Advertisement

Topics in Current Chemistry

, 378:14 | Cite as

Insights into the Gas Adsorption Mechanisms in Metal–Organic Frameworks from Classical Molecular Simulations

  • Tony PhamEmail author
  • Brian Space
Review
  • 101 Downloads
Part of the following topical collections:
  1. Metal-Organic Framework: From Design to Applications

Abstract

Classical molecular simulations can provide significant insights into the gas adsorption mechanisms and binding sites in various metal–organic frameworks (MOFs). These simulations involve assessing the interactions between the MOF and an adsorbate molecule by calculating the potential energy of the MOF–adsorbate system using a functional form that generally includes nonbonded interaction terms, such as the repulsion/dispersion and permanent electrostatic energies. Grand canonical Monte Carlo (GCMC) is the most widely used classical method that is carried out to simulate gas adsorption and separation in MOFs and identify the favorable adsorbate binding sites. In this review, we provide an overview of the GCMC methods that are normally utilized to perform these simulations. We also describe how a typical force field is developed for the MOF, which is required to compute the classical potential energy of the system. Furthermore, we highlight some of the common analysis techniques that have been used to determine the locations of the preferential binding sites in these materials. We also review some of the early classical molecular simulation studies that have contributed to our working understanding of the gas adsorption mechanisms in MOFs. Finally, we show that the implementation of classical polarization for simulations in MOFs can be necessary for the accurate modeling of an adsorbate in these materials, particularly those that contain open-metal sites. In general, molecular simulations can provide a great complement to experimental studies by helping to rationalize the favorable MOF–adsorbate interactions and the mechanism of gas adsorption.

Keywords

Metal–organic frameworks Molecular simulation Grand canonical Monte Carlo Potential energy function Adsorption site Classical polarization 

Notes

Acknowledgements

The authors acknowledge the National Science Foundation (Award No. DMR-1607989), including support from the Major Research Instrumentation Program (Award No. CHE-1531590). B.S. also acknowledges support from an American Chemical Society Petroleum Research Fund Grant (ACS PRF 56673-ND6).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–organic frameworks. Science 341:1230444PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Yu J, Xie L-H, Li J-R, Ma Y, Seminario JM, Balbuena PB (2017) \({\text{ CO }}_2\) capture and separations using MOFs: computational and experimental studies. Chem Rev 117:9674–9754PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal–organic frameworks. Chem Rev 112:782–835PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Makal TA, Li J-R, Lu W, Zhou H-C (2012) Methane storage in advanced porous materials. Chem Soc Rev 41:7761–7779PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112:724–781PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Peterson VK, Liu Y, Brown CM, Kepert CJ (2006) Neutron powder diffraction study of \({\text{ D }}_2\) sorption in \({\text{ Cu }}_3\)(1,3,5-benzenetricarboxylate)\(_2\). J Am Chem Soc 128:15578–15579PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal–organic frameworks. Science 300:1127–1129PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Samsonenko DG, Kim H, Sun Y, Kim G-H, Lee H-S, Kim K (2007) Microporous magnesium and manganese formates for acetylene storage and separation. Chem Asian J 2:484–488PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Elsaidi SK, Mohamed MH, Schaef HT, Kumar A, Lusi M, Pham T, Forrest KA, Space B, Xu W, Halder GJ, Liu J, Zaworotko MJ, Thallapally PK (2015) Hydrophobic pillared square grids for selective removal of \({\text{ CO }}_2\) from simulated flue gas. Chem Commun 51:15530–15533CrossRefGoogle Scholar
  10. 10.
    Yang Q, Liu D, Zhong C, Li J-R (2013) Development of computational methodologies for metal–organic frameworks and their application in gas separations. Chem Rev 113:8261–8323PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Odoh SO, Cramer CJ, Truhlar DG, Gagliardi L (2015) Quantum–chemical characterization of the properties and reactivities of metal–organic frameworks. Chem Rev 115:6051–6111PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sagara T, Klassen J, Ganz E (2004) Computational study of hydrogen binding by metal–organic framework-5. J Chem Phys 121:12543–12547PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402:276CrossRefGoogle Scholar
  14. 14.
    Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Academic Press, New YorkGoogle Scholar
  15. 15.
    Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Snurr RQ, Yazaydın AÖ, Dubbeldam D, Frost H (2010) Metal–organic frameworks: design and application. Wiley, Hoboken, pp 313–339CrossRefGoogle Scholar
  17. 17.
    Babarao R, Jiang J (2008) Molecular screening of metal–organic frameworks for \({\text{ CO }}_2\) storage. Langmuir 24:6270–6278PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Jiang J (2009) Charged \(soc\) metal–organic framework for high-efficacy \({\text{ H }}_2\) adsorption and syngas purification: atomistic simulation study. AIChE J 55:2422–2432CrossRefGoogle Scholar
  19. 19.
    Babarao R, Eddaoudi M, Jiang JW (2010) Highly porous ionic rht metal–organic framework for \({\text{ H }}_2\) and \({\text{ CO }}_2\) storage and separation: a molecular simulation study. Langmuir 26:11196–11203PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Panagiotopoulos AZ (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys 61:813–826CrossRefGoogle Scholar
  21. 21.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092CrossRefGoogle Scholar
  22. 22.
    Greathouse JA, Allendorf MD (2006) The interaction of water with MOF-5 simulated by molecular dynamics. J Am Chem Soc 128:10678–10679PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Dubbeldam D, Walton KS, Ellis DE, Snurr RQ (2007) Exceptional negative thermal expansion in isoreticular metal-organic frameworks. Angew Chem Int Ed 46:4496–4499CrossRefGoogle Scholar
  24. 24.
