Advertisement

Topics in Current Chemistry

, 378:13 | Cite as

DNA–Iron Oxide Nanoparticles Conjugates: Functional Magnetic Nanoplatforms in Biomedical Applications

  • José Raúl Sosa-Acosta
  • Claudia Iriarte-Mesa
  • Greter A. Ortega
  • Alicia M. Díaz-GarcíaEmail author
Review
Part of the following topical collections:
  1. Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications

Abstract

The use of magnetic nanoparticles (MNPs), such as iron oxide nanoparticles (IONPs), in biomedicine is considered to be a valuable alternative to the more traditional materials due to their chemical stability, cost-effectiveness, surface functionalization, and the possibility to selectively attach and transport targeted species to the desired location under a magnetic field. One of the many main applications of MNPs is DNA separation, which enables genetic material manipulation; consequently, MNPs are used in numerous biotechnological methods, such as gene transfection and molecular recognition systems. In addition, the interaction between the surfaces of MNPs and DNA molecules and the magnetic nature of the resulting composite have facilitated the development of safe and effective gene delivery vectors to treat significant diseases, such as cancer and neurological disorders. Furthermore, the special recognition properties of nucleic acids based on the binding capacity of DNA and the magnetic behavior of the nanoparticles allowing magnetic separation and concentration of analytes have led to the development of biosensors and diagnostic assays; however, both of these applications face important challenges in terms of the improvement of selective nanocarriers and biosensing capacity. In this review, we discuss some aspects of the properties and surface functionalization of MNPs, the interactions between DNA and IONPs, the preparation of DNA nanoplatforms and their biotechnological applications, such as the magnetic separation of DNA, magnetofection, preparation of DNA vaccines, and molecular recognition tools.

Keywords

Magnetic nanoparticles DNA conjugation Nucleic acid separation DNA-based therapeutics 

Abbreviations

APTES

(3-Aminopropyl) triethoxysilane

CuAAC

Cu(I)-catalyzed azide-alkyne cycloaddition

IONPs

Iron oxide nanoparticles

MNPs

Magnetic nanoparticles

ODN

Oligonucleotide

PAMAM

Polyamidoamine dendrimers

PEG

Polyethylene glycol

PEI

Polyethylenimine

pHEMA

Poly(2-hydroxyethyl methacrylate)

