Topics in Current Chemistry

, 377:34 | Cite as

State-of-the-Art and Prospects of Biomolecules: Incorporation in Functional Metal–Organic Frameworks

  • Wenjie Duan
  • Zhengfeng Zhao
  • Hongde An
  • Zhenjie Zhang
  • Peng Cheng
  • Yao ChenEmail author
  • He Huang
Part of the following topical collections:
  1. Metal–Organic Framework: From Design to Applications


Given the unique properties of metal–organic frameworks (MOFs) including adjustable porosity, high surface area, and easy modification, they have attracted great attention as excellent solid supports for the incorporation of biomolecules. The formed biomolecules–MOFs composites show promising prospects in various fields such as biocatalysis, drug delivery, and biosensing. This review focuses on the state-of-the-art of biomolecules-incorporation using MOFs. Moreover, the relationship between properties of MOFs and biomolecules-incorporation is also discussed and highlighted. We hope this work will inspire the innovation in this emerging field for highly efficient synthesis of biomolecules–MOFs composites with various properties and advanced applications.


Metal–organic frameworks Biomolecules Incorporation Application 



2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)


Bacillus subtilis lipase


Bovine serum albumin


Candida-antarctica-lipase B

Cyt c

Cytochrome c






Deoxyribonucleic acid


1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide


Fluorescein isothiocyanate


Glucose oxidase


Horseradish peroxidase


Human serum albumin


Lactate dehydrogenase


Mesoporous benzene silica




Metal–organic frameworks






Organophosphorus acid anhydrolase




Peptide nucleic acid




Ribonucleic acid


Site-directed spin labeling in combination with electron paramagnetic resonance


Soybean epoxide hydrolase


Single-stranded DNA




X-ray photoelectron spectroscopy



The authors acknowledge the financial support from the National Key Research and Development Program of China (2018YFA0901800), National Natural Science Foundation of China (21871153, 31800793).