    Salles F, Ghoufi A, Maurin G, Bell RG, Mellot-Draznieks C, Férey G (2008) Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and \({\text{ CO }}_2\) Adsorption. Angew Chem Int Ed 47:8487–8491CrossRefGoogle Scholar
  25. 25.
    Dubbeldam D, Krishna R, Snurr RQ (2009) Method for analyzing structural changes of flexible metal–organic frameworks induced by adsorbates. J Phys Chem C 113:19317–19327CrossRefGoogle Scholar
  26. 26.
    Belof JL, Stern AC, Space B (2009) A predictive model of hydrogen sorption for metal–organic materials. J Phys Chem C 113:9316–9320CrossRefGoogle Scholar
  27. 27.
    Boublík T (2006) The BACK equation of state for hydrogen and related compounds. Fluid Phase Equilib 240:96–100CrossRefGoogle Scholar
  28. 28.
    Peng D-Y, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64CrossRefGoogle Scholar
  29. 29.
    Jones JE (1924) On the determination of molecular fields. II. From the equation of state of a gas. Proc R Soc Lond Ser A 106:463–477CrossRefGoogle Scholar
  30. 30.
    Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909CrossRefGoogle Scholar
  31. 31.
    Rappé AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035CrossRefGoogle Scholar
  32. 32.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  33. 33.
    Lorentz HA (1881) Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann Phys 248:127–136CrossRefGoogle Scholar
  34. 34.
    Waldman M, Hagler A (1993) New combining rules for rare gas van der Waals parameters. J Comput Chem 14:1077–1084CrossRefGoogle Scholar
  35. 35.
    Cioce CR, McLaughlin K, Belof JL, Space B (2013) A polarizable and transferable PHAST \({\text{ N }}_2\) potential for use in materials simulation. J Chem Theory Comput 9:5550–5557PubMedCrossRefGoogle Scholar
  36. 36.
    Siperstein F, Myers A, Talu O (2002) Long range corrections for computer simulations of adsorption. Mol Phys 100:2025–2030CrossRefGoogle Scholar
  37. 37.
    Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 369:253–287CrossRefGoogle Scholar
  38. 38.
    Wells BA, Chaffee AL (2015) Ewald summation for molecular simulations. J Chem Theory Comput 11:3684–3695PubMedCrossRefGoogle Scholar
  39. 39.
    Wolf D, Keblinski P, Phillpot SR, Eggebrecht J (1999) Exact method for the simulation of Coulombic systems by spherically truncated, pairwise \(r^{-1}\) summation. J Chem Phys 110:8254–8282CrossRefGoogle Scholar
  40. 40.
    Fennell CJ, Gezelter JD (2006) Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J Chem Phys 124:234104PubMedCrossRefGoogle Scholar
  41. 41.
    Guo Z, Wu H, Srinivas G, Zhou Y, Xiang S, Chen Z, Yang Y, Zhou W, O’Keeffe M, Chen B (2011) A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew Chem Int Ed 50:3178–3181CrossRefGoogle Scholar
  42. 42.
    Pham T, Forrest KA, Franz DM, Guo Z, Chen B, Space B (2017) Predictive models of gas sorption in a metal-organic framework with open-metal sites and small pore sizes. Phys Chem Chem Phys 19:18587–18602PubMedCrossRefGoogle Scholar
  43. 43.
    Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23:1833–1840CrossRefGoogle Scholar
  44. 44.
    Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145CrossRefGoogle Scholar
  45. 45.
    Besler BH, Merz KM Jr, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439CrossRefGoogle Scholar
  46. 46.
    Chirlian LE, Francl MM (1987) Atomic charges derived from electrostatic potentials: a detailed study. J Comput Chem 8:894–905CrossRefGoogle Scholar
  47. 47.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373CrossRefGoogle Scholar
  48. 48.
    Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280CrossRefGoogle Scholar
  49. 49.
    Rappé AK, Goddard WA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363CrossRefGoogle Scholar
  50. 50.
    Ramachandran S, Lenz TG, Skiff WM, Rappé AK (1996) Toward an understanding of zeolite Y as a cracking catalyst with the use of periodic charge equilibration. J Phys Chem 100:5898–5907CrossRefGoogle Scholar
  51. 51.
    Campañá C, Mussard B, Woo TK (2009) Electrostatic potential derived atomic charges for periodic systems using a modified error functional. J Chem Theory Comput 5:2866–2878PubMedCrossRefGoogle Scholar
  52. 52.
    Manz TA, Sholl DS (2010) Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. J Chem Theory Comput 6:2455–2468PubMedCrossRefGoogle Scholar
  53. 53.
    Chen D-L, Stern AC, Space B, Johnson JK (2010) Atomic charges derived from electrostatic potentials for molecular and periodic systems. J Phys Chem A 114:10225–10233PubMedCrossRefGoogle Scholar
  54. 54.
    Wilmer CE, Kim KC, Snurr RQ (2012) An extended charge equilibration method. J Phys Chem Lett 3:2506–2511PubMedCrossRefGoogle Scholar
  55. 55.
    Watanabe T, Manz TA, Sholl DS (2011) Accurate treatment of electrostatics during molecular adsorption in nanoporous crystals without assigning point charges to framework atoms. J Phys Chem C 115:4824–4836CrossRefGoogle Scholar
  56. 56.
    Belof JL, Stern AC, Eddaoudi M, Space B (2007) On the mechanism of hydrogen storage in a metal–organic framework material. J Am Chem Soc 129:15202–15210PubMedCrossRefGoogle Scholar
  57. 57.