PNA

4-Pyridyldithiol-derivatized peptide nucleic acid

siRNAs

Small interfering RNAs

ssDNA

Single-stranded DNA

ssODN

Single-stranded oligonucleotide

TEOS

Tetraethyl orthosilane

TMOS

Tetramethyl orthosilane

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Jeevanandam J, Barhoum A, Chan YS et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074.  https://doi.org/10.3762/bjnano.9.98 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ahsan MA, Jabbari V, Islam MT et al (2019) Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of Bisphenol A from water. Sci Total Environ 673:306–317.  https://doi.org/10.1016/j.scitotenv.2019.03.219 CrossRefPubMedGoogle Scholar
  3. 3.
    Ahsan MA, Jabbari V, Imam MA et al (2020) Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci Total Environ 698:134214.  https://doi.org/10.1016/j.scitotenv.2019.134214 CrossRefPubMedGoogle Scholar
  4. 4.
    Ahsan MA, Deemer E, Fernandez-Delgado O et al (2019) Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catal Commun 130:105753.  https://doi.org/10.1016/j.catcom.2019.105753 CrossRefGoogle Scholar
  5. 5.
    Ahsan MA, Fernandez-Delgado O, Deemer E et al (2019) Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J Mol Liq 290:111059.  https://doi.org/10.1016/j.molliq.2019.111059 CrossRefGoogle Scholar
  6. 6.
    Ahsan MA, Jabbari V, El-Gendy AA et al (2019) Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl Surf Sci 497:143608.  https://doi.org/10.1016/j.apsusc.2019.143608 CrossRefGoogle Scholar
  7. 7.
    Franco A, Cebrián-García S, Rodríguez-Padrón D et al (2018) Encapsulated laccases as effective electrocatalysts for oxygen reduction reactions. ACS Sustain Chem Eng 6:11058–11062.  https://doi.org/10.1021/acssuschemeng.8b02529 CrossRefGoogle Scholar
  8. 8.
    Cova CM, Zuliani A, Puente Santiago AR et al (2018) Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J Mater Chem A 6:21516–21523.  https://doi.org/10.1039/C8TA06417B CrossRefGoogle Scholar
  9. 9.
    Ostovar S, Franco A, Puente-Santiago AR et al (2018) Efficient mechanochemical bifunctional nanocatalysts for the conversion of isoeugenol to vanillin. Front Chem 6:1–7.  https://doi.org/10.3389/fchem.2018.00077 CrossRefGoogle Scholar
  10. 10.
    Rodríguez-Padrón D, Puente-Santiago AR, Balu AM et al (2019) Environmental catalysis: present and future. ChemCatChem 11:18–38.  https://doi.org/10.1002/cctc.201801248 CrossRefGoogle Scholar
  11. 11.
    Feng S, Li D, Low Z et al (2017) ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter. J Memb Sci 531:86–93.  https://doi.org/10.1016/j.memsci.2017.02.042 CrossRefGoogle Scholar
  12. 12.
    Shalan AE, El-Shazly AN, Rashad MM, Allam NK (2019) Tin-zinc-oxide nanocomposites (SZO) as promising electron transport layers for efficient and stable perovskite solar cells. Nanoscale Adv 1:2654–2662.  https://doi.org/10.1039/c9na00182d CrossRefGoogle Scholar
  13. 13.
    Sanad MF, Shalan AE, Bazid SM et al (2019) A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 9:31021–31029.  https://doi.org/10.1039/C9RA05669F CrossRefGoogle Scholar
  14. 14.
    León Félix L, Sanz B, Sebastián V et al (2019) Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization. Sci Rep 9:4185.  https://doi.org/10.1038/s41598-019-40769-2 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Saif S, Tahir A, Asim T et al (2019) Polymeric nanocomposites of iron-oxide nanoparticles (IONPs) synthesized using Terminalia chebula leaf extract for enhanced adsorption of arsenic(V) from water. Colloids Interfaces 3:17.  https://doi.org/10.3390/colloids3010017 CrossRefGoogle Scholar
  16. 16.
    Kim H-M, Kim D, Jeong C et al (2018) Assembly of plasmonic and magnetic nanoparticles with fluorescent silica shell layer for tri-functional SERS-magnetic-fluorescence probes and its bioapplications. Sci Rep 8:13938.  https://doi.org/10.1038/s41598-018-32044-7 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pershina AG, Sazonov AE, Filimonov VD (2014) Magnetic nanoparticles—DNA interactions: design and applications of nanobiohybrid systems. Russ Chem Rev 83:299–322.  https://doi.org/10.1070/RC2014v083n04ABEH004412 CrossRefGoogle Scholar
  18. 18.
    Feng Q, Liu Y, Huang J et al (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8:2082.  https://doi.org/10.1038/s41598-018-19628-z CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huerta-Nuñez LFE, Gutierrez-Iglesias G, Martinez-Cuazitl A et al (2019) A biosensor capable of identifying low quantities of breast cancer cells by electrical impedance spectroscopy. Sci Rep 9:6419.  https://doi.org/10.1038/s41598-019-42776-9 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wei Y, Liao R, Mahmood AA et al (2017) pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent. Acta Biomater 55:194–203.  https://doi.org/10.1016/j.actbio.2017.03.046 CrossRefPubMedGoogle Scholar
  21. 21.
    Sahoo SL, Liu C-H (2015) Adsorption behaviors of DNA by modified magnetic nanoparticles: effect of spacer and salt. Colloids Surf A Physicochem Eng Asp 482:184–194.  https://doi.org/10.1016/j.colsurfa.2015.05.010 CrossRefGoogle Scholar
  22. 22.
    Haddad Y, Xhaxhiu K, Kopel P et al (2016) The isolation of DNA by polycharged magnetic particles: an analysis of the interaction by zeta potential and particle size. Int J Mol Sci 17:550.  https://doi.org/10.3390/ijms17040550 CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Robinson I, Tung LD, Maenosono S et al (2010) Synthesis of core–shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2:2624.  https://doi.org/10.1039/c0nr00621a CrossRefPubMedGoogle Scholar
  24. 24.
