Advertisement

Topics in Current Chemistry

, 378:3 | Cite as

Waste-derived Materials: Opportunities in Photocatalysis

  • Daily Rodríguez-Padrón
  • Rafael LuqueEmail author
  • Mario J. Muñoz-BatistaEmail author
Review
  • 100 Downloads
Part of the following topical collections:
  1. Heterogeneous Photocatalysis

Abstract

Waste-derived materials have been gaining increased attention in recent years due to their great potential and environmentally friendly nature. Several contributions in the literature have covered the advances achieved so far in this area. Nonetheless, to the best of our knowledge, no review has been dedicated specifically to waste-derived or templated photocatalytic materials. Both photocatalysis and (bio)waste-inspired design yield materials of a remarkably green nature. Therefore, the partnership between them may open promising possibilities for both waste valorization and photocatalytic processes, which in turn will lead to sustainable development globally, with the potential for full utilization of renewable energy sources such as biomass and sunlight. Several photocatalytic waste-derived materials, synthetic procedures, and applications will be described throughout this work, including waste-derived/templated TiO2, ZnO, and metal sulfide materials. Special attention will be given to biomass-inspired carbonaceous materials, including carbon quantum dots and graphitic carbon nitride (g-C3N4).

Keywords

Photocatalysis Nanomaterials Waste Valorization Biomass Green chemistry 

Notes

Acknowledgements

Rafael Luque gratefully acknowledges MINECO for funding project CTQ2016-78289-P, co-financed with FEDER funds. Daily Rodriguez-Padron also gratefully acknowledges MINECO for providing a research contract under the same project. M. J. Muñoz-Batista thanks the “Plan Propio de Investigación-Proyectos de investigación precompetitivos para Jóvenes Investigadores”  from Universidad de Granada and MINECO for a Juan de la Cierva postdoctoral contract (ref. FJCI-2016-29014). This publication was prepared with support from RUDN University, Program 5-100.