    Cirera J, Sung JC, Howland PB, Paesani F (2012) The effects of electronic polarization on water adsorption in metal–organic frameworks: \({\text{ H }}_2\text{ O }\) in MIL-53(Cr). J Chem Phys 137:054704PubMedCrossRefGoogle Scholar
  58. 58.
    Witman M, Ling S, Gladysiak A, Stylianou KC, Smit B, Slater B, Haranczyk M (2017) Rational design of a low-cost, high-performance metal-organic framework for hydrogen storage and carbon capture. J Phys Chem C 121:1171–1181CrossRefGoogle Scholar
  59. 59.
    Becker TM, Dubbeldam D, Lin L-C, Vlugt TJ (2016) Investigating polarization effects of \({\text{ CO }}_2\) adsorption in MgMOF-74. J Comput Sci 15:86–94 (International Computational Science and Engineering Conference 2015 (ICSEC15))CrossRefGoogle Scholar
  60. 60.
    Applequist J, Carl JR, Fung K-K (1972) Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J Am Chem Soc 94:2952–2960CrossRefGoogle Scholar
  61. 61.
    Thole B (1981) Molecular polarizabilities calculated with a modified dipole interaction. Chem Phys 59:341–350CrossRefGoogle Scholar
  62. 62.
    Bode KA, Applequist J (1996) A new optimization of atom polarizabilities in halomethanes, aldehydes, ketones, and amides by way of the atom dipole interaction model. J Phys Chem 100:17820–17824CrossRefGoogle Scholar
  63. 63.
    McLaughlin K, Cioce CR, Pham T, Belof JL, Space B (2013) Efficient calculation of many-body induced electrostatics in molecular systems. J Chem Phys 139:184112PubMedCrossRefGoogle Scholar
  64. 64.
    Forrest KA, Pham T, McLaughlin K, Belof JL, Stern AC, Zaworotko MJ, Space B (2012) Simulation of the mechanism of gas sorption in a metal–organic framework with open metal sites: molecular hydrogen in PCN-61. J Phys Chem C 116:15538–15549CrossRefGoogle Scholar
  65. 65.
    Dinh T-L, Huber GA (2005) An efficient algorithm for polarizable interactions: a uniformly distributed one-dimensional case. J Math Modell Algorithms 4:111–128CrossRefGoogle Scholar
  66. 66.
    Palmo K, Krimm S (2004) Theoretical basis and accuracy of a non-iterative polarization protocol in molecular mechanics energy function calculations. Chem Phys Lett 395:133–137CrossRefGoogle Scholar
  67. 67.
    van Duijnen PT, Swart M (1998) Molecular and atomic polarizabilities: Thole’s model revisited. J Phys Chem A 102:2399–2407CrossRefGoogle Scholar
  68. 68.
    Stern AC, Belof JL, Eddaoudi M, Space B (2012) Understanding hydrogen sorption in a polar metal–organic framework with constricted channels. J Chem Phys 136:034705PubMedCrossRefGoogle Scholar
  69. 69.
    Pham T, Forrest KA, Banerjee R, Orcajo G, Eckert J, Space B (2015) Understanding the \({\text{ H }}_2\) sorption trends in the M-MOF-74 Series (M = Mg, Ni Co, Zn). J Phys Chem C 119:1078–1090CrossRefGoogle Scholar
  70. 70.
    Shannon RD (1993) Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73:348–366CrossRefGoogle Scholar
  71. 71.
    Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, New York, p 281Google Scholar
  72. 72.
    Cai J, Xing Y, Zhao X (2012) Quantum sieving: feasibility and challenges for the separation of hydrogen isotopes in nanoporous materials. RSC Adv 2:8579–8586CrossRefGoogle Scholar
  73. 73.
    Garberoglio G, Skoulidas AI, Johnson JK (2005) Adsorption of gases in metal organic materials: comparison of simulations and experiments. J Phys Chem B 109:13094–13103PubMedCrossRefGoogle Scholar
  74. 74.
    Liu J, Culp JT, Natesakhawat S, Bockrath BC, Zande B, Sankar SG, Garberoglio G, Johnson JK (2007) Experimental and theoretical studies of gas adsorption in \({\text{ Cu }}_3\)(BTC)\(_2\): an effective activation procedure. J Phys Chem C 111:9305–9313CrossRefGoogle Scholar
  75. 75.
    Liu J, Lee JY, Pan L, Obermyer RT, Simizu S, Zande B, Li J, Sankar SG, Johnson JK (2008) Adsorption and diffusion of hydrogen in a new metal-organic framework material: [Zn(bdc)(ted)\(_{0.5}\)]. J Phys Chem C 112:2911–2917CrossRefGoogle Scholar
  76. 76.
    Liu J, Rankin RB, Johnson JK (2009) The importance of charge–quadrupole interactions for \({\text{ H }}_2\) adsorption and diffusion in CuBTC. Mol Simul 35:60–69CrossRefGoogle Scholar
  77. 77.
    Myers AL (2002) Thermodynamics of adsorption in porous materials. AIChE J 48:145–160CrossRefGoogle Scholar
  78. 78.
    Talu O, Myers AL (2001) Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites. Colloids Surf A Physicochem Eng Aspects 187–188:83–93CrossRefGoogle Scholar
  79. 79.
    Talu O, Myers AL (2001) Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment. AIChE J 47:1160–1168CrossRefGoogle Scholar
  80. 80.