    Esmaeili E, Ghiass MA, Vossoughi M, Soleimani M (2017) Hybrid magnetic-DNA directed immobilisation approach for efficient protein capture and detection on microfluidic platforms. Sci Rep 7:194.  https://doi.org/10.1038/s41598-017-00268-8 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sun W, Fletcher D, van Heeckeren RC, Davis PB (2012) Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin. J Drug Target 20:678–690.  https://doi.org/10.3109/1061186X.2012.712128 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cheon HJ, Lee SM, Kim S-R et al (2018) Colorimetric detection of MPT64 antibody based on an aptamer adsorbed magnetic nanoparticles for diagnosis of tuberculosis. J Nanosci Nanotechnol 19:622–626.  https://doi.org/10.1166/jnn.2019.15905 CrossRefGoogle Scholar
  27. 27.
    Ghaemi M, Absalan G (2014) Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles. Microchim Acta 181:45–53.  https://doi.org/10.1007/s00604-013-1040-5 CrossRefGoogle Scholar
  28. 28.
    Smolders S, Kessels S, Smolders SM-T et al (2018) Magnetofection is superior to other chemical transfection methods in a microglial cell line. J Neurosci Methods 293:169–173.  https://doi.org/10.1016/j.jneumeth.2017.09.017 CrossRefPubMedGoogle Scholar
  29. 29.
    Megías R, Arco M, Ciriza J et al (2017) Design and characterization of a magnetite/PEI multifunctional nanohybrid as non-viral vector and cell isolation system. Int J Pharm 518:270–280.  https://doi.org/10.1016/j.ijpharm.2016.12.042 CrossRefPubMedGoogle Scholar
  30. 30.
    Singh J, Mohanty I, Rattan S (2018) In vivo magnetofection: a novel approach for targeted topical delivery of nucleic acids for rectoanal motility disorders. Am J Physiol Liver Physiol 314:G109–G118.  https://doi.org/10.1152/ajpgi.00233.2017 CrossRefGoogle Scholar
  31. 31.
    Wang W, Wang Y, Tu L et al (2015) Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system. Sci Rep 4:5716.  https://doi.org/10.1038/srep05716 CrossRefGoogle Scholar
  32. 32.
    Elgqvist J (2017) Nanoparticles as theranostic vehicles in experimental and clinical applications—focus on prostate and breast cancer. Int J Mol Sci 18:1102.  https://doi.org/10.3390/ijms18051102 CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sungsuwan S, Yin Z, Huang X (2015) Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines. ACS Appl Mater Interfaces 7:17535–17544.  https://doi.org/10.1021/acsami.5b05497 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ernst C, Bartel A, Elferink JW et al (2019) Improved DNA extraction and purification with magnetic nanoparticles for the detection of methicillin-resistant Staphylococcus aureus. Vet Microbiol 230:45–48.  https://doi.org/10.1016/j.vetmic.2019.01.009 CrossRefPubMedGoogle Scholar
  35. 35.
    Sharma A, Goyal AK, Rath G (2018) Recent advances in metal nanoparticles in cancer therapy. J Drug Target 26:617–632.  https://doi.org/10.1080/1061186X.2017.1400553 CrossRefPubMedGoogle Scholar
  36. 36.
    Li S, Tang F, Wang H et al (2018) Au–Ag and Pt–Ag bimetallic nanoparticles@halloysite nanotubes: morphological modulation, improvement of thermal stability and catalytic performance. RSC Adv 8:10237–10245.  https://doi.org/10.1039/C8RA00423D CrossRefGoogle Scholar
  37. 37.
    Mazrouaa AM, Mohamed MG, Fekry M (2019) Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egypt J Pet 28:165–171.  https://doi.org/10.1016/j.ejpe.2019.02.002 CrossRefGoogle Scholar
  38. 38.
    Smith M, McKeague M, DeRosa MC (2019) Synthesis, transfer, and characterization of core–shell gold-coated magnetic nanoparticles. MethodsX 6:333–354.  https://doi.org/10.1016/j.mex.2019.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jishkariani D, Wu Y, Wang D et al (2017) Preparation and self-assembly of dendronized Janus Fe3O4–Pt and Fe3O4–Au heterodimers. ACS Nano 11:7958–7966.  https://doi.org/10.1021/acsnano.7b02485 CrossRefPubMedGoogle Scholar
  40. 40.
    Nikitin A, Khramtsov M, Garanina A et al (2019) Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia. J Magn Magn Mater 469:443–449.  https://doi.org/10.1016/j.jmmm.2018.09.014 CrossRefGoogle Scholar
  41. 41.
    Lv YB, Chandrasekharan P, Li Y et al (2018) Magnetic resonance imaging quantification and biodistribution of magnetic nanoparticles using T1-enhanced contrast. J Mater Chem B 6:1470–1478.  https://doi.org/10.1039/C7TB03129G CrossRefGoogle Scholar
  42. 42.
    Hong L, Zhou F, Shi D et al (2017) Portable aptamer biosensor of platelet-derived growth factor-BB using a personal glucose meter with triply amplified. Biosens Bioelectron 95:152–159.  https://doi.org/10.1016/j.bios.2017.04.023 CrossRefPubMedGoogle Scholar
  43. 43.
    Farahbakhsh F, Ahmadi M, Hekmatara SH et al (2019) Improvement of photocatalyst properties of magnetic NPs by new anionic surfactant. Mater Chem Phys 224:279–285.  https://doi.org/10.1016/j.matchemphys.2018.11.074 CrossRefGoogle Scholar
  44. 44.
    Ivashchenko O, Peplińska B, Gapiński J et al (2018) Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: effect of magnetic field and temperature on self-organization. Sci Rep 8:4041.  https://doi.org/10.1038/s41598-018-22426-2 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Demangeat E, Pédrot M, Dia A et al (2018) Colloidal and chemical stabilities of iron oxide nanoparticles in aqueous solutions: the interplay of structural, chemical and environmental drivers. Environ Sci Nano 5:992–1001.  https://doi.org/10.1039/C7EN01159H CrossRefGoogle Scholar
  46. 46.
    Gupta R, Sharma D (2019) Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications. Int J Hyperth 36:302–312.  https://doi.org/10.1080/02656736.2019.1565787 CrossRefGoogle Scholar