References

  1. 1.
    Anastas PT, Warner JC (1998) Green chemistry : theory and practice. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451.  https://doi.org/10.1039/C1CS15219J CrossRefPubMedGoogle Scholar
  3. 3.
    Rodríguez-Padrón D, Puente-Santiago AR, Balu AM et al (2019) Environmental catalysis: present and future. ChemCatChem 11:18–38.  https://doi.org/10.1002/cctc.201801248 CrossRefGoogle Scholar
  4. 4.
    Spasiano D, Marotta R, Malato S et al (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B Environ 171:90–123.  https://doi.org/10.1016/j.apcatb.2014.12.050 CrossRefGoogle Scholar
  5. 5.
    Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614.  https://doi.org/10.1021/cr100454n CrossRefPubMedGoogle Scholar
  6. 6.
    Colmenares JC, Luque R (2014) Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem Soc Rev 43:765–778.  https://doi.org/10.1039/C3CS60262A CrossRefPubMedGoogle Scholar
  7. 7.
    Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96.  https://doi.org/10.1021/cr00033a004 CrossRefGoogle Scholar
  8. 8.
    Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011.  https://doi.org/10.1039/b714786b CrossRefPubMedGoogle Scholar
  9. 9.
    Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758.  https://doi.org/10.1021/cr00035a013 CrossRefGoogle Scholar
  10. 10.
    Granone LI, Sieland F, Zheng N et al (2018) Photocatalytic conversion of biomass into valuable products: a meaningful approach? Green Chem 20:1169–1192.  https://doi.org/10.1039/C7GC03522E CrossRefGoogle Scholar
  11. 11.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959.  https://doi.org/10.1021/cr0500535 CrossRefPubMedGoogle Scholar
  12. 12.
    Muñoz-Batista MJ, Ballari MM, Kubacka A et al (2019) Braiding kinetics and spectroscopy in photo-catalysis: the spectro-kinetic approach. Chem Soc Rev 48:637–682.  https://doi.org/10.1039/C8CS00108A CrossRefPubMedGoogle Scholar
  13. 13.
    Caudillo-Flores U, Muñoz-Batista MJ, Kubacka A, Fernández-García M (2018) Operando spectroscopy in photocatalysis. ChemPhotoChem 2:777–785.  https://doi.org/10.1002/cptc.201800117 CrossRefGoogle Scholar
  14. 14.
    Colmenares JC, Varma RS, Nair V (2017) Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem Soc Rev 46:6675–6686.  https://doi.org/10.1039/C7CS00257B CrossRefPubMedGoogle Scholar
  15. 15.
    Liu J, Liu Y, Liu N et al (2015) Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974.  https://doi.org/10.1126/science.aaa3145 CrossRefPubMedGoogle Scholar
  16. 16.
    Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113:17536–17542.  https://doi.org/10.1021/jp907128k CrossRefGoogle Scholar
  17. 17.
    Chiarello GL, Ferri D, Selli E (2011) Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2. J Catal 280:168–177.  https://doi.org/10.1016/j.jcat.2011.03.013 CrossRefGoogle Scholar
  18. 18.
    Meng X, Wang T, Liu L et al (2014) Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: an alternative approach for solar fuel production. Angew Chem Int Ed 53:11478–11482.  https://doi.org/10.1002/anie.201404953 CrossRefGoogle Scholar
  19. 19.
    Caudillo-Flores U, Muñoz-Batista MJ, Cortés JA et al (2017) UV and visible light driven H 2 photo-production using Nb-doped TiO2: comparing Pt and Pd co-catalysts. Mol Catal 437:1–10.  https://doi.org/10.1016/j.mcat.2017.04.035 CrossRefGoogle Scholar
  20. 20.
    Ouyang W, Muñoz-Batista MJ, Kubacka A et al (2018) Enhancing photocatalytic performance of TiO2 in H2 evolution via Ru co-catalyst deposition. Appl Catal B Environ 238:434–443.  https://doi.org/10.1016/j.apcatb.2018.07.046 CrossRefGoogle Scholar
  21. 21.