    Builes S, Sandler SI, Xiong R (2013) Isosteric heats of gas and liquid adsorption. Langmuir 29:10416–10422PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Yang RT (1997) Gas separation by adsorption processes. Chemical engineering. Imperial College Press, LondonCrossRefGoogle Scholar
  82. 82.
    Li B, Zhang Y, Krishna R, Yao K, Han Y, Wu Z, Ma D, Shi Z, Pham T, Space B, Liu J, Thallapally PK, Liu J, Chrzanowski M, Ma S (2014) Introduction of \(\pi \)-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J Am Chem Soc 136:8654–8660PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Czepirski L, JagieŁŁo J (1989) Virial-type thermal equation of gas-solid adsorption. Chem Eng Sci 44:797–801CrossRefGoogle Scholar
  84. 84.
    Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal–organic framework with exposed \({\text{ Mn }}^{2+}\) coordination sites. J Am Chem Soc 128:16876–16883PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Pan H, Ritter JA, Balbuena PB (1998) Examination of the approximations used in determining the isosteric heat of adsorption from the Clausius–Clapeyron equation. Langmuir 14:6323–6327CrossRefGoogle Scholar
  86. 86.
    Bhatt PM, Belmabkhout Y, Cadiau A, Adil K, Shekhah O, Shkurenko A, Barbour LJ, Eddaoudi M (2016) A fine-tuned fluorinated MOF addresses the needs for trace \({\text{ CO }}_2\) removal and air capture using physisorption. J Am Chem Soc 138:9301–9307PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Nicholson D, Parsonage NG (1982) Computer simulation and the statistical mechanics of adsorption. Academic Press, London, p 97Google Scholar
  88. 88.
    Pham T, Forrest KA, Chen K-J, Kumar A, Zaworotko MJ, Space B (2016) Theoretical investigations of \({\text{ CO }}_2\) and \({\text{ H }}_2\) sorption in robust molecular porous materials. Langmuir 32:11492–11505PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Myers AL, Prausnitz JM (1965) Thermodynamics of mixed-gas adsorption. AIChE J 11:121–127CrossRefGoogle Scholar
  90. 90.
    Belmabkhout Y, Pirngruber G, Jolimaitre E, Methivier A (2007) A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments. Adsorption 13:341–349CrossRefGoogle Scholar
  91. 91.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  92. 92.
    Gupta A, Chempath S, Sanborn MJ, Clark LA, Snurr RQ (2003) Object-oriented programming paradigms for molecular modeling. Mol Simul 29:29–46CrossRefGoogle Scholar
  93. 93.
    Belof JL, Space B (2012) Massively parallel Monte Carlo (MPMC). GitHub. https://github.com/mpmccode/mpmc
  94. 94.
    Martin MG (2013) mcccs towhee: a tool for Monte Carlo molecular simulation. Mol Simul 39:1212–1222CrossRefGoogle Scholar
  95. 95.
    Dubbeldam D, Calero S, Ellis DE, Snurr RQ (2016) RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul 42:81–101CrossRefGoogle Scholar
  96. 96.
    Franz DM (2017) Monte Carlo—molecular dynamics (MCMD). GitHub. https://github.com/khavernathy/mcmd
  97. 97.
    Yang Q, Zhong C (2006) Electrostatic-field-induced enhancement of gas mixture separation in metal–organic frameworks: a computational study. ChemPhysChem 7:1417–1421PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Yang Q, Zhong C (2006) Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal–organic frameworks. J Phys Chem B 110:17776–17783PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Tassel PRV, Davis HT, McCormick AV (1991) Monte Carlo calculations of adsorbate placement and thermodynamics in a micropore: Xe in NaA. Mol Phys 73:1107–1125CrossRefGoogle Scholar
  100. 100.
    Lucena Sa MP, Mileo PGM, Silvino PFG, Cavalcante CL (2011) Unusual adsorption site behavior in PCN-14 metal–organic framework predicted from Monte Carlo simulation. J Am Chem Soc 133:19282–19285PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T (2013) Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135:11887–11894PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Ma S, Sun D, Simmons JM, Collier CD, Yuan D, Zhou H-C (2008) Metal–organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130:1012–1016PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Nouar F, Eubank JF, Bousquet T, Wojtas L, Zaworotko MJ, Eddaoudi M (2008) Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal–organic frameworks. J Am Chem Soc 130:1833–1835PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Zhao D, Yuan D, Sun D, Zhou H-C (2009) Stabilization of metal–organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. J Am Chem Soc 131:9186–9188PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Yuan D, Zhao D, Sun D, Zhou H-C (2010) An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49:5357–5361CrossRefGoogle Scholar
  106. 106.
    Pham T, Forrest KA, Franz DM, Space B (2017) Experimental and theoretical investigations of the gas adsorption sites in rht-metal–organic frameworks. CrystEngComm 19:4646–4665CrossRefGoogle Scholar
  107. 107.
    Mohamed MH, Elsaidi SK, Wojtas L, Pham T, Forrest KA, Tudor B, Space B, Zaworotko MJ (2012) Highly selective \({\text{ CO }}_2\) uptake in uninodal 6-connected “mmo” nets based upon \({\text{ MO }}_4^{2-}\) (M = Cr, Mo) pillars. J Am Chem Soc 134:19556–19559PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Pham T, Forrest KA, Nugent P, Belmabkhout Y, Luebke R, Eddaoudi M, Zaworotko MJ, Space B (2013) Understanding hydrogen sorption in a metal–organic framework with open-metal sites and amide functional groups. J Phys Chem C 117:9340–9354CrossRefGoogle Scholar
  109. 109.