  47. 47.
    Kurapov YA, Vazhnichaya EM, Litvin SE et al (2019) Physical synthesis of iron oxide nanoparticles and their biological activity in vivo. SN Appl Sci 1:102.  https://doi.org/10.1007/s42452-018-0110-z CrossRefGoogle Scholar
  48. 48.
    Yazdani F, Seddigh M (2016) Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater Chem Phys 184:318–323.  https://doi.org/10.1016/j.matchemphys.2016.09.058 CrossRefGoogle Scholar
  49. 49.
    Maity D, Choo S-G, Yi J et al (2009) Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J Magn Magn Mater 321:1256–1259.  https://doi.org/10.1016/j.jmmm.2008.11.013 CrossRefGoogle Scholar
  50. 50.
    Ansari S, Ficiarà E, Ruffinatti F et al (2019) Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials (Basel) 12:465.  https://doi.org/10.3390/ma12030465 CrossRefGoogle Scholar
  51. 51.
    Obayemi JD, Dozie-Nwachukwu S, Danyuo Y et al (2015) Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH). Mater Sci Eng C 46:482–496.  https://doi.org/10.1016/j.msec.2014.10.081 CrossRefGoogle Scholar
  52. 52.
    Sosa-Acosta J, Silva JA, Fernández-Izquierdo L et al (2018) Iron oxide nanoparticles (IONPs) with potential applications in plasmid DNA isolation. Colloids Surf A Physicochem Eng Asp 545:167–178.  https://doi.org/10.1016/j.colsurfa.2018.02.062 CrossRefGoogle Scholar
  53. 53.
    LaGrow AP, Besenhard MO, Hodzic A et al (2019) Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-ray diffraction in solution. Nanoscale 11:6620–6628.  https://doi.org/10.1039/C9NR00531E CrossRefPubMedGoogle Scholar
  54. 54.
    Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110.  https://doi.org/10.1021/cr068445e CrossRefPubMedGoogle Scholar
  55. 55.
    Lassenberger A, Grünewald TA, van Oostrum PDJ et al (2017) Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem Mater 29:4511–4522.  https://doi.org/10.1021/acs.chemmater.7b01207 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cotin G, Kiefer C, Perton F et al (2018) Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nanomaterials 8:881.  https://doi.org/10.3390/nano8110881 CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Nam J-H, Joo Y-H, Lee J-H et al (2009) Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation. J Magn Magn Mater 321:1389–1392.  https://doi.org/10.1016/j.jmmm.2009.02.044 CrossRefGoogle Scholar
  58. 58.
    Lee J-H, Huh Y-M, Jun Y et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99.  https://doi.org/10.1038/nm1467 CrossRefPubMedGoogle Scholar
  59. 59.
    Prodělalová J, Rittich B, Španová A et al (2004) Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. J Chromatogr A 1056:43–48.  https://doi.org/10.1016/j.chroma.2004.08.090 CrossRefPubMedGoogle Scholar
  60. 60.
    Zheng J, Hu L, Zhang M et al (2015) An electrochemical sensing strategy for the detection of the hepatitis B virus sequence with homogenous hybridization based on host–guest recognition. RSC Adv 5:92025–92032.  https://doi.org/10.1039/C5RA16204A CrossRefGoogle Scholar
  61. 61.
    Salehiabar M, Nosrati H, Davaran S et al (2018) Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res (Stuttg) 68:280–285.  https://doi.org/10.1055/s-0043-120197 CrossRefGoogle Scholar
  62. 62.
    Goroncy C, Saloga PEJ, Gruner M et al (2018) Influence of organic ligands on the surface oxidation state and magnetic properties of iron oxide particles. Z Phys Chem 232:819–844.  https://doi.org/10.1515/zpch-2017-1084 CrossRefGoogle Scholar
  63. 63.
    Nosrati H, Salehiabar M, Davaran S et al (2018) Methotrexate-conjugated l-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev Ind Pharm 44:886–894.  https://doi.org/10.1080/03639045.2017.1417422 CrossRefGoogle Scholar
  64. 64.
    Piotrowski P, Krogul-Sobczak A, Kaim A (2019) Magnetic iron oxide nanoparticles functionalized with C60 phosphonic acid derivative for catalytic reduction of 4-nitrophenol. J Environ Chem Eng 7:103147.  https://doi.org/10.1016/j.jece.2019.103147 CrossRefGoogle Scholar
  65. 65.
    Xu Y, Qin Y, Palchoudhury S, Bao Y (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997.  https://doi.org/10.1021/la201652h CrossRefPubMedGoogle Scholar
  66. 66.
    Sun M, Dai B, Liu K et al (2018) Enhancement in thermal conductivity of polymer composites using aligned diamonds coated with superparamagnetic magnetite. Compos Sci Technol 164:129–135.  https://doi.org/10.1016/j.compscitech.2018.05.039 CrossRefGoogle Scholar
  67. 67.
    Fan Q, Guan Y, Zhang Z et al (2019) A new method of synthesis well-dispersion and dense Fe3O4@SiO2 magnetic nanoparticles for DNA extraction. Chem Phys Lett 715:7–13.  https://doi.org/10.1016/j.cplett.2018.11.001 CrossRefGoogle Scholar
  68. 68.
    Hufschmid R, Teeman E, Mehdi BL et al (2019) Observing the colloidal stability of iron oxide nanoparticles in situ. Nanoscale 11:13098–13107.  https://doi.org/10.1039/C9NR03709H CrossRefPubMedGoogle Scholar
  69. 69.
    Schroffenegger M, Reimhult E (2018) Thermoresponsive core–shell nanoparticles: does core size matter? Materials (Basel) 11:1654.  https://doi.org/10.3390/ma11091654 CrossRefGoogle Scholar
  70. 70.
    Iriarte-Mesa C, Díaz-Castañón S, Abradelo DG (2019) Facile immobilization of Trametes versicolor laccase on highly monodisperse superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 181:470–479.  https://doi.org/10.1016/j.colsurfb.2019.05.012 CrossRefPubMedGoogle Scholar
  71. 71.
    Du L, Wang W, Zhang C et al (2018) A versatile coordinating ligand for coating semiconductor, metal, and metal oxide nanocrystals. Chem Mater 30:7269–7279.  https://doi.org/10.1021/acs.chemmater.8b03527 CrossRefGoogle Scholar