    Sastre F, Versluis C, Meulendijks N et al (2019) Sunlight-fueled, low-temperature ru-catalyzed conversion of CO2 and H2 to CH4 with a high photon-to-methane efficiency. ACS Omega 4:7369–7377.  https://doi.org/10.1021/acsomega.9b00581 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sastre F, Puga AV, Liu L et al (2014) Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J Am Chem Soc 136:6798–6801.  https://doi.org/10.1021/ja500924t CrossRefPubMedGoogle Scholar
  23. 23.
    Ouyang W, Kuna E, Yepez A et al (2016) Mechanochemical synthesis of TiO2 nanocomposites as photocatalysts for benzyl alcohol photo-oxidation. Nanomaterials 6:93.  https://doi.org/10.3390/nano6050093 CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Verma S, Baig RBN, Nadagouda MN, Varma RS (2016) Sustainable strategy utilizing biomass: visible-light-mediated synthesis of γ-valerolactone. ChemCatChem 8:690–693.  https://doi.org/10.1002/cctc.201501352 CrossRefGoogle Scholar
  25. 25.
    Caudillo-Flores U, Muñoz-Batista MJ, Hungría AB et al (2019) Toluene and styrene photo-oxidation quantum efficiency: comparison between doped and composite tungsten-containing anatase-based catalysts. Appl Catal B Environ 245:49–61.  https://doi.org/10.1016/j.apcatb.2018.12.032 CrossRefGoogle Scholar
  26. 26.
    Li S-H, Liu S, Colmenares JC, Xu Y-J (2016) A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chem 18:594–607.  https://doi.org/10.1039/C5GC02109J CrossRefGoogle Scholar
  27. 27.
    Parrino F, Bellardita M, García-López EI et al (2018) Heterogeneous photocatalysis for selective formation of high-value-added molecules: some chemical and engineering aspects. ACS Catal 8:11191–11225.  https://doi.org/10.1021/acscatal.8b03093 CrossRefGoogle Scholar
  28. 28.
    Krivtsov I, Ilkaeva M, García-López EI et al (2019) Effect of substituents on partial photocatalytic oxidation of aromatic alcohols assisted by polymeric C3N4. ChemCatChem 11:2713–2724.  https://doi.org/10.1002/cctc.201900362 CrossRefGoogle Scholar
  29. 29.
    Kyriakopoulos J, Tzirakis MD, Panagiotou GD et al (2012) Highly active catalysts for the photooxidation of organic compounds by deposition of [60] fullerene onto the MCM-41 surface: a green approach for the synthesis of fine chemicals. Appl Catal B Environ 117–118:36–48.  https://doi.org/10.1016/J.APCATB.2011.12.024 CrossRefGoogle Scholar
  30. 30.
    Nair V, Muñoz-Batista MJ, Fernández-García M et al (2019) Thermo-photocatalysis: environmental and energy applications. Chemsuschem 12:2098–2116.  https://doi.org/10.1002/cssc.201900175 CrossRefPubMedGoogle Scholar
  31. 31.
    Caudillo-Flores U, Muñoz-Batista MJ, Kubacka A et al (2018) Measuring and interpreting quantum efficiency of acid blue 9 photodegradation using TiO2-based catalysts. Appl Catal A Gen.  https://doi.org/10.1016/j.apcata.2017.10.016 CrossRefGoogle Scholar
  32. 32.
    Manassero A, Satuf ML, Alfano OM (2013) Evaluation of UV and visible light activity of TiO2 catalysts for water remediation. Chem Eng J 225:378–386.  https://doi.org/10.1016/j.cej.2013.03.097 CrossRefGoogle Scholar
  33. 33.
    Mamaghani AH, Haghighat F, Lee C-S (2017) Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catal B Environ 203:247–269.  https://doi.org/10.1016/j.apcatb.2016.10.037 CrossRefGoogle Scholar
  34. 34.
    Ballari MM, Brouwers HJH (2013) Full scale demonstration of air-purifying pavement. J Hazard Mater 254–255:406–414.  https://doi.org/10.1016/j.jhazmat.2013.02.012 CrossRefPubMedGoogle Scholar
  35. 35.
    Pastrana-Martínez LM, Morales-Torres S, Carabineiro SAC et al (2018) Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation. Appl Surf Sci 458:839–848.  https://doi.org/10.1016/J.APSUSC.2018.07.102 CrossRefGoogle Scholar
  36. 36.
    Chávez AM, Ribeiro AR, Moreira NFF et al (2019) Removal of organic micropollutants from a municipal wastewater secondary effluent by UVA-LED photocatalytic ozonation. Catalysts 9:472.  https://doi.org/10.3390/catal9050472 CrossRefGoogle Scholar