    Pham T, Forrest KA, McLaughlin K, Tudor B, Nugent P, Hogan A, Mullen A, Cioce CR, Zaworotko MJ, Space B (2013) Theoretical investigations of \({\text{ CO }}_2\) and \({\text{ H }}_2\) sorption in an interpenetrated square-pillared metal–organic material. J Phys Chem C 117:9970–9982CrossRefGoogle Scholar
  110. 110.
    Mohamed MH, Elsaidi SK, Pham T, Forrest KA, Tudor B, Wojtas L, Space B, Zaworotko MJ (2013) Pillar substitution modulates \({\text{ CO }}_2\) affinity in “mmo” topology networks. Chem Commun 49:9809–9811CrossRefGoogle Scholar
  111. 111.
    Pham T, Forrest KA, Hogan A, McLaughlin K, Belof JL, Eckert J, Space B (2014) Simulations of hydrogen sorption in rht-MOF-1: identifying the binding sites through explicit polarization and quantum rotation calculations. J Mater Chem A 2:2088–2100CrossRefGoogle Scholar
  112. 112.
    Pham T, Forrest KA, Eckert J, Georgiev PA, Mullen A, Luebke R, Cairns AJ, Belmabkhout Y, Eubank JF, McLaughlin K, Lohstroh W, Eddaoudi M, Space B (2014) Investigating the gas sorption mechanism in an rht-metal–organic framework through computational studies. J Phys Chem C 118:439–456CrossRefGoogle Scholar
  113. 113.
    Pham T, Forrest KA, McDonald K, Space B (2014) Modeling PCN-61 and PCN-66: isostructural rht-metal–organic frameworks with distinct \({\text{ CO }}_2\) sorption mechanisms. Cryst Growth Des 14:5599–5607CrossRefGoogle Scholar
  114. 114.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680PubMedCrossRefGoogle Scholar
  115. 115.
    Matanović I, Belof JL, Space B, Sillar K, Sauer J, Eckert J, Bačić Z (2012) Hydrogen adsorbed in a metal organic framework-5: coupled translation-rotation eigenstates from quantum five-dimensional calculations. J Chem Phys 137:014701PubMedCrossRefGoogle Scholar
  116. 116.
    Belof JL, Stern AC, Space B (2008) An accurate and transferable intermolecular diatomic hydrogen potential for condensed phase simulation. J Chem Theory Comput 4:1332–1337PubMedCrossRefGoogle Scholar
  117. 117.
    Yildirim T, Hartman MR (2005) Direct observation of hydrogen adsorption sites and nanocage formation in metal–organic frameworks. Phys Rev Lett 95:215504PubMedCrossRefGoogle Scholar
  118. 118.
    Sillar K, Hofmann A, Sauer J (2009) Ab initio study of hydrogen adsorption in MOF-5. J Am Chem Soc 131:4143–4150PubMedCrossRefGoogle Scholar
  119. 119.
    Kawakami T, Takamizawa S, Kitagawa Y, Maruta T, Mori W, Yamaguchi K (2001) Theoretical studies of spin arrangement of adsorbed organic radicals in metal–organic nanoporous cavity. Polyhedron 20:1197–1206CrossRefGoogle Scholar
  120. 120.
    Li H, Eddaoudi M, Groy TL, Yaghi OM (1998) Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). J Am Chem Soc 120:8571–8572CrossRefGoogle Scholar
  121. 121.
    Vishnyakov A, Ravikovitch PI, Neimark AV, Bülow M, Wang QM (2003) Nanopore structure and sorption properties of Cu-BTC metal–organic framework. Nano Lett 3:713–718CrossRefGoogle Scholar
  122. 122.
    Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [\({\text{ Cu }}_3 {\text{(TMA) }}_2 ({\text{ H }}_2\text{ O })_3]_n\). Science 283:1148–1150PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Düren T, Sarkisov L, Yaghi OM, Snurr RQ (2004) Design of new materials for methane storage. Langmuir 20:2683–2689PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Martin MG, Siepmann JI (1998) Transferable potentials for phase equilibria. 1. United-atom description of \(n\)-alkanes. J Phys Chem B 102:2569–2577CrossRefGoogle Scholar
  126. 126.
    Slone RV, Benkstein KD, Bélanger S, Hupp JT, Guzei IA, Rheingold AL (1998) Luminescent transition-metal-containing cyclophanes (“molecular squares”): covalent self-assembly, host-guest studies and preliminary nanoporous materials applications. Coord Chem Rev 171:221–243CrossRefGoogle Scholar
  127. 127.
    Chen C-Y, Li H-X, Davis ME (1993) Studies on mesoporous materials: I. Synthesis and characterization of MCM-41. Microporous Mater 2:17–26CrossRefGoogle Scholar
  128. 128.
    Düren T, Snurr RQ (2004) Assessment of isoreticular metal-organic frameworks for adsorption separations: a molecular simulation study of methane/\(n\)-butane mixtures. J Chem Phys B 108:15703–15708CrossRefGoogle Scholar
  129. 129.
    Eddaoudi M, Li H, Yaghi OM (2000) Highly porous and stable metal–organic frameworks: structure design and sorption properties. J Am Chem Soc 122:1391–1397CrossRefGoogle Scholar
  130. 130.
    Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K (2004) Microporous manganese formate: a simple metal–organic porous material with high framework stability and highly selective gas sorption properties. J Am Chem Soc 126:32–33PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Pan L, Sander MB, Huang X, Li J, Smith M, Bittner E, Bockrath B, Johnson JK (2004) Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J Am Chem Soc 126:1308–1309PubMedCrossRefGoogle Scholar
  132. 132.