  1. 1.
    Hernandez K, Fernandez-Lafuente R (2011) Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol 48:107–122PubMedGoogle Scholar
  2. 2.
    Das R, Mishra H, Srivastava A, Kayastha AM (2017) Covalent immobilization of β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: a gateway to boost enzyme application. Chem Eng J 328:215–227Google Scholar
  3. 3.
    Gong Y, Adhikari P, Liu Q, Wang T, Gong M, Chan WL, Ching WY, Wu J (2017) Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection. ACS Appl Mater Interfaces 9:11016–11024PubMedGoogle Scholar
  4. 4.
    Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235PubMedGoogle Scholar
  5. 5.
    Wang XD, Rabe KS, Ahmed I, Niemeyer CM (2015) Multifunctional silica nanoparticles for covalent immobilization of highly sensitive proteins. Adv Mater 27:7945–7950PubMedGoogle Scholar
  6. 6.
    Ocsoy I, Tasdemir D, Mazicioglu S, Celik C, Katı A, Ulgen F (2018) Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater Lett 212:45–50Google Scholar
  7. 7.
    Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A (2016) Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 44:410–422PubMedGoogle Scholar
  8. 8.
    Dai Y, Chiu LY, Sui Y, Dai Q, Penumutchu S, Jain N, Dai L, Zorman CA, Tolbert BS, Sankaran RM et al (2019) Nanoparticle based simple electrochemical biosensor platform for profiling of protein-nucleic acid interactions. Talanta 195:46–54PubMedGoogle Scholar
  9. 9.
    Hudson S, Cooney J, Magner E (2008) Proteins in mesoporous silicates. Angew Chem Int Ed 47:8582–8594Google Scholar
  10. 10.
    Fried DI, Brieler FJ, Froba M (2013) Designing inorganic porous materials for enzyme adsorption and applications in biocatalysis. Chemcatchem 5:862–884Google Scholar
  11. 11.
    Hartmann M, Jung D (2010) Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. J Mater Chem 20:844–857Google Scholar
  12. 12.
    Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674PubMedGoogle Scholar
  13. 13.
    Hirai K, Reboul J, Morone N, Heuser JE, Furukawa S, Kitagawa S (2014) Diffusion-coupled molecular assembly: structuring of coordination polymers across multiple length scales. J Am Chem Soc 136:14966–14973PubMedGoogle Scholar
  14. 14.
    Li JR, Sculley J, Zhou HC (2012) Metal–organic frameworks for separations. Chem Rev 112:869–932PubMedGoogle Scholar
  15. 15.
    Zhou HC, Kitagawa S (2014) Metal–organic frameworks (MOFs). Chem Soc Rev 43:5415–5418PubMedGoogle Scholar
  16. 16.
    Nandasiri MI, Jambovane SR, McGrail BP, Schaef HT, Nune SK (2016) Adsorption, separation, and catalytic properties of densified metal–organic frameworks. Coord Chem Rev 311:38–52Google Scholar
  17. 17.
    Li B, Wen HM, Cui Y, Zhou W, Qian G, Chen B (2016) Emerging multifunctional metal–organic framework materials. Adv Mater 28:8819–8860PubMedGoogle Scholar
  18. 18.
    Cui Y, Li B, He H, Zhou W, Chen B, Qian G (2016) Metal–organic frameworks as platforms for functional materials. Acc Chem Res 49:483–493PubMedGoogle Scholar
  19. 19.
    Lei J, Qian R, Ling P, Cui L, Ju H (2014) Design and sensing applications of metal–organic framework composites. TrAC Trend Anal Chem 58:71–78Google Scholar
  20. 20.
    Cui L, Wu J, Li J, Ju H (2015) Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal–organic framework. Anal Chem 87:10635PubMedGoogle Scholar
  21. 21.
    Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ et al (2015) Biomimetic mineralization of metal–organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:7240PubMedPubMedCentralGoogle Scholar
  22. 22.
    Hintz H, Wuttke S (2014) Postsynthetic modification of an amino-tagged MOF using peptide coupling reagents: a comparative study. Chem Commun 50:11472–11475Google Scholar
  23. 23.
    Mehta J, Bhardwaj N, Bhardwaj SK, Kim K-H, Deep A (2016) Recent advances in enzyme immobilization techniques: metal–organic frameworks as novel substrates. Coord Chem Rev 322:30–40Google Scholar
  24. 24.
    Cai H, Huang Y-L, Li D (2019) Biological metal–organic frameworks: structures, host–guest chemistry and bio-applications. Coord Chem Rev 378:207–221Google Scholar
  25. 25.
    Liu X, Qi W, Wang Y, Su R, He Z (2017) A facile strategy for enzyme immobilization with highly stable hierarchically porous metal–organic frameworks. Nanoscale 9:17561–17570PubMedGoogle Scholar
  26. 26.
    Liang K, Richardson JJ, Cui J, Caruso F, Doonan CJ, Falcaro P (2016) Metal–organic framework coatings as cytoprotective exoskeletons for living cells. Adv Mater 28:7910–7914PubMedGoogle Scholar
  27. 27.
    Lu W, Wei Z, Gu ZY, Liu TF, Park J, Tian J, Zhang M, Zhang Q, Gentle T 3rd, Bosch M et al (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593PubMedGoogle Scholar
  28. 28.
    Cunha D, Gaudin C, Colinet I, Horcajada P, Maurin G, Serre C (2013) Rationalization of the entrapping of bioactive molecules into a series of functionalized porous zirconium terephthalate MOFs. J Mater Chem B 1:1101–1108Google Scholar
  29. 29.
    Wang X, Makal TA, Zhou HC (2014) Protein immobilization in metal–organic frameworks by covalent binding. Aust J Chem 67:1629–1631Google Scholar
  30. 30.
    Drout RJ, Robison L, Farha OK (2019) Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coord Chem Rev 381:151–160Google Scholar
  31. 31.
    Navarro-Sanchez J, Almora-Barrios N, Lerma-Berlanga B, Ruiz-Pernia JJ, Lorenz-