  37. 37.
    Moreira NFF, Sampaio MJ, Ribeiro AR et al (2019) Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light. Appl Catal B Environ 248:184–192.  https://doi.org/10.1016/J.APCATB.2019.02.001 CrossRefGoogle Scholar
  38. 38.
    Giannakis S, Rtimi S, Pulgarin C (2017) Light-assisted advanced oxidation processes for the elimination of chemical and microbiological pollution of wastewaters in developed and developing countries. Molecules 22:1070.  https://doi.org/10.3390/molecules22071070 CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Rengifo-Herrera JA, Pierzchała K, Sienkiewicz A et al (2009) Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light. Appl Catal B Environ 88:398–406.  https://doi.org/10.1016/J.APCATB.2008.10.025 CrossRefGoogle Scholar
  40. 40.
    Rengifo-Herrera JA, Pulgarin C (2010) Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Sol Energy 84:37–43.  https://doi.org/10.1016/J.SOLENER.2009.09.008 CrossRefGoogle Scholar
  41. 41.
    Muñoz-Batista MJ, Ferrer M, Fernández-García M, Kubacka A (2014) Abatement of organics and Escherichia coli using CeO2-TiO2 composite oxides: ultraviolet and visible light performances. Appl Catal B Environ 154–155:350–359.  https://doi.org/10.1016/j.apcatb.2014.02.038 CrossRefGoogle Scholar
  42. 42.
    Kubacka A, Muñoz-Batista MJ, Ferrer M, Fernández-Garcia M (2018) Er-W codoping of TiO2-anatase: structural and electronic characterization and disinfection capability under UV–vis, and near-IR excitation. Appl Catal B Environ 228:113–129.  https://doi.org/10.1016/j.apcatb.2018.01.064 CrossRefGoogle Scholar
  43. 43.
    Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297.  https://doi.org/10.1016/J.SURFREP.2011.01.001 CrossRefGoogle Scholar
  44. 44.
    Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl 50:2904–2939.  https://doi.org/10.1002/anie.201001374 CrossRefPubMedGoogle Scholar
  45. 45.
    Fontelles-Carceller O, Muñoz-Batista MJ, Conesa JC et al (2017) UV and visible hydrogen photo-production using Pt promoted Nb-doped TiO2 photo-catalysts: interpreting quantum efficiency. Appl Catal B Environ 216:133–145.  https://doi.org/10.1016/j.apcatb.2017.05.022 CrossRefGoogle Scholar
  46. 46.
    Lu F, Cai W, Zhang Y (2008) ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv Funct Mater 18:1047–1056.  https://doi.org/10.1002/adfm.200700973 CrossRefGoogle Scholar
  47. 47.
    Mclaren A, Valdes-Solis T, Li G, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541.  https://doi.org/10.1021/ja9052703 CrossRefPubMedGoogle Scholar
  48. 48.
    Sakthivel S, Neppolian B, Shankar MV et al (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82.  https://doi.org/10.1016/S0927-0248(02)00255-6 CrossRefGoogle Scholar
  49. 49.
    Ong W-J, Tan L-L, Ng YH et al (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329.  https://doi.org/10.1021/acs.chemrev.6b00075 CrossRefPubMedGoogle Scholar
  50. 50.
    Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B Environ 198:347–377.  https://doi.org/10.1016/j.apcatb.2016.05.052 CrossRefGoogle Scholar
  51. 51.
    Fontelles-Carceller O, Muñoz-Batista MJMJMJ, Fernández-García M, Kubacka A (2016) Interface effects in sunlight-driven Ag/g-C3N4 composite catalysts: study of the toluene photodegradation quantum efficiency. ACS Appl Mater Interfaces 8:2617–2627.  https://doi.org/10.1021/acsami.5b10434 CrossRefPubMedGoogle Scholar
  52. 52.
    Cerdan K, Ouyang W, Colmenares JC et al (2019) Facile mechanochemical modification of g-C3N4 for selective photo-oxidation of benzyl alcohol. Chem Eng Sci 194:78–84.  https://doi.org/10.1016/j.ces.2018.04.001 CrossRefGoogle Scholar
  53. 53.