    Buch V (1994) Path integral simulations of mixed para-\({\text{ D }}_2\) and ortho-\({\text{ D }}_2\) clusters: the orientational effects. J Chem Phys 100:7610–7629CrossRefGoogle Scholar
  133. 133.
    Darkrim F, Levesque D (1998) Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J Chem Phys 109:4981–4984CrossRefGoogle Scholar
  134. 134.
    Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) Hydrogen sorption in functionalized metal–organic frameworks. J Am Chem Soc 126:5666–5667PubMedCrossRefGoogle Scholar
  135. 135.
    DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles. 2012. http://energy.gov/sites/prod/files/2015/01/f19/fcto_myrdd_table_onboard_h2_storage_systems_doe_targets_ldv.pdf. Accessed 25 June 2019
  136. 136.
    Walton KS, Millward AR, Dubbeldam D, Frost H, Low JJ, Yaghi OM, Snurr RQ (2008) Understanding inflections and steps in carbon dioxide adsorption isotherms in metal–organic frameworks. J Am Chem Soc 130:406–407PubMedCrossRefGoogle Scholar
  137. 137.
    Millward AR, Yaghi OM (2005) Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999PubMedCrossRefGoogle Scholar
  138. 138.
    Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KSW (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, AmsterdamGoogle Scholar
  139. 139.
    Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523PubMedCrossRefGoogle Scholar
  140. 140.
    Yang Q, Zhong C, Chen J-F (2008) Computational study of \({\text{ CO }}_2\) storage in metal–organic frameworks. J Phys Chem C 112:1562–1569CrossRefGoogle Scholar
  141. 141.
    Yang Q, Xue C, Zhong C, Chen J-F (2007) Molecular simulation of separation of \({\text{ CO }}_2\) from flue gases in CU-BTC metal–organic framework. AIChE J 53:2832–2840CrossRefGoogle Scholar
  142. 142.
    Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315PubMedCrossRefGoogle Scholar
  143. 143.
    Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) Framework-catenation isomerism in metal–organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129:1858–1859PubMedCrossRefGoogle Scholar
  144. 144.
    Liu Y, Eubank JF, Cairns AJ, Eckert J, Kravtsov VC, Luebke R, Eddaoudi M (2007) Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew Chem Int Ed 46:3278–3283CrossRefGoogle Scholar
  145. 145.
    Pham T, Forrest KA, Hogan A, Tudor B, McLaughlin K, Belof JL, Eckert J, Space B (2015) Understanding hydrogen sorption in In- soc-MOF: a charged metal–organic framework with open-metal sites, narrow channels, and counterions. Cryst Growth Des 15:1460–1471CrossRefGoogle Scholar
  146. 146.
    Millange F, Serre C, Férey G (2002) Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first \({\text{ Cr }}^{III}\) hybrid inorganic–organic microporous solids: \({\text{ Cr }}^{III} \text{(OH) } \cdot {\text{ O }}_2 \text{ C }{-}{\text{ C }}_6 {\text{ H }}_4{-}\text{ CO2 } \cdot {\text{ HO }}_2 \text{ C }{-} {\text{ C }}_6 {\text{ H }}_4{-} {\text{ CO }}_2 {\text{ H }}_x\). Chem Commun 1:822–823CrossRefGoogle Scholar
  147. 147.
    Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D, Férey G (2002) Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or \({\text{ Cr }}^{III} \text{(OH) } \cdot {\text{ O }}_2 \text{ C }{-} {\text{ C }}_6 {\text{ H }}_4 - {\text{ CO }}_2 \cdot {\text{ HO }}_2 \text{ C }{-} {\text{ C }}_6 {\text{ H }}_4 - {\text{ CO }}_2 {\text{ H }}_x \cdot {\text{ H }}_2 {\text{ O }}_y\). J Am Chem Soc 124:13519–13526PubMedCrossRefGoogle Scholar
  148. 148.
    Park K, Lin W, Paesani F (2012) A refined MS-EVB model for proton transport in aqueous environments. J Phys Chem B 116:343–352PubMedCrossRefGoogle Scholar
  149. 149.
    Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123:234505PubMedCrossRefGoogle Scholar
  150. 150.
    Fanourgakis GS, Xantheas SS (2008) Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. J Chem Phys 128:074506PubMedCrossRefGoogle Scholar
  151. 151.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  152. 152.
    Pham T, Forrest KA, Gao W-Y, Ma S, Space B (2015) Theoretical insights into the tuning of metal binding sites of paddlewheels in rht-metal–organic frameworks. ChemPhysChem 16:3170–3179PubMedCrossRefGoogle Scholar
  153. 153.
    Franz D, Forrest KA, Pham T, Space B (2016) Accurate \({\text{ H }}_2\) sorption modeling in the rht-MOF NOTT-112 using explicit polarization. Cryst Growth Des 16:6024–6032CrossRefGoogle Scholar
  154. 154.
    Forrest KA, Pham T, Space B (2017) Investigating gas sorption in an rht-metal–organic framework with 1,2,3-triazole groups. Phys Chem Chem Phys 19:29204–29221PubMedCrossRefGoogle Scholar
  155. 155.
    Franz DM, Dyott ZE, Forrest KA, Hogan A, Pham T, Space B (2018) Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich rht-metal–organic framework. Phys Chem Chem Phys 20:1761–1777PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Suepaul S, Forrest KA, Pham T, Space B (2018) Investigating the effects of linker extension on \({\text{ H }}_2\) sorption in the rht-metal–organic framework NU-111 by molecular simulations. Cryst Growth Des 18:7599–7610CrossRefGoogle Scholar
  157. 157.
