
    Ardavan A, Austwick M, Benjamin SC, Briggs GAD, Dennis TJS, Ferguson A, Hasko DG, Kanai M, Khlobystov AN, Lovett BW, Morley GW, Oliver RA, Pettifor DG, Porfyrakis K, Reina JH, Rice JH, Smith JD, Taylor RA, Williams DA, Adelmann C, Mariette H, Hamers RJ (2003) Nanoscale solid-state quantum computing. Philos Trans R Soc A 361(1808):1473–1485. CrossRefGoogle Scholar
  28. 28.
    Monthioux M, Flahaut E (2007) Meta- and hybrid-CNTs: a clue for the future development of carbon nanotubes. Mater Sci Eng C 27(5):1096–1101. CrossRefGoogle Scholar
  29. 29.
    Chae S, Kim D, Lee K-j, Lee D, Kim Y-O, Jung YC, Rhee SD, Kim KR, Lee J-O, Ahn S, Koh B (2018) Encapsulation and enhanced delivery of topoisomerase I inhibitors in functionalized carbon nanotubes. ACS Omega 3(6):5938–5945. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Joseph S, Mashl RJ, Jakobsson E, Aluru NR (2003) Electrolytic transport in modified carbon nanotubes. Nano Lett 3(10):1399–1403. CrossRefGoogle Scholar
  32. 32.
    Pan X, Bao X (2011) The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res 44(8):553–562. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mirabootalebi SO, Akbari G (2017) Methods for synthesis of carbon nanotubes—reviewGoogle Scholar
  34. 34.
    Kim SWKT, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33CrossRefGoogle Scholar
  35. 35.
    Wu HC, Chang X, Liu L, Zhao Y (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem A 20:1036–1052CrossRefGoogle Scholar
  36. 36.
    Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single-walled carbon nanotubes. Chem Soc Rev 35(7):637–659. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ajayan PM, Iijima S (1993) Capillarity-induced filling of carbon nanotubes. Nature 361(6410):333–334. CrossRefGoogle Scholar
  38. 38.
    Dujardin E, Ebbesen TW, Hiura H, Tanigaki K (1994) Capillarity and wetting of carbon nanotubes. Science 265(5180):1850–1852. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Campo J, Piao Y, Lam S, Stafford CM, Streit JK, Simpson JR, Hight Walker AR, Fagan JA (2016) Enhancing single-wall carbon nanotube properties through controlled endohedral filling. Nanoscale Horizons 1(4):317–324. CrossRefGoogle Scholar
  40. 40.
    Li J, Yap SQ, Chin CF, Tian Q, Yoong SL, Pastorin G, Ang WH (2012) Platinum(iv) prodrugs entrapped within multiwalled carbon nanotubes: selective release by chemical reduction and hydrophobicity reversal. Chem Sci 3(6):2083–2087. CrossRefGoogle Scholar
  41. 41.
    Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jeon IY, Chang DW, Kumar NA, Baek JB (2011) Functionalization of carbon nanotubes. Carbon Nanotubes Polymer Nanocomposites. CrossRefGoogle Scholar
  43. 43.
    Jha N, Ramesh P, Bekyarova E, Tian XJ, Wang FH, Itkis ME, Haddon RC (2013) Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 Technical Targets. Sci Rep-Uk. CrossRefGoogle Scholar
  44. 44.
    Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159. CrossRefGoogle Scholar
  45. 45.
    Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859CrossRefGoogle Scholar
  46. 46.
    Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38(8):2214–2230. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 59(18):8149–8167. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hamwi A, Alvergnat H, Bonnamy S, Beguin F (1997) Fluorination of carbon nanotubes. Carbon 35(6):723–728CrossRefGoogle Scholar
  49. 49.
    Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296(1–2):188–194. CrossRefGoogle Scholar
  50. 50.
    Kelly KF, Chiang IW, Mickelson ET, Hauge RH, Margrave JL, Wang X, Scuseria GE, Radloff C, Halas NJ (1999) Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. Chem Phys Lett 313(3–4):445–450. CrossRefGoogle Scholar
  51. 51.
    Touhara H, Inahara J, Mizuno T, Yokoyama Y, Okanao S, Yanagiuch K, Mukopadhyay I, Kawasaki S, Okino F, Shirai H, Xu WH, Kyotani T, Tomita A (2002) Property control of new forms of carbon materials by fluorination. J Fluorine Chem 114(2):181–188. CrossRefGoogle Scholar
  52. 52.
    Stevens JL, Huang AY, Peng H, Chiang IW, Khabashesku VN, Margrave JL (2003) Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett 3(3):331–336. CrossRefGoogle Scholar
  53. 53.
    Zhang L, Kiny VU, Peng H, Zhu J, Lobo RFM, Margrave JL, Khabashesku VN (2004) Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties. Chem Mater 16(11):2055–2061. CrossRefGoogle Scholar
  54. 54.
    Boul PJ, Liu J, Mickelson ET, Huffman CB, Ericson LM, Chiang IW, Smith KA, Colbert DT, Hauge RH, Margrave JL, Smalley RE (1999) Reversible sidewall functionalization of buckytubes. Chem Phys Lett 310(3–4):367–372CrossRefGoogle Scholar
  55. 55.
    Saini RK, Chiang IW, Peng HQ, Smalley RE, Billups WE, Hauge RH, Margrave JL (2003) Covalent sidewall functionalization of single-wall carbon nanotubes. J Am Chem Soc 125(12):3617–3621PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W (2002) Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr Appl Phys 2(2):107–111CrossRefGoogle Scholar
  57. 57.
    Amirian M, Nabipour Chakoli A, Sui JH, Cai W (2012) Enhanced mechanical and photoluminescence effect of poly(l-lactide) reinforced with functionalized multiwalled carbon nanotubes. Polym Bull 68(6):1747–1763. CrossRefGoogle Scholar
  58. 58.
    Chakoli AN, He JM, Huang YD (2018) Collagen/aminated MWCNTs nanocomposites for biomedical applications. Mater Today Commun 15:128–133. CrossRefGoogle Scholar
  59. 59.
    Graupner R, Abraham J, Wunderlich D, Vencelová A, Lauffer P, Röhrl J, Hundhausen M, Ley L, Hirsch A (2006) Nucleophilic–alkylation–reoxidation: a functionalization sequence for single-wall carbon nanotubes. J Am Chem Soc 128(20):6683–6689. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dyke CA, Stewart MP, Maya F, Tour JM (2004) Diazonium-based functionalization of carbon nanotubes: XPS and GC–MS analysis and mechanistic implications. Synlett 1:155–160. CrossRefGoogle Scholar
  61. 61.
    Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123(27):6536–6542. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan H, Kittrell C, Hauge RH, Tour JM, Smalley RE (2003) Electronic structure control of single-walled carbon nanotube functionalization. Science 301(5639):1519–1522. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3(9):1215–1218. CrossRefGoogle Scholar
  64. 64.
    Leventis HC, Wildgoose GG, Davies IG, Jiang L, Jones TG, Compton RG (2005) Multiwalled carbon nanotubes covalently modified with fast black K. ChemPhysChem 6(4):590–595. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13(11):3823–3824. CrossRefGoogle Scholar
  66. 66.
    Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35(23):8825–8830. CrossRefGoogle Scholar
  67. 67.
    Hudson JL, Casavant MJ, Tour JM (2004) Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. J Am Chem Soc 126(36):11158–11159. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dyke CA, Tour JM (2003) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125(5):1156–1157. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kooi SE, Schlecht U, Burghard M, Kern K (2002) Electrochemical modification of single carbon nanotubes. Angew Chem Int Ed Engl 41(8):1353–1355PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Balasubramanian K, Sordan R, Burghard M, Kern K (2004) A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett 4(5):827–830. CrossRefGoogle Scholar
  71. 71.
    Delgado JL, de la Cruz P, Langa F, Urbina A, Casado J, Navarrete JTL (2004) Microwave-assisted sidewall functionalization of single-wall carbon nanotubes by Diels–Alder cycloaddition. Chem Commun 15:1734–1735CrossRefGoogle Scholar
  72. 72.
    Araújo RF, Proença MF, Silva CJ, Castro TG, Melle-Franco M, Paiva MC, Villar-Rodil S, Tascón JMD (2016) Grafting of adipic anhydride to carbon nanotubes through a Diels–Alder cycloaddition/oxidation cascade reaction. Carbon 98:421–431. CrossRefGoogle Scholar
  73. 73.
    Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124(5):760–761. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 24:3050–3051. CrossRefGoogle Scholar
  75. 75.
    Lu X, Tian F, Xu X, Wang NQ, Zhang Q (2003) Theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n, n) armchair single-wall carbon nanotubes. J Am Chem Soc 125(34):10459–10464. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Yao ZL, Braidy N, Botton GA, Adronov A (2003) Polymerization from the surface of single-walled carbon nanotubes—preparation and characterization of nanocomposites. J Am Chem Soc 125(51):16015–16024. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Calcio Gaudino E, Tagliapietra S, Martina K, Barge A, Lolli M, Terreno E, Lembo D, Cravotto G (2014) A novel SWCNT platform bearing DOTA and β-cyclodextrin units. “One shot” multidecoration under microwave irradiation. Org Biomol Chem 12(26):4708–4715. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Tobias G, Mendoza E, Ballesteros B (2012) Functionalization of Carbon Nanotubes. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer Netherlands, Dordrecht, pp 911–919. Google Scholar
  79. 79.
    Zhang ZY, Xu XC (2015) Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4. Appl Surf Sci 346:520–527. CrossRefGoogle Scholar
  80. 80.
    Gonzalez-Guerrero AB, Mendoza E, Pellicer E, Alsina F, Fernandez-Sanchez C, Lechuga LM (2008) Discriminating the carboxylic groups from the total acidic sites in oxidized multi-wall carbon nanotubes by means of acid-base titration. Chem Phys Lett 462(4–6):256–259. CrossRefGoogle Scholar
  81. 81.
    Riggs JE, Guo ZX, Carroll DL, Sun YP (2000) Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc 122(24):5879–5880CrossRefGoogle Scholar
  82. 82.
    Sun YP, Huang WJ, Lin Y, Fu KF, Kitaygorodskiy A, Riddle LA, Yu YJ, Carroll DL (2001) Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem Mater 13(9):2864–2869CrossRefGoogle Scholar
  83. 83.
    Chen J, Hamon MA, Hu H, Chen YS, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282(5386):95–98PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC (2001) Dissolution of full-length single-walled carbon nanotubes. J Phys Chem B 105(13):2525–2528CrossRefGoogle Scholar
  85. 85.
    Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB (1998) Fullerene pipes. Science 280(5367):1253–1256PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Bourlinos AB, Georgakilas V, Tzitzios V, Boukos N, Herrera R, Giannelis ER (2006) Functionalized carbon nanotubes: synthesis of meltable and amphiphilic derivatives. Small 2(10):1188–1191PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Samori C, Sainz R, Menard-Moyon C, Toma FM, Venturelli E, Singh P, Ballestri M, Prato M, Bianco A (2010) Potentiometric titration as a straightforward method to assess the number of functional groups on shortened carbon nanotubes. Carbon 48(9):2447–2454CrossRefGoogle Scholar
  88. 88.
    Calle D, Negri V, Munuera C, Mateos L, Touriño IL, Viñegla PR, Ramírez MO, García-Hernández M, Cerdán S, Ballesteros P (2018) Magnetic anisotropy of functionalized multi-walled carbon nanotube suspensions. Carbon 131:229–237. CrossRefGoogle Scholar
  89. 89.
    Isaac KM, Sabaraya IV, Ghousifam N, Das D, Pekkanen AM, Romanovicz DK, Long TE, Saleh NB, Rylander MN (2018) Functionalization of single-walled carbon nanohorns for simultaneous fluorescence imaging and cisplatin delivery in vitro. Carbon 138:309–318. CrossRefGoogle Scholar
  90. 90.
    Chen RJ, Zhang YG, Wang DW, Dai HJ (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Barry NPE, Therrien B (2016) Pyrene: the guest of honor, chapter 13. In: Sadjadi S (ed) Organic nanoreactors. Academic Press, Boston, pp 421–461. CrossRefGoogle Scholar
  92. 92.
    Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4(6):2911–2934. CrossRefGoogle Scholar
  93. 93.
    Zhu J, Yudasaka M, Zhang MF, Kasuya D, Iijima S (2003) Surface modification approach to the patterned assembly of single-walled carbon nanomaterials. Nano Lett 3(9):1239–1243CrossRefGoogle Scholar
  94. 94.
    Zhang T, Ge Y, Wang X, Chen J, Huang X, Liao Y (2017) Polymeric ruthenium porphyrin-functionalized carbon nanotubes and graphene for levulinic ester transformations into γ-valerolactone and pyrrolidone derivatives. ACS Omega 2(7):3228–3240. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Li H, Zhou B, Lin Y, Gu L, Wang W, Fernando KAS, Kumar S, Allard LF, Sun Y-P (2004) Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J Am Chem Soc 126(4):1014–1015. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Hu CY, Xu YJ, Duo SW, Zhang RF, Li MS (2009) Non-covalent functionalization of carbon nanotubes with surfactants and polymers. J Chin Chem Soc-Taip 56(2):234–239. CrossRefGoogle Scholar
  97. 97.
    Vardharajula S, Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis VA, Singh SR (2012) Functionalized carbon nanotubes: biomedical applications. Int J Nanomed 7:5361–5374. CrossRefGoogle Scholar
  98. 98.
    Zhang LW, Zeng L, Barron AR, Monteiro-Riviere NA (2007) Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol 26(2):103–113. CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Sadegh H, Shahryari-ghoshekandi R (2015) Functionalization of carbon nanotubes and its application in nanomedicine: a review. Nanomed J 2(4):231–248. CrossRefGoogle Scholar
  100. 100.
    Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46. CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3(10):1379–1382. CrossRefGoogle Scholar
  102. 102.
    Niezabitowska E, Smith J, Prestly MR, Akhtar R, von Aulock Felix W, Lavallée Y, Ali-Boucetta H, McDonald TO (2018) Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect ratios with potential applications in drug delivery. RSC Adv 8(30):16444–16454. CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Negri V, Cerpa A, Lopez-Larrubia P, Nieto-Charques L, Cerdan S, Ballesteros P (2010) Nanotubular paramagnetic probes as contrast agents for magnetic resonance imaging based on the diffusion tensor. Angew Chem Int Ed 49(10):1813–1815CrossRefGoogle Scholar
  104. 104.
    Cerpa A, Kober M, Calle D, Negri V, Gavira JM, Hernanz A, Briones F, Cerdan S, Ballesteros P (2013) Single-walled carbon nanotubes as anisotropic relaxation probes for magnetic resonance imaging. Medchemcomm 4(4):669–672CrossRefGoogle Scholar
  105. 105.
    Bharti A, Cheruvally G (2018) Surfactant assisted synthesis of Pt-Pd/MWCNT and evaluation as cathode catalyst for proton exchange membrane fuel cell. Int J Hydrogen Energy 43(31):14729–14741. CrossRefGoogle Scholar
  106. 106.
    Yasujima R, Yasueda K, Horiba T, Komaba S (2018) Multi-enzyme immobilized anodes utilizing maltose fuel for biofuel cell applications. ChemElectroChem 5(16):2271–2278. CrossRefGoogle Scholar
  107. 107.
    Martínez-Paz P, Negri V, Esteban-Arranz A, Martínez-Guitarte JL, Ballesteros P, Morales M (2019) Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. Aquat Toxicol 209:42–48. CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 108(41):16968–16973. CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Zhao X, Liu R, Chi Z, Teng Y, Qin P (2010) New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies. J Phys Chem B 114(16):5625–5631. CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Yi CQ, Qi SJ, Zhang DW, Yang MS (2010) Covalent conjugation of multi-walled carbon nanotubes with proteins. Methods Mol Biol 625:9–17. CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Niu S-Y, Li Q-Y, Ren R, Hu K-C (2010) DNA/single-walled carbon nanotubes based fluorescence detection of Hg2+. Anal Lett 43(15):2432–2439. CrossRefGoogle Scholar
  112. 112.
    Tran TL, Nguyen TT, Huyen Tran TT, Chu VT, Thinh Tran Q, Tuan Mai A (2017) Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor. Phys E 93:83–86. CrossRefGoogle Scholar
  113. 113.
    Wu Y, Hudson JS, Lu Q, Moore JM, Mount AS, Rao AM, Alexov E, Ke PC (2006) Coating single-walled carbon nanotubes with phospholipids. J Phys Chem B 110(6):2475–2478. CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Liu Z, Tabakman SM, Chen Z, Dai H (2009) Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 4(9):1372–1382. CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Zhou XJ, Moran-Mirabal JM, Craighead HG, McEuen PL (2007) Supported lipid bilayer/carbon nanotube hybrids. Nat Nanotechnol 2(3):185–190. CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Yadav P, Rastogi V, Kumar Mishra A, Verma A (2014) Carbon nanotube: a versatile carrier for various biomedical applications. Drug Deliv Lett 4(2):156–169CrossRefGoogle Scholar
  117. 117.
    Aqel A, Abou El-Nour KMM, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5(1):1–23. CrossRefGoogle Scholar
  118. 118.
    Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118. CrossRefGoogle Scholar
  119. 119.
    Rüther MG, Frehill F, O’Brien JE, Minett AI, Blau WJ, Vos JG, in het Panhuis M (2004) Characterization of covalent functionalized carbon nanotubes. J Phys Chem B 108(28):9665–9668. CrossRefGoogle Scholar
  120. 120.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758. CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Jorio A, Fantini C, Dantas MSS, Pimenta MA, Souza Filho AG, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg BB, Saito R (2002) Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys Rev B 66(11):115411. CrossRefGoogle Scholar
  122. 122.
    Henrard L, Popov VN, Rubio A (2001) Influence of packing on the vibrational properties of infinite and finite bundles of carbon nanotubes. Phys Rev B 64(20):205403. CrossRefGoogle Scholar
  123. 123.
    Henrard L, Hernández E, Bernier P, Rubio A (1999) van der Waals interaction in nanotube bundles: consequences on vibrational modes. Phys Rev B 60(12):R8521–R8524. CrossRefGoogle Scholar
  124. 124.
    Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396(3):1003–1014. CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Umemura K, Izumi K, Oura S (2016) Probe microscopic studies of DNA molecules on carbon nanotubes. Nanomaterials (Basel). CrossRefGoogle Scholar
  126. 126.
    Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912. CrossRefGoogle Scholar
  127. 127.
    Meunier V, Lambin P (2004) Scanning tunnelling microscopy of carbon nanotubes. Philos Trans A Math Phys Eng Sci 362(1823):2187–2203. CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Bychko I, Strizhak P (2018) Carbon nanotubes catalytic activity in the ethylene hydrogenation. Fullerenes Nanotubes Carbon Nanostruct 26(12):804–809. CrossRefGoogle Scholar
  129. 129.
    Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43(1):153–161. CrossRefGoogle Scholar
  130. 130.
    Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514. CrossRefGoogle Scholar
  131. 131.
    Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Salvetat J-P, Bonard J-M, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260. CrossRefGoogle Scholar
  133. 133.
    Chłopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Béguin F (2006) In vitro studies of carbon nanotubes biocompatibility. Carbon 44(6):1106–1111. CrossRefGoogle Scholar
  134. 134.
    Fernandes LF, Bruch GE, Massensini AR, Frezard F (2018) Recent advances in the therapeutic and diagnostic use of liposomes and carbon nanomaterials in ischemic stroke. Front Neurosci 12:453. CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Tilmaciu CM, Morris MC (2015) Carbon nanotube biosensors. Front Chem 3:59. CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Pasinszki T, Krebsz M, Tung TT, Losic D (2017) Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors (Basel). CrossRefPubMedCentralGoogle Scholar
  137. 137.
    Zhou Y, Fang Y, Ramasamy RP (2019) Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors (Basel). CrossRefPubMedCentralGoogle Scholar
  138. 138.
    Song CK, Oh E, Kang MS, Shin BS, Han SY, Jung M, Lee ES, Yoon SY, Sung MM, Ng WB, Cho NJ, Lee H (2018) Fluorescence-based immunosensor using three-dimensional CNT network structure for sensitive and reproducible detection of oral squamous cell carcinoma biomarker. Anal Chim Acta 1027:101–108. CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Qian P, Qin Y, Lyu Y, Li Y, Wang L, Wang S, Liu Y (2019) A hierarchical cobalt/carbon nanotube hybrid nanocomplex-based ratiometric fluorescent nanosensor for ultrasensitive detection of hydrogen peroxide and glucose in human serum. Anal Bioanal Chem 411(8):1517–1524. CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Holzinger M, Baur J, Haddad R, Wang X, Cosnier S (2011) Multiple functionalization of single-walled carbon nanotubes by dip coating. Chem Commun 47(8):2450–2452. CrossRefGoogle Scholar
  141. 141.
    Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang YL, Wang Q (2006) Carbon nanotube DNA sensor and sensing mechanism. Nano Lett 6(8):1632–1636. CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Lee J, Morita M, Takemura K, Park EY (2018) A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens Bioelectron 102:425–431. CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Chen Y, Guo S, Zhao M, Zhang P, Xin Z, Tao J, Bai L (2018) Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy. Biosens Bioelectron 119:215–220. CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Nouri M, Meshginqalam B, Sahihazar MM, Sheydaie Pour Dizaji R, Ahmadi MT, Ismail R (2018) Experimental and theoretical investigation of sensing parameters in carbon nanotube-based DNA sensor. IET Nanobiotechnol 12(8):1125–1129. CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Sun Y, Peng Z, Li H, Wang Z, Mu Y, Zhang G, Chen S, Liu S, Wang G, Liu C, Sun L, Man B, Yang C (2019) Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization. Biosens Bioelectron 137:255–262. CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Gong H, Peng R, Liu Z (2013) Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Deliv Rev 65(15):1951–1963. CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Kuznik N, Tomczyk MM (2016) Multiwalled carbon nanotube hybrids as MRI contrast agents. Beilstein J Nanotechnol 7:1086–1103. CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Gao Y (2018) Carbon nano-allotrope/magnetic nanoparticle hybrid nanomaterials as T2 contrast agents for magnetic resonance imaging applications. J Funct Biomater. CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Ania Servant IJ, Bussy Cyrill, Fabbro Chiara, da Ros Tatiana, Pach Elzbieta, Belen Ballesteros MP, Nicolay Klaas, Kostarelos Kostas (2016) Gadolinium-functionalised multi-walled carbon nanotubes as a T1 contrast agent for MRI cell labelling and tracking. Carbon 97:8Google Scholar
  150. 150.
    Mehri-Kakavand G, Hasanzadeh H, Jahanbakhsh R, Abdollahi M, Nasr R, Bitarafan-Rajabi A, Jadidi M, Darbandi-Azar A, Emadi A (2019) Gdn (3 +)@CNTs-PEG versus Gadovist(R): in vitro assay. Oman Med J 34(2):147–155. CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Moghaddam SE, Hernandez-Rivera M, Zaibaq NG, Ajala A, da Graca Cabreira-Hansen M, Mowlazadeh-Haghighi S, Willerson JT, Perin EC, Muthupillai R, Wilson LJ (2018) A new high-performance gadonanotube-polymer hybrid material for stem cell labeling and tracking by MRI. Contrast Media Mol Imaging 2018:2853736. CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Antaris AL, Yaghi OK, Hong G, Diao S, Zhang B, Yang J, Chew L, Dai H (2015) Single chirality (6,4) single-walled carbon nanotubes for fluorescence imaging with silicon detectors. Small 11(47):6325–6330. CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Yudasaka M, Yomogida Y, Zhang M, Tanaka T, Nakahara M, Kobayashi N, Okamatsu-Ogura Y, Machida K, Ishihara K, Saeki K, Kataura H (2017) Near-infrared photoluminescent carbon nanotubes for imaging of brown fat. Sci Rep UK 7:44760. CrossRefGoogle Scholar
  154. 154.
    Kim J-W, Galanzha EI, Shashkov EV, Moon H-M, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4(10):688–694. CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z (2014) Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater 26(32):5646–5652. CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C, Rey D, Mendenhall J, Batt CA, Njardarson JT, Scheinberg DA (2007) PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One 2(9):e907–e907. CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Georgin D, Czarny B, Botquin M, Mayne-L’Hermite M, Pinault M, Bouchet-Fabre B, Carriere M, Poncy J-L, Chau Q, Maximilien R, Dive V, Taran F (2009) Preparation of 14C-labeled multiwalled carbon nanotubes for biodistribution investigations. J Am Chem Soc 131(41):14658–14659. CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhaoc Y (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4(8):1019–1024. CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Guo J, Zhang X, Li Q, Li W (2007) Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 34(5):579–583. CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Al-Jamal KT, Nunes A, Methven L, Ali-Boucetta H, Li S, Toma FM, Herrero MA, Al-Jamal WT, ten Eikelder HMM, Foster J, Mather S, Prato M, Bianco A, Kostarelos K (2012) Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew Chem Int Ed 51(26):6389–6393. CrossRefGoogle Scholar
  162. 162.
    Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K (2019) Advanced biomedical applications of carbon nanotube. Mater Sci Eng C Mater Biol Appl 100:616–630. CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X (2019) Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev. CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Mohajeri M, Behnam B, Sahebkar A (2018) Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. J Cell Physiol 234(1):298–319. CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Rawal S, Patel MM (2019) Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 301:76–109. CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Liu D, Zhang Q, Wang J, Fan L, Zhu W, Cai D (2019) Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie 74(2):83–90. CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Kam NWS, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127(36):12492–12493. CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Taghavi S, Nia AH, Abnous K, Ramezani M (2017) Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int J Pharm 516(1):301–312. CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Guo C, Al-Jamal WT, Toma FM, Bianco A, Prato M, Al-Jamal KT, Kostarelos K (2015) Design of cationic multiwalled carbon nanotubes as efficient siRNA vectors for lung cancer xenograft eradication. Bioconjug Chem 26(7):1370–1379. CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine Nanotechnol Biol Med 4(3):183–200. CrossRefGoogle Scholar
  172. 172.
    Son KH, Hong JH, Lee JW (2016) Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomed 11:5163–5185. CrossRefGoogle Scholar
  173. 173.
    Guo Q, Shen XT, Li YY, Xu SQ (2017) Carbon nanotubes-based drug delivery to cancer and brain. J Huazhong Univ Sci Technol Med Sci 37(5):635–641. CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3(11):3707–3713. CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Needa AV, Carole D, Patrick M, Paul H, Robert EH, Joel S, Ricardo PS, Daniel ER, Roger GH (2018) Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology 29(3):035101CrossRefGoogle Scholar
  176. 176.
    Shiue RJ, Gao Y, Tan C, Peng C, Zheng J, Efetov DK, Kim YD, Hone J, Englund D (2019) Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nat Commun 10(1):109. CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Xu Y, Shan Y, Cong H, Shen Y, Yu B (2018) Advanced carbon-based nanoplatforms combining drug delivery and thermal therapy for cancer treatment. Curr Pharm Des 24(34):4060–4076. CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Wang L, Shi J, Zhang H, Li H, Gao Y, Wang Z, Wang H, Li L, Zhang C, Chen C, Zhang Z, Zhang Y (2013) Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials 34(1):262–274. CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Kafa H, Wang JT-W, Rubio N, Venner K, Anderson G, Pach E, Ballesteros B, Preston JE, Abbott NJ, Al-Jamal KT (2015) The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 53:437–452. CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Kafa H, Wang JT-W, Rubio N, Klippstein R, Costa PM, Hassan HAFM, Sosabowski JK, Bansal SS, Preston JE, Abbott NJ, Al-Jamal KT (2016) Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood–brain barrier in vitro and in vivo. J Control Release 225:217–229. CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Wang JTW, Rubio N, Kafa H, Venturelli E, Fabbro C, Ménard-Moyon C, Da Ros T, Sosabowski JK, Lawson AD, Robinson MK, Prato M, Bianco A, Festy F, Preston JE, Kostarelos K, Al-Jamal KT (2016) Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: spatial to ultra-structural analyses. J Control Release 224:22–32. CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Pedro Miguel Costa JT-WW, Morfin Jean-François, Khanum Tamanna, To Wan, Sosabowski Jane, Tóth Eva, Al-Jamal Khuloud T (2018) Functionalised carbon nanotubes enhance brain delivery of amyloid-targeting Pittsburgh compound B (PiB)-derived ligands. Nanotheranostics 2(2):168–183. CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B (2017) Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: a preclinical evidence. Int J Pharm 530(1):263–278. CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R (2017) Nerve growth factor-carbon nanotube complex exerts prolonged protective effects in an in vitro model of ischemic stroke. Life Sci 179:15–22. CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Fiorito S, Russier J, Salemme A, Soligo M, Manni L, Krasnowska E, Bonnamy S, Flahaut E, Serafino A, Togna GI, Marlier LNJL, Togna AR (2018) Switching on microglia with electro-conductive multi walled carbon nanotubes. Carbon 129:572–584. CrossRefGoogle Scholar
  186. 186.
    Lee HJ, Park J, Yoon OJ, Kim HW, Lee DY, Kim DH, Lee WB, Lee N-E, Bonventre JV, Kim SS (2011) Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotechnol 6(2):121–125. CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Cellot GLM, Scaini D, Rauti R, Bosi S, Prato M, Gandolfi S, Ballerini L (2017) Successful regrowth of retinal neurons when cultured interfaced to carbon nanotube platforms. J Biomed Nanotechnol 13(5):559–567. CrossRefGoogle Scholar
  188. 188.
    Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Hamidieh A-A, Amani A, Farzamfar S, Ai J (2018) Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled-releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit. J Biomed Mater Res B Appl Biomater 106(4):1463–1476. CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Xue X, Yang J-Y, He Y, Wang L-R, Liu P, Yu L-S, Bi G-H, Zhu M-M, Liu Y-Y, Xiang R-W, Yang X-T, Fan X-Y, Wang X-M, Qi J, Zhang H-J, Wei T, Cui W, Ge G-L, Xi Z-X, Wu C-F, Liang X-J (2016) Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nat Nanotechnol 11(7):613–620. CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Saliev T (2019) The advances in biomedical applications of carbon nanotubes. C 5:22. CrossRefGoogle Scholar
  191. 191.
    Mashal A, Sitharaman B, Li X, Avti PK, Sahakian AV, Booske JH, Hagness SC (2010) Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: enhanced dielectric and heating response of tissue-mimicking materials. IEEE Trans Biomed Eng 57(8):1831–1834. CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Al Faraj A, Shaik AS, Ratemi E, Halwani R (2016) Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J Control Release 225:240–251. CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Zhang M, Wang W, Wu F, Yuan P, Chi C, Zhou N (2017) Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon 123:70–83. CrossRefGoogle Scholar
  194. 194.
    Hou L, Yang X, Ren J, Wang Y, Zhang H, Feng Q, Shi Y, Shan X, Yuan Y, Zhang Z (2016) A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Int J Nanomed 11:607–624. CrossRefGoogle Scholar
  195. 195.
    Zhang M, Wang Wentao, Wu Fan, Yuan Ping, Chi Cheng, Zhou Ninglin (2017) Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon 123:14. CrossRefGoogle Scholar
  196. 196.
    Wang X, Wang C, Cheng L, Lee ST, Liu Z (2012) Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc 134(17):7414–7422. CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Zhao H, Chao Y, Liu J, Huang J, Pan J, Guo W, Wu J, Sheng M, Yang K, Wang J, Liu Z (2016) Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics 6(11):1833–1843. CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 5(6):1107–1110. CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerini L (2007) Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci 27(26):6931–6936. CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Ren J, Xu Q, Chen X, Li W, Guo K, Zhao Y, Wang Q, Zhang Z, Peng H, Li Y-G (2017) Superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues. Adv Mater 29(44):1702713. CrossRefGoogle Scholar
  201. 201.
    Silva E, Vasconcellos LMRd, Rodrigues BVM, dos Santos DM, Campana-Filho SP, Marciano FR, Webster TJ, Lobo AO (2017) PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Mater Sci Eng C 73:31–39. CrossRefGoogle Scholar
  202. 202.
    Gutiérrez-Hernández JM, Escobar-García DM, Escalante A, Flores H, González FJ, Gatenholm P, Toriz G (2017) In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Mater Sci Eng C 75:445–453. CrossRefGoogle Scholar
  203. 203.
    Lima MD, Hussain MW, Spinks GM, Naficy S, Hagenasr D, Bykova JS, Tolly D, Baughman RH (2015) Efficient, absorption-powered artificial muscles based on carbon nanotube hybrid yarns. Small 11(26):3113–3118. CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Liu ZF, Fang S, Moura FA, Ding JN, Jiang N, Di J, Zhang M, Lepro X, Galvao DS, Haines CS, Yuan NY, Yin SG, Lee DW, Wang R, Wang HY, Lv W, Dong C, Zhang RC, Chen MJ, Yin Q, Chong YT, Zhang R, Wang X, Lima MD, Ovalle-Robles R, Qian D, Lu H, Baughman RH (2015) Stretchy electronics. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 349(6246):400–404. CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, Ahmad S, Nair M (2018) Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv Healthc Mater 7(9):e1701213. CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkhah M, Khabiry M, Azize M, Kong J, Wan KT, Palacios T, Dokmeci MR, Bae H, Tang XS, Khademhosseini A (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7(3):2369–2380. CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Joddar B, Garcia E, Casas A, Stewart CM (2016) Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep 6:32456. CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Sun H, Zhou J, Huang Z, Qu L, Lin N, Liang C, Dai R, Tang L, Tian F (2017) Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Int J Nanomed 12:3109–3120. CrossRefGoogle Scholar
  209. 209.
    Roshanbinfar K, Mohammadi Z, Sheikh-Mahdi Mesgar A, Dehghan MM, Oommen OP, Hilborn J, Engel FB (2019) Carbon nanotube doped pericardial matrix-derived electroconductive biohybrid hydrogel for cardiac tissue engineering. Biomater Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Lee JR, Ryu S, Kim S, Kim BS (2015) Behaviors of stem cells on carbon nanotube. Biomater Res 19:3. CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Jan E, Kotov NA (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7(5):1123–1128. CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Chao TI, Xiang S, Chen CS, Chin WC, Nelson AJ, Wang C, Lu J (2009) Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun 384(4):426–430. CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Namgung S, Kim T, Baik KY, Lee M, Nam JM, Hong S (2011) Fibronectin-carbon-nanotube hybrid nanostructures for controlled cell growth. Small 7(1):56–61. CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Lichtenstein MP, Carretero NM, Perez E, Pulido-Salgado M, Moral-Vico J, Sola C, Casan-Pastor N, Sunol C (2018) Biosafety assessment of conducting nanostructured materials by using co-cultures of neurons and astrocytes. Neurotoxicology 68:115–125. CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Ramanathan M, Patil M, Epur R, Yun Y, Shanov V, Schulz M, Heineman WR, Datta MK, Kumta PN (2016) Gold-coated carbon nanotube electrode arrays: immunosensors for impedimetric detection of bone biomarkers. Biosens Bioelectron 77:580–588. CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41(1):60–68. CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Mazzaglia A, Scala A, Sortino G, Zagami R, Zhu Y, Sciortino MT, Pennisi R, Pizzo MM, Neri G, Grassi G, Piperno A (2018) Intracellular trafficking and therapeutic outcome of multiwalled carbon nanotubes modified with cyclodextrins and polyethylenimine. Colloids Surf B Biointerfaces 163:55–63. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de Biotecnología y Farmacia, Facultad de Ciencias BiomédicasUniversidad Europea de MadridVillaviciosa de OdónSpain
  2. 2.Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Laboratorio de Imagen MédicaHospital Universitario Gregorio MarañónMadridSpain
  4. 4.Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAMMadridSpain

Personalised recommendations