    Zheng H, Okabe TH (2008) Recovery of titanium metal scrap by utilizing chloride wastes. J Alloys Compd 461:459–466.  https://doi.org/10.1016/j.jallcom.2007.07.025 CrossRefGoogle Scholar
  54. 54.
    Valighazvini F, Rashchi F, Khayyam Nekouei R (2013) Recovery of titanium from blast furnace slag. Ind Eng Chem Res 52:1723–1730.  https://doi.org/10.1021/ie301837m CrossRefGoogle Scholar
  55. 55.
    Liu XH, Gai GS, Yang YF et al (2008) Kinetics of the leaching of TiO2 from Ti-bearing blast furnace slag. J China Univ Min Technol 18:275–278.  https://doi.org/10.1016/S1006-1266(08)60058-9 CrossRefGoogle Scholar
  56. 56.
    Zhang Q, Wu Y, Zuo T (2018) Green recovery of titanium and effective regeneration of TiO2 photocatalysts from spent selective catalytic reduction catalysts. ACS Sustain Chem Eng 6:3091–3101.  https://doi.org/10.1021/acssuschemeng.7b03038 CrossRefGoogle Scholar
  57. 57.
    Muñoz-Batista MJ, Motta Meira D, Colón G et al (2018) Phase-contact engineering in mono- and bimetallic Cu–Ni Co-catalysts for hydrogen photocatalytic materials. Angew Chem Int Ed 57:1199–1203.  https://doi.org/10.1002/anie.201709552 CrossRefGoogle Scholar
  58. 58.
    Zhang AY, Long LL, Liu C et al (2014) Chemical recycling of the waste anodic electrolyte from the TiO2 nanotube preparation process to synthesize facet-controlled TiO2 single crystals as an efficient photocatalyst. Green Chem 16:2745–2753.  https://doi.org/10.1039/c3gc42167h CrossRefGoogle Scholar
  59. 59.
    Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551.  https://doi.org/10.1016/j.rser.2017.08.020 CrossRefGoogle Scholar
  60. 60.
    Sujaridworakun P, Natrchalayuth K (2014) Influence of pH and HPC concentration on the synthesis of zinc oxide photocatalyst particle from zinc-dust waste by hydrothermal treatment. Adv Powder Technol 25:1266–1272.  https://doi.org/10.1016/J.APT.2014.03.002 CrossRefGoogle Scholar
  61. 61.
    Muñoz-Batista MJ, Kubacka A, Hungría AB, Fernández-García M (2015) Heterogeneous photocatalysis: light-matter interaction and chemical effects in quantum efficiency calculations. J Catal 330:154–166.  https://doi.org/10.1016/j.jcat.2015.06.021 CrossRefGoogle Scholar
  62. 62.
    Mohamed HH, Alsanea AA, Alomair NA et al (2019) ZnO@ porous graphite nanocomposite from waste for superior photocatalytic activity. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-019-04684-3 CrossRefGoogle Scholar
  63. 63.
    Tanniratt P, Wasanapiarnpong T, Mongkolkachit C, Sujaridworakun P (2016) Utilization of industrial wastes for preparation of high performance ZnO/diatomite hybrid photocatalyst. Ceram Int 42:17605–17609.  https://doi.org/10.1016/j.ceramint.2016.08.074 CrossRefGoogle Scholar
  64. 64.
    Hao H, Lang X (2019) Metal sulfide photocatalysis: visible-light-induced organic transformations. ChemCatChem 11:1378–1393.  https://doi.org/10.1002/cctc.201801773 CrossRefGoogle Scholar
  65. 65.
    Halfyard JE, Hawboldt K (2011) Separation of elemental sulfur from hydrometallurgical residue: a review. Hydrometallurgy 109:80–89.  https://doi.org/10.1016/j.hydromet.2011.05.012 CrossRefGoogle Scholar
  66. 66.
    Cova CM, Zuliani A, Puente Santiago AR et al (2018) Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J Mater Chem A 6:21516–21523.  https://doi.org/10.1039/C8TA06417B CrossRefGoogle Scholar
  67. 67.
    Zuliani A, Muñoz-Batista MJ, Luque R (2018) Microwave-assisted valorization of pig bristles: towards visible light photocatalytic chalcocite composites. Green Chem 20:3001–3007.  https://doi.org/10.1039/C8GC00669E CrossRefGoogle Scholar
  68. 68.
    Cova CM, Zuliani A, Munoz-Batista MJ, Luque R (2019) A sustainable approach for the synthesis of catalytically active peroxidase-mimic ZnS catalysts. ACS Sustain Chem Eng 7:1300–1307.  https://doi.org/10.1021/acssuschemeng.8b04968 CrossRefGoogle Scholar
  69. 69.
    Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381.  https://doi.org/10.1039/C4CS00269E CrossRefPubMedGoogle Scholar
  70. 70.
    Abbas A, Mariana LT, Phan AN (2018) Biomass-waste derived graphene quantum dots and their applications. Carbon N Y 140:77–99.  https://doi.org/10.1016/j.carbon.2018.08.016 CrossRefGoogle Scholar
  71. 71.
    Park SY, Lee HU, Park ES et al (2014) Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces 6:3365–3370.  https://doi.org/10.1021/am500159p CrossRefPubMedGoogle Scholar
  72. 72.
    Hsu P-C, Shih Z-Y, Lee C-H, Chang H-T (2012) Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem 14:917.  https://doi.org/10.1039/c2gc16451e CrossRefGoogle Scholar
  73. 73.
    Liang Z, Zeng L, Cao X et al (2014) Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation. J Mater Chem C 2:9760–9766.  https://doi.org/10.1039/C4TC01714E CrossRefGoogle Scholar
  74. 74.
    Anmei S, Qingmei Z, Yuye C, Yilin W (2018) Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I. Anal Chim Acta 1023:115–120.  https://doi.org/10.1016/J.ACA.2018.03.024 CrossRefPubMedGoogle Scholar
  75. 75.
    Thakur A, Devi P, Saini S et al (2019) Citrus limetta organic waste recycled carbon nanolights: photoelectro catalytic, sensing, and biomedical applications. ACS Sustain Chem Eng 7:502–512.  https://doi.org/10.1021/acssuschemeng.8b04025 CrossRefGoogle Scholar
  76. 76.
    Martindale BCM, Hutton GAM, Caputo CA, Reisner E (2015) Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J Am Chem Soc 137:6018–6025.  https://doi.org/10.1021/jacs.5b01650 CrossRefPubMedGoogle Scholar
  77. 77.
    Martindale BCM, Hutton GAM, Caputo CA et al (2017) Enhancing light absorption and charge transfer efficiency in carbon dots through graphitization and core nitrogen doping. Angew Chem Int Ed 56:6459–6463.  https://doi.org/10.1002/anie.201700949 CrossRefGoogle Scholar
  78. 78.
    Rigodanza F, Đorđević L, Arcudi F, Prato M (2018) Customizing the electrochemical properties of carbon nanodots by using quinones in bottom-up synthesis. Angew Chem 130:5156–5161.  https://doi.org/10.1002/ange.201801707 CrossRefGoogle Scholar
  79. 79.
    Fang Q, Dong Y, Chen Y et al (2017) Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. Carbon N Y 118:319–326.  https://doi.org/10.1016/J.CARBON.2017.03.061 CrossRefGoogle Scholar
  80. 80.
    Cailotto S, Mazzaro R, Enrichi F et al (2018) Design of carbon dots for metal-free photoredox catalysis. ACS Appl Mater Interfaces 10:40560–40567.  https://doi.org/10.1021/acsami.8b14188 CrossRefPubMedGoogle Scholar
  81. 81.
    Prasannan A, Imae T (2013) One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 52:15673–15678.  https://doi.org/10.1021/ie402421s CrossRefGoogle Scholar
  82. 82.
    Wang Z, Yu J, Zhang X et al (2016) Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: a comprehensive utilization strategy. ACS Appl Mater Interfaces 8:1434–1439.  https://doi.org/10.1021/acsami.5b10660 CrossRefPubMedGoogle Scholar
  83. 83.
    Rodríguez-Padrón D, Algarra M, Tarelho LAC et al (2018) Catalyzed microwave-assisted preparation of carbon quantum dots from lignocellulosic residues. ACS Sustain Chem Eng 6:7200–7205.  https://doi.org/10.1021/acssuschemeng.7b03848 CrossRefGoogle Scholar
  84. 84.
    Wang S, Wang H, Zhang R et al (2018) Egg yolk-derived carbon: achieving excellent fluorescent carbon dots and high performance lithium-ion batteries. J Alloys Compd 746:567–575.  https://doi.org/10.1016/j.jallcom.2018.02.293 CrossRefGoogle Scholar
  85. 85.
    Jing S, Zhao Y, Sun RC et al (2019) Facile and high-yield synthesis of carbon quantum dots from biomass-derived carbons at mild condition. ACS Sustain Chem Eng 7:7833–7843.  https://doi.org/10.1021/acssuschemeng.9b00027 CrossRefGoogle Scholar
  86. 86.