    Brown CM, Liu Y, Yildirim T, Peterson VK, Kepert CJ (2009) Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study. Nanotechnology 20:204025PubMedCrossRefGoogle Scholar
  158. 158.
    Yan Y, Telepeni I, Yang S, Lin X, Kockelmann W, Dailly A, Blake AJ, Lewis W, Walker GS, Allan DR, Barnett SA, Champness NR, Schröder M (2010) Metal–organic polyhedral frameworks: high \({\text{ H }}_2\) adsorption capacities and neutron powder diffraction studies. J Am Chem Soc 132:4092–4094PubMedCrossRefGoogle Scholar
  159. 159.
    Mullen AL, Pham T, Forrest KA, Cioce CR, McLaughlin K, Space B (2013) A polarizable and transferable PHAST \({\text{ CO }}_2\) potential for materials simulation. J Chem Theory Comput 9:5421–5429PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Potoff JJ, Siepmann JI (2001) Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J 47:1676–1682CrossRefGoogle Scholar
  161. 161.
    Zheng B, Bai J, Duan J, Wojtas L, Zaworotko MJ (2011) Enhanced \({\text{ CO }}_2\) binding affinity of a high-uptake rht-type metal–organic framework decorated with acylamide groups. J Am Chem Soc 133:748–751PubMedCrossRefGoogle Scholar
  162. 162.
    Wu H, Simmons JM, Srinivas G, Zhou W, Yildirim T (2010) Adsorption sites and binding nature of \({\text{ CO }}_2\) in prototypical metal–organic frameworks: a combined neutron diffraction and first-principles study. J Phys Chem Lett 1:1946–1951CrossRefGoogle Scholar
  163. 163.
    Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127:1504–1518PubMedCrossRefGoogle Scholar
  164. 164.
    Dietzel PDC, Morita Y, Blom R, Fjellvåg H (2005) An in situ high-temperature single-crystal investigation of a dehydrated metal–organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. Angew Chem Int Ed 44:6354–6358CrossRefGoogle Scholar
  165. 165.
    Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvåg H (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 1:959–961Google Scholar
  166. 166.
    Dietzel PDC, Blom R, Fjellvåg H (2008) Base-induced formation of two magnesium metal–organic framework compounds with a bifunctional tetratopic ligand. Eur J Inorg Chem 2008:3624–3632CrossRefGoogle Scholar
  167. 167.
    Marcz M, Johnsen RE, Dietzel PD, Fjellvag H (2012) The iron member of the CPO-27 coordination polymer series: synthesis, characterization, and intriguing redox properties. Microporous Mesoporous Mater 157:62–74CrossRefGoogle Scholar
  168. 168.
    Sanz R, Martinez F, Orcajo G, Wojtas L, Briones D (2013) Synthesis of a honeycomb-like Cu-based metal–organic framework and its carbon dioxide adsorption behaviour. Dalton Trans 42:2392–2398PubMedCrossRefGoogle Scholar
  169. 169.
    Pham T, Forrest KA, McLaughlin K, Eckert J, Space B (2014) Capturing the \({\text{ H }}_2\)-metal interaction in Mg-MOF-74 using classical polarization. J Phys Chem C 118:22683–22690CrossRefGoogle Scholar
  170. 170.
    Pham T, Forrest KA, Eckert J, Space B (2016) Dramatic effect of the electrostatic parameters on \({\text{ H }}_2\) sorption in an M-MOF-74 analogue. Cryst Growth Des 16:867–874CrossRefGoogle Scholar
  171. 171.
    Zhou W, Wu H, Yildirim T (2008) Enhanced \({\text{ H }}_2\) adsorption in isostructural metal–organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130:15268–15269PubMedCrossRefGoogle Scholar
  172. 172.
    Valenzano L, Civalleri B, Chavan S, Palomino GT, Areán CO, Bordiga S (2010) Computational and experimental studies on the adsorption of CO, \({\text{ N }}_2\), and \({\text{ CO }}_2\) on Mg-MOF-74. J Phys Chem C 114:11185–11191CrossRefGoogle Scholar
  173. 173.
    Valenzano L, Civalleri B, Sillar K, Sauer J (2011) Heats of adsorption of CO and \({\text{ CO }}_2\) in metal-organic frameworks: quantum mechanical study of CPO-27-M (M = Mg, Ni, Zn). J Phys Chem C 115:21777–21784CrossRefGoogle Scholar
  174. 174.
    Dzubak AL, Lin L-C, Kim J, Swisher JA, Poloni R, Maximoff SN, Smit B, Gagliardi L (2012) Ab initio carbon capture in open-site metal–organic frameworks. Nat Chem 4:810–816PubMedCrossRefGoogle Scholar
  175. 175.
    Lin L-C, Lee K, Gagliardi L, Neaton JB, Smit B (2014) Force-field development from electronic structure calculations with periodic boundary conditions: applications to gaseous adsorption and transport in metal-organic frameworks. J Chem Theory Comput 10:1477–1488PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Sillar K, Sauer J (2012) Ab initio prediction of adsorption isotherms for small molecules in metal–organic frameworks: the effect of lateral interactions for methane/CPO-27-Mg. J Am Chem Soc 134:18354–18365PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Bloch ED, Hudson MR, Mason JA, Chavan S, Crocellá V, Howe JD, Lee K, Dzubak AL, Queen WL, Zadrozny JM, Geier SJ, Lin L-C, Gagliardi L, Smit B, Neaton JB, Bordiga S, Brown CM, Long JR (2014) Reversible CO binding enables tunable \({\text{ CO/H }}_2\) and \({\text{ CO/N }}_2\) separations in metal–organic frameworks with exposed divalent metal cations. J Am Chem Soc 136:10752–10761PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Dietzel PDC, Georgiev PA, Eckert J, Blom R, Strassle T, Unruh T (2010) Interaction of hydrogen with accessible metal sites in the metal–organic frameworks \({\text{ M }}_2\)(dhtp) (CPO-27-M; M = Ni Co, Mg). Chem Commun 46:4962–4964CrossRefGoogle Scholar
  179. 179.
    Sumida K, Brown CM, Herm ZR, Chavan S, Bordiga S, Long JR (2011) Hydrogen storage properties and neutron scattering studies of \({\text{ Mg }}_2\)(dobdc)-a metal–organic framework with open \({\text{ Mg }}^{2+}\) adsorption sites. Chem Commun 47:1157–1159CrossRefGoogle Scholar
  180. 180.
    Liu Y, Kabbour H, Brown CM, Neumann DA, Ahn CC (2008) Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal–organic frameworks. Langmuir 24:4772–4777PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Rosnes MH, Opitz M, Frontzek M, Lohstroh W, Embs JP, Georgiev PA, Dietzel PDC (2015) Intriguing differences in hydrogen adsorption in CPO-27 materials induced by metal substitution. J Mater Chem A 3:4827–4839CrossRefGoogle Scholar
  182. 182.
    Becker TM, Heinen J, Dubbeldam D, Lin L-C, Vlugt TJH (2017) Polarizable force fields for \({\text{ CO }}_2\) and \({\text{ CH }}_4\) adsorption in M-MOF-74. J Phys Chem C 121:4659–4673CrossRefGoogle Scholar
  183. 183.
    Becker TM, Lin L-C, Dubbeldam D, Vlugt TJH (2018) Polarizable force field for \({\text{ CO }}_2\) in M-MOF-74 derived from quantum mechanics. J Phys Chem C 122:24488–24498CrossRefGoogle Scholar
  184. 184.
    Becker TM, Luna-Triguero A, Vicent-Luna JM, Lin L-C, Dubbeldam D, Calero S, Vlugt TJH (2018) Potential of polarizable force fields for predicting the separation performance of small hydrocarbons in M-MOF-74. Phys Chem Chem Phys 20:28848–28859PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Lachet V, Boutin A, Tavitian B, Fuchs AH (1998) Computational study of \(p\)-Xylene/\(m\)-xylene mixtures adsorbed in NaY zeolite. J Phys Chem B 102:9224–9233CrossRefGoogle Scholar
  186. 186.
    Dietzel PDC, Besikiotis V, Blom R (2009) Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J Mater Chem 19:7362–7370CrossRefGoogle Scholar
  187. 187.
    Herm ZR, Swisher JA, Smit B, Krishna R, Long JR (2011) Metal–organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J Am Chem Soc 133:5664–5667PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Yu D, Yazaydın AÖ, Lane JR, Dietzel PDC, Snurr RQ (2013) A combined experimental and quantum chemical study of \({\text{ CO }}_2\) adsorption in the metal–organic framework CPO-27 with different metals. Chem Sci 4:3544–3556CrossRefGoogle Scholar
  189. 189.
    Queen WL, Hudson MR, Bloch ED, Mason JA, Gonzalez MI, Lee JS, Gygi D, Howe JD, Lee K, Darwish TA, James M, Peterson VK, Teat SJ, Smit B, Neaton JB, Long JR, Brown CM (2014) Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks \({\text{ M }}_2\)(dobdc) (M = Mg, Mn, Fe Co, Ni, Cu, Zn). Chem Sci 5:4569–4581CrossRefGoogle Scholar
  190. 190.
    Mercado R, Vlaisavljevich B, Lin L-C, Lee K, Lee Y, Mason JA, Xiao DJ, Gonzalez MI, Kapelewski MT, Neaton JB, Smit B (2016) Force field development from periodic density functional theory calculations for gas separation applications using metal-organic frameworks. J Phys Chem C 120:12590–12604CrossRefGoogle Scholar
  191. 191.
    Skoulidas AI, Sholl DS (2005) Self-diffusion and transport diffusion of light gases in metal–organic framework materials assessed using molecular dynamics simulations. J Phys Chem B 109:15760–15768PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Liu B, Yang Q, Xue C, Zhong C, Chen B, Smit B (2008) Enhanced adsorption selectivity of hydrogen/methane mixtures in metal–organic frameworks with interpenetration: a molecular simulation study. J Phys Chem C 112:9854–9860CrossRefGoogle Scholar
  193. 193.
    Pham T, Forrest KA, Tudor B, Elsaidi SK, Mohamed MH, McLaughlin K, Cioce CR, Zaworotko MJ, Space B (2014) Theoretical investigations of \({\text{ CO }}_2\) and \({\text{ CH }}_4\) sorption in an interpenetrated diamondoid metal–organic material. Langmuir 30:6454–6462PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Scott HS, Shivanna M, Bajpai A, Madden DG, Chen K-J, Pham T, Forrest KA, Hogan A, Space B, Perry JJ IV, Zaworotko MJ (2017) Highly selective separation of \({\text{ C }}_2 {\text{ H }}_2\) from \({\text{ CO }}_2\) by a new dichromate-based hybrid ultramicroporous material. ACS Appl Mater Interfaces 9:33395–33400PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    McLaughlin K, Cioce CR, Belof JL, Space B (2012) A molecular \({\text{ H }}_2\) potential for heterogeneous simulations including polarization and many-body van der Waals interactions. J Chem Phys 136:194302PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of South FloridaTampaUSA

Personalised recommendations