  72. 72.
    Veisi H, Razeghi S, Mohammadi P, Hemmati S (2019) Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Mater Sci Eng C 97:624–631.  https://doi.org/10.1016/j.msec.2018.12.076 CrossRefGoogle Scholar
  73. 73.
    Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S et al (2012) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Korean Chem Soc 33:3957–3962.  https://doi.org/10.5012/bkcs.2012.33.12.3957 CrossRefGoogle Scholar
  74. 74.
    Nosrati H, Salehiabar M, Davaran S et al (2017) New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res Chem Intermed 43:7423–7442.  https://doi.org/10.1007/s11164-017-3084-3 CrossRefGoogle Scholar
  75. 75.
    Bai Y, Roncancio D, Suo Y et al (2019) A method based on amino-modified magnetic nanoparticles to extract DNA for PCR-based analysis. Colloids Surf B Biointerfaces 179:87–93.  https://doi.org/10.1016/j.colsurfb.2019.03.005 CrossRefPubMedGoogle Scholar
  76. 76.
    Oza G, Krishnajyothi K, Merupo VI et al (2019) Gold-iron oxide yolk-shell nanoparticles (YSNPs) as magnetic probe for fluorescence-based detection of 3 base mismatch DNA. Colloids Surf B Biointerfaces 176:431–438.  https://doi.org/10.1016/j.colsurfb.2019.01.016 CrossRefPubMedGoogle Scholar
  77. 77.
    Chen WD, Kohll AX, Nguyen BH et al (2019) Combining data longevity with high storage capacity—layer-by-layer DNA encapsulated in magnetic nanoparticles. Adv Funct Mater 29:1901672.  https://doi.org/10.1002/adfm.201901672 CrossRefGoogle Scholar
  78. 78.
    Wang L, Yao M, Fang X, Yao X (2019) Novel competitive chemiluminescence DNA assay based on Fe3O4@SiO2@Au-functionalized magnetic nanoparticles for sensitive detection of p53 tumor suppressor gene. Appl Biochem Biotechnol 187:152–162.  https://doi.org/10.1007/s12010-018-2808-1 CrossRefPubMedGoogle Scholar
  79. 79.
    Dalmina M, Pittella F, Sierra JA et al (2019) Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C 99:1182–1190.  https://doi.org/10.1016/j.msec.2019.02.026 CrossRefGoogle Scholar
  80. 80.
    Bakshi S, Zakharchenko A, Minko S et al (2019) Towards nanomaterials for cancer theranostics: a system of DNA-modified magnetic nanoparticles for detection and suppression of RNA marker in cancer cells. Magnetochemistry 5:24.  https://doi.org/10.3390/magnetochemistry5020024 CrossRefGoogle Scholar
  81. 81.
    Khadsai S, Seeja N, Deepuppha N et al (2018) Poly(acrylic acid)-grafted magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for specific adsorption with real DNA. Colloids Surf B Biointerfaces 165:243–251.  https://doi.org/10.1016/j.colsurfb.2018.02.039 CrossRefPubMedGoogle Scholar
  82. 82.
    Song J, Lei T, Yang Y et al (2018) Attachment of enzymes to hydrophilic magnetic nanoparticles through DNA-directed immobilization with enhanced stability and catalytic activity. New J Chem 42:8458–8468.  https://doi.org/10.1039/C8NJ00426A CrossRefGoogle Scholar
  83. 83.
    Karami F, Noori-Daloii MR, Omidfar K et al (2018) Modified methylated DNA immunoprecipitation protocol for noninvasive prenatal diagnosis of Down syndrome. J Obstet Gynaecol Res 44:608–613.  https://doi.org/10.1111/jog.13577 CrossRefPubMedGoogle Scholar
  84. 84.
    Ceylan Ş, Odabaşı M (2013) Novel adsorbent for DNA adsorption: Fe3+-attached sporopollenin particles embedded composite cryogels. Artif Cells Nanomed Biotechnol 41:376–383.  https://doi.org/10.3109/21691401.2012.759125 CrossRefPubMedGoogle Scholar
  85. 85.
    Liu B, Liu J (2014) DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem Commun 50:8568.  https://doi.org/10.1039/C4CC03264K CrossRefGoogle Scholar
  86. 86.
    Guo Y, Wang Y, Li S et al (2017) DNA-spheres decorated with magnetic nanocomposites based on terminal transfer reactions for versatile target detection and cellular targeted drug delivery. Chem Commun 53:4826–4829.  https://doi.org/10.1039/C7CC00310B CrossRefGoogle Scholar
  87. 87.
    Wang H, Yang R, Yang L, Tan W (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460.  https://doi.org/10.1021/nn9006303 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Panda D, Saha P, Das T, Dash J (2017) Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor. Nat Commun 8:16103.  https://doi.org/10.1038/ncomms16103 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Stanciu L, Won Y-H, Ganesana M, Andreescu S (2009) Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors 9:2976–2999.  https://doi.org/10.3390/s90402976 CrossRefPubMedGoogle Scholar
  90. 90.
    Tintoré M, Mazzini S, Polito L et al (2015) Gold-coated superparamagnetic nanoparticles for single methyl discrimination in DNA aptamers. Int J Mol Sci 16:27625–27639.  https://doi.org/10.3390/ijms161126046 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Slavin S, De Cuendias A, Ladmiral V, Haddleton DM (2011) Biotin functionalized poly(sulfonic acid)s for bioconjugation: in situ binding monitoring by QCM-D. J Polym Sci A Polym Chem 49:1163–1173.  https://doi.org/10.1002/pola.24532 CrossRefGoogle Scholar
  92. 92.
    Trigueros Domènech, Toulis Marfany (2019) In vitro gene delivery in retinal pigment epithelium cells by plasmid DNA-wrapped gold nanoparticles. Genes (Basel) 10:289.  https://doi.org/10.3390/genes10040289 CrossRefGoogle Scholar
  93. 93.
    Pandit KR, Nanayakkara IA, Cao W et al (2015) Capture and direct amplification of DNA on chitosan microparticles in a single PCR-optimal solution. Anal Chem 87:11022–11029.  https://doi.org/10.1021/acs.analchem.5b03006 CrossRefPubMedGoogle Scholar
  94. 94.
    Liu Y, Li Y, Li X-M, He T (2013) Kinetics of (3-aminopropyl)triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles. Langmuir 29:15275–15282.  https://doi.org/10.1021/la403269u CrossRefPubMedGoogle Scholar
  95. 95.
    Tiwari AP, Satvekar RK, Rohiwal SS et al (2015) Magneto-separation of genomic deoxyribose nucleic acid using pH responsive Fe3O4 @silica@chitosan nanoparticles in biological samples. RSC Adv 5:8463–8470.  https://doi.org/10.1039/C4RA15806G CrossRefGoogle Scholar
  96. 96.
    Bui TQ, Ngo HTM, Tran HT (2018) Surface-protective assistance of ultrasound in synthesis of superparamagnetic magnetite nanoparticles and in preparation of mono-core magnetite-silica nanocomposites. J Sci Adv Mater Devices 3:323–330.  https://doi.org/10.1016/j.jsamd.2018.07.002 CrossRefGoogle Scholar
  97. 97.
    Li Z, Chen H, Bao H, Gao M (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16:1391–1393.  https://doi.org/10.1021/cm035346y CrossRefGoogle Scholar
  98. 98.
    Byrne SJ, Corr SA, Gun’ko YK et al (2004) Magnetic nanoparticle assemblies on denatured DNA show unusual magnetic relaxivity and potential applications for MRI. Chem Commun 10:2560.  https://doi.org/10.1039/b409603g CrossRefGoogle Scholar
  99. 99.
    Mohamed HDA, Watson SMD, Horrocks BR, Houlton A (2012) Magnetic and conductive magnetite nanowires by DNA-templating. Nanoscale 4:5936.  https://doi.org/10.1039/c2nr31559a CrossRefPubMedGoogle Scholar
  100. 100.
    Sreenivasulu G, Lochbiler TA, Panda M et al (2016) Self-assembly of multiferroic core–shell particulate nanocomposites through DNA–DNA hybridization and magnetic field directed assembly of superstructures. AIP Adv 6:045202.  https://doi.org/10.1063/1.4945761 CrossRefGoogle Scholar
  101. 101.
    Zhu N, Zhang A, He P, Fang Y (2004) DNA hybridization at magnetic nanoparticles with electrochemical stripping detection. Electroanalysis 16:1925–1930.  https://doi.org/10.1002/elan.200303028 CrossRefGoogle Scholar
  102. 102.
    Wang F, Shen H, Feng J, Yang H (2006) PNA-modified magnetic nanoparticles and their hybridization with single-stranded DNA target: surface enhanced Raman scatterings study. Microchim Acta 153:15–20.  https://doi.org/10.1007/s00604-005-0460-2 CrossRefGoogle Scholar
  103. 103.
    Diamandis EP, Christopoulos TK (1991) The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem 37:625–636PubMedGoogle Scholar
  104. 104.
    de Freitas CF, Montanha MC, Pellosi DS et al (2019) Biotin-targeted mixed liposomes: a smart strategy for selective release of a photosensitizer agent in cancer cells. Mater Sci Eng C 104:109923.  https://doi.org/10.1016/j.msec.2019.109923 CrossRefGoogle Scholar
  105. 105.
    Cannon B, Campos AR, Lewitz Z et al (2012) Zeptomole detection of DNA nanoparticles by single-molecule fluorescence with magnetic field-directed localization. Anal Biochem 431:40–47.  https://doi.org/10.1016/j.ab.2012.08.017 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    He N, Wang F, Ma C et al (2013) Chemiluminescence analysis for HBV-DNA hybridization detection with magnetic nanoparticles based DNA extraction from positive whole blood samples. J Biomed Nanotechnol 9:267–273.  https://doi.org/10.1166/jbn.2013.1478 CrossRefPubMedGoogle Scholar
  107. 107.
    Oberacker P, Stepper P, Bond DM et al (2019) Bio-On-Magnetic-Beads (BOMB): open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol 17:e3000107.  https://doi.org/10.1371/journal.pbio.3000107 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 1:581–585.  https://doi.org/10.1038/nprot.2006.83 CrossRefPubMedGoogle Scholar
  109. 109.
    Delaney S, Murphy R, Walsh F (2018) A comparison of methods for the extraction of plasmids capable of conferring antibiotic resistance in a human pathogen from complex broiler cecal samples. Front Microbiol 9:1731.  https://doi.org/10.3389/fmicb.2018.01731 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Sermwittayawong D, Jakkawanpitak C, Waji N, Hutadilok-Towatana N (2013) Economical method for midiprep plasmid DNA purification using diatomaceous earth. ScienceAsia 39:631.  https://doi.org/10.2306/scienceasia1513-1874.2013.39.631 CrossRefGoogle Scholar
  111. 111.
    Bai Y, Cui Y, Suo Y et al (2019) A rapid method for detection of salmonella in milk based on extraction of mRNA using magnetic capture probes and RT-qPCR. Front Microbiol.  https://doi.org/10.3389/fmicb.2019.00770 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Griffiths L, Chacon-Cortes D (2014) Methods for extracting genomic DNA from whole blood samples: current perspectives. J Biorepository Sci Appl Med 2:1.  https://doi.org/10.2147/BSAM.S46573 CrossRefGoogle Scholar
  113. 113.
    Di Pietro F, Ortenzi F, Tilio M et al (2011) Genomic DNA extraction from whole blood stored from 15- to 30-years at −20°C by rapid phenol–chloroform protocol: a useful tool for genetic epidemiology studies. Mol Cell Probes 25:44–48.  https://doi.org/10.1016/j.mcp.2010.10.003 CrossRefPubMedGoogle Scholar
  114. 114.
    Neng-Biao W, Lian X, Li-na C et al (2009) Isolation and purification of plasmid D NA by silica-coated magnetic nanoparticles. Chin J Biochem Mol Biol 25:958–962Google Scholar
  115. 115.
    Köse K (2016) Nucleotide incorporated magnetic microparticles for isolation of DNA. Process Biochem 51:1644–1649.  https://doi.org/10.1016/j.procbio.2016.07.021 CrossRefGoogle Scholar
  116. 116.
    Berensmeier S (2006) Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 73:495–504.  https://doi.org/10.1007/s00253-006-0675-0 CrossRefPubMedGoogle Scholar
  117. 117.
    Tanaka T, Sakai R, Kobayashi R et al (2009) Contributions of phosphate to DNA adsorption/desorption behaviors on aminosilane-modified magnetic nanoparticles. Langmuir 25:2956–2961.  https://doi.org/10.1021/la8032397 CrossRefPubMedGoogle Scholar
  118. 118.
    Min JH, Woo M-K, Yoon HY et al (2014) Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid. Anal Biochem 447:114–118.  https://doi.org/10.1016/j.ab.2013.11.018 CrossRefPubMedGoogle Scholar
  119. 119.
    Smerkova K, Dostalova S, Vaculovicova M et al (2013) Investigation of interaction between magnetic silica particles and lambda phage DNA fragment. J Pharm Biomed Anal 86:65–72.  https://doi.org/10.1016/j.jpba.2013.07.039 CrossRefPubMedGoogle Scholar
  120. 120.
    Saiyed ZM, Bochiwal C, Gorasia H et al (2006) Application of magnetic particles (Fe3O4) for isolation of genomic DNA from mammalian cells. Anal Biochem 356:306–308.  https://doi.org/10.1016/j.ab.2006.06.027 CrossRefPubMedGoogle Scholar
  121. 121.
    Gessner I, Yu X, Jüngst C et al (2019) Selective capture and purification of microRNAs and intracellular proteins through antisense-vectorized magnetic nanobeads. Sci Rep 9:2069.  https://doi.org/10.1038/s41598-019-39575-7 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Pang KM, Castanotto D, Li H et al (2018) Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy. Nucleic Acids Res 46:e6–e6.  https://doi.org/10.1093/nar/gkx980 CrossRefPubMedGoogle Scholar
  123. 123.
    Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105.  https://doi.org/10.1016/S0140-6736(07)60982-9 CrossRefPubMedGoogle Scholar
  124. 124.
    Katada Y, Kobayashi K, Tsubota K, Kurihara T (2019) Evaluation of AAV-DJ vector for retinal gene therapy. PeerJ 7:e6317.  https://doi.org/10.7717/peerj.6317 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Yao J, Rotenberg D, Whitfield AE (2019) Delivery of maize mosaic virus to planthopper vectors by microinjection increases infection efficiency and facilitates functional genomics experiments in the vector. J Virol Methods 270:153–162.  https://doi.org/10.1016/j.jviromet.2019.05.010 CrossRefPubMedGoogle Scholar
  126. 126.
    Forjanic T, Markelc B, Marcan M et al (2019) Electroporation-induced stress response and its effect on gene electrotransfer efficacy. In vivo imaging and numerical modeling. IEEE Trans Biomed Eng 66:2671–2683.  https://doi.org/10.1109/TBME.2019.2894659 CrossRefPubMedGoogle Scholar
  127. 127.
    Schmitt MA, Friedrich O, Gilbert DF (2019) Portoporator©: a portable low-cost electroporation device for gene transfer to cultured cells in biotechnology, biomedical research and education. Biosens Bioelectron 131:95–103.  https://doi.org/10.1016/j.bios.2019.02.024 CrossRefPubMedGoogle Scholar
  128. 128.
    Kasala D, Yoon A-R, Hong J et al (2016) Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine 11:1689–1713.  https://doi.org/10.2217/nnm-2016-0060 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Pinyon JL, Klugmann M, Lovell NH, Housley GD (2019) Dual-plasmid bionic array-directed gene electrotransfer in HEK293 cells and cochlear mesenchymal cells probes transgene expression and cell fate. Hum Gene Ther 30:211–224.  https://doi.org/10.1089/hum.2018.062 CrossRefPubMedGoogle Scholar
  130. 130.
    Durymanov M, Reineke J (2018) Non-viral delivery of nucleic acids: insight into mechanisms of overcoming intracellular barriers. Front Pharmacol 9:1–15.  https://doi.org/10.3389/fphar.2018.00971 CrossRefGoogle Scholar
  131. 131.
    Hardee C, Arévalo-Soliz L, Hornstein B, Zechiedrich L (2017) Advances in non-viral DNA vectors for gene therapy. Genes (Basel) 8:65.  https://doi.org/10.3390/genes8020065 CrossRefGoogle Scholar
  132. 132.
    González B, Ruiz-Hernández E, Feito MJ et al (2011) Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitro gene magnetofection. J Mater Chem 21:4598.  https://doi.org/10.1039/c0jm03526b CrossRefGoogle Scholar
  133. 133.
    Sohrabijam Z, Saeidifar M, Zamanian A (2017) Enhancement of magnetofection efficiency using chitosan coated superparamagnetic iron oxide nanoparticles and calf thymus DNA. Colloids Surf B Biointerfaces 152:169–175.  https://doi.org/10.1016/j.colsurfb.2017.01.028 CrossRefPubMedGoogle Scholar
  134. 134.
    Cen C, Wu J, Zhang Y et al (2019) Improving magnetofection of magnetic polyethylenimine nanoparticles into MG-63 osteoblasts using a novel uniform magnetic field. Nanoscale Res Lett 14:90.  https://doi.org/10.1186/s11671-019-2882-5 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Govindarajan S, Kitaura K, Takafuji M et al (2013) Gene delivery into human cancer cells by cationic lipid-mediated magnetofection. Int J Pharm 446:87–99.  https://doi.org/10.1016/j.ijpharm.2013.01.055 CrossRefPubMedGoogle Scholar
  136. 136.
    Mu X, Li J, Yan S et al (2018) siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy. ACS Biomater Sci Eng 4:3895–3905.  https://doi.org/10.1021/acsbiomaterials.8b00858 CrossRefGoogle Scholar
  137. 137.
    Namgung R, Singha K, Yu MK et al (2010) Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 31:4204–4213.  https://doi.org/10.1016/j.biomaterials.2010.01.123 CrossRefPubMedGoogle Scholar
  138. 138.
    Kami D, Takeda S, Makino H et al (2011) Efficient transfection method using deacylated polyethylenimine-coated magnetic nanoparticles. J Artif Organs 14:215–222.  https://doi.org/10.1007/s10047-011-0568-6 CrossRefPubMedGoogle Scholar
  139. 139.
    Wu H-C, Wang T-W, Bohn MC et al (2010) Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor gene. Adv Funct Mater 20:67–77.  https://doi.org/10.1002/adfm.200901108 CrossRefGoogle Scholar
  140. 140.
    Prijic S, Prosen L, Cemazar M et al (2012) Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 33:4379–4391.  https://doi.org/10.1016/j.biomaterials.2012.02.061 CrossRefPubMedGoogle Scholar
  141. 141.
    Veiseh O, Kievit FM, Gunn JW et al (2009) A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 30:649–657.  https://doi.org/10.1016/j.biomaterials.2008.10.003 CrossRefPubMedGoogle Scholar
  142. 142.
    Castillo B, Bromberg L, López X et al (2012) Intracellular delivery of siRNA by polycationic superparamagnetic nanoparticles. J Drug Deliv 2012:1–12.  https://doi.org/10.1155/2012/218940 CrossRefGoogle Scholar
  143. 143.
    Kievit FM, Veiseh O, Bhattarai N et al (2009) PEI–PEG–chitosan–copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251.  https://doi.org/10.1002/adfm.200801844 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Mykhaylyk O, Antequera YS, Vlaskou D, Plank C (2007) Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2:2391–2411.  https://doi.org/10.1038/nprot.2007.352 CrossRefPubMedGoogle Scholar
  145. 145.
    Gulce-Iz S, Saglam-Metiner P (2019) Current state of the art in DNA vaccine delivery and molecular adjuvants: Bcl-xL anti-apoptotic protein as a molecular adjuvant. In: Immune response activation and immunomodulation. IntechOpen.  https://doi.org/10.5772/intechopen.82203 Google Scholar
  146. 146.
    Boxus M, Tignon M, Roels S et al (2007) DNA immunization with plasmids encoding fusion and nucleocapsid proteins of bovine respiratory syncytial virus induces a strong cell-mediated immunity and protects calves against challenge. J Virol 81:6879–6889.  https://doi.org/10.1128/JVI.00502-07 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Al-Deen FN, Ho J, Selomulya C et al (2011) Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. Langmuir 27:3703–3712.  https://doi.org/10.1021/la104479c CrossRefPubMedGoogle Scholar
  148. 148.
    Garu A, Moku G, Gulla SK, Chaudhuri A (2016) Genetic immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response. Mol Ther 24:385–397.  https://doi.org/10.1038/mt.2015.215 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308.  https://doi.org/10.1038/nbt0396-303 CrossRefPubMedGoogle Scholar
  150. 150.
    Liu H, Li S, Tian L et al (2010) A novel single nucleotide polymorphisms detection sensors based on magnetic nanoparticles array and dual-color single base extension. J Nanosci Nanotechnol 10:5311–5315.  https://doi.org/10.1166/jnn.2010.2386 CrossRefPubMedGoogle Scholar
  151. 151.
    Lapitan LDS, Xu Y, Guo Y, Zhou D (2019) Combining magnetic nanoparticle capture and poly-enzyme nanobead amplification for ultrasensitive detection and discrimination of DNA single nucleotide polymorphisms. Nanoscale 11:1195–1204.  https://doi.org/10.1039/C8NR07641C CrossRefPubMedGoogle Scholar
  152. 152.
    Lee M-H, Leu C-C, Lin C-C et al (2019) Gold-decorated magnetic nanoparticles modified with hairpin-shaped DNA for fluorometric discrimination of single-base mismatch DNA. Microchim Acta 186:80.  https://doi.org/10.1007/s00604-018-3192-9 CrossRefGoogle Scholar
  153. 153.
    Sharma R, Akshath US, Bhatt P, Raghavarao K (2019) Fluorescent aptaswitch for chloramphenicol detection—quantification enabled by immobilization of aptamer. Sens Actuators B Chem 290:110–117.  https://doi.org/10.1016/j.snb.2019.03.093 CrossRefGoogle Scholar
  154. 154.
    Xuhong Y, Sinong Z, Jianping L et al (2019) A PCR-lateral flow assay system based on gold magnetic nanoparticles for CYP2C19 genotyping and its clinical applications. Artif Cells Nanomed Biotechnol 47:636–643.  https://doi.org/10.1080/21691401.2019.1575841 CrossRefPubMedGoogle Scholar
  155. 155.
    Cheng H, Liu J, Ma W et al (2018) Low background cascade signal amplification electrochemical sensing platform for tumor-related mRNA quantification by target-activated hybridization chain reaction and electroactive cargo release. Anal Chem 90:12544–12552.  https://doi.org/10.1021/acs.analchem.8b02470 CrossRefPubMedGoogle Scholar
  156. 156.
    Shan Y, Zhang Y, Kang W et al (2019) Quantitative and selective DNA detection with portable personal glucose meter using loop-based DNA competitive hybridization strategy. Sens Actuators B Chem 282:197–203.  https://doi.org/10.1016/j.snb.2018.11.062 CrossRefGoogle Scholar
  157. 157.
    Tian B, Qiu Z, Ma J et al (2018) On-particle rolling circle amplification-based core–satellite magnetic superstructures for microRNA detection. ACS Appl Mater Interfaces 10(3):2957–2964.  https://doi.org/10.1021/acsami.7b16293 CrossRefPubMedGoogle Scholar
  158. 158.
    Li W, Jiang W, Dai S, Wang L (2016) Multiplexed detection of cytokines based on dual bar-code strategy and single-molecule counting. Anal Chem 88:1578–1584.  https://doi.org/10.1021/acs.analchem.5b03043 CrossRefPubMedGoogle Scholar
  159. 159.
    Xu Y, Huo B, Li C et al (2019) Ultrasensitive detection of staphylococcal enterotoxin B in foodstuff through dual signal amplification by bio-barcode and real-time PCR. Food Chem 283:338–344.  https://doi.org/10.1016/j.foodchem.2018.12.128 CrossRefPubMedGoogle Scholar
  160. 160.
    Jiang P, Haji C, Ye X et al (2019) A novel inductive coupled plasma mass spectrometry gene detection method based on AuNPs and bio-barcode signal amplification. Nanosci Nanotechnol Lett 11:638–644.  https://doi.org/10.1166/nnl.2019.2933 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratory of Bioinorganic (LBI), Department of Inorganic and General Chemistry, Faculty of ChemistryUniversity of HavanaHavanaCuba
  2. 2.Faculty of Chemistry and PharmacyPontifical Catholic University of ChileSantiagoChile
  3. 3.Legaria Unit, Center for Applied Science and Advanced Technology of IPNMexico CityMexico

Personalised recommendations