    Muñoz-Batista MJ, Rodriguez-Padron D, Puente-Santiago AR, Luque R (2018) Mechanochemistry: toward sustainable design of advanced nanomaterials for electrochemical energy storage and catalytic applications. ACS Sustain Chem Eng 6:9530–9544.  https://doi.org/10.1021/acssuschemeng.8b01716 CrossRefGoogle Scholar
  87. 87.
    Colmenares JC, Xu Y-J (2016) Heterogeneous photocatalysis from fundamentals to green applications. Springer, Berlin, HeidelbergGoogle Scholar
  88. 88.
    Francavilla M, Pineda A, Romero AA et al (2014) Efficient and simple reactive milling preparation of photocatalytically active porous ZnO nanostructures using biomass derived polysaccharides. Green Chem 16:2876–2885.  https://doi.org/10.1039/C3GC42554A CrossRefGoogle Scholar
  89. 89.
    Yang L, Li X, Wang Z et al (2017) Natural fiber templated TiO2 microtubes via a double soaking sol-gel route and their photocatalytic performance. Appl Surf Sci 420:346–354.  https://doi.org/10.1016/j.apsusc.2017.05.168 CrossRefGoogle Scholar
  90. 90.
    Chen X, Kuo D-H, Lu D et al (2016) Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template. Microporous Mesoporous Mater 223:145–151.  https://doi.org/10.1016/J.MICROMESO.2015.11.005 CrossRefGoogle Scholar
  91. 91.
    Wang H, Qiu X, Liu W, Yang D (2017) Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity. Appl Surf Sci 426:206–216.  https://doi.org/10.1016/J.APSUSC.2017.07.112 CrossRefGoogle Scholar
  92. 92.
    Unni SM, George L, Bhange SN et al (2016) Valorization of coffee bean waste: a coffee bean waste derived multifunctional catalyst for photocatalytic hydrogen production and electrocatalytic oxygen reduction reactions. RSC Adv 6:82103–82111.  https://doi.org/10.1039/c6ra14907c CrossRefGoogle Scholar
  93. 93.
    Rodríguez-Padrón D, Puente-Santiago AR, Luna-Lama F et al (2019) Versatile protein-templated TiO2 nanocomposite for energy storage and catalytic applications. ACS Sustain Chem Eng 7:5329–5337.  https://doi.org/10.1021/acssuschemeng.8b06349 CrossRefGoogle Scholar
  94. 94.
    Antonetti E, Iaquaniello G, Salladini A et al (2017) Waste-to-chemicals for a circular economy: the case of urea production (waste-to-urea). Chemsuschem 10:912–920.  https://doi.org/10.1002/cssc.201601555 CrossRefPubMedGoogle Scholar
  95. 95.
    Babar S, Gavade N, Shinde H et al (2019) An innovative transformation of waste toner powder into magnetic g-C3N4–Fe2O3 photocatalyst: sustainable e-waste management. J Environ Chem Eng 7:103041.  https://doi.org/10.1016/j.jece.2019.103041 CrossRefGoogle Scholar
  96. 96.
    Yola ML, Eren T, Atar N (2014) A novel efficient photocatalyst based on TiO2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. Chem Eng J 250:288–294.  https://doi.org/10.1016/j.cej.2014.03.116 CrossRefGoogle Scholar
  97. 97.
    Colmenares JC, Lisowski P, Bermudez JM et al (2014) Unprecedented photocatalytic activity of carbonized leather skin residues containing chromium oxide phases. Appl Catal B Environ 150–151:432–437.  https://doi.org/10.1016/j.apcatb.2013.12.038 CrossRefGoogle Scholar
  98. 98.
    Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4:3617–3637.  https://doi.org/10.1039/c5ta09613h CrossRefGoogle Scholar
  99. 99.
    Puente-Santiago AR, Rodríguez-Padrón D, Quan X et al (2019) Unprecedented wiring efficiency of sulfonated graphitic carbon nitride materials: toward high-performance amperometric recombinant CotA laccase biosensors. ACS Sustain Chem Eng 7:1474–1484.  https://doi.org/10.1021/acssuschemeng.8b05107 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Química OrgánicaUniversidad de CórdobaCórdobaSpain
  2. 2.Peoples Friendship University of Russia (RUDN University)MoscowRussia
  3. 3.Department of Chemical Engineering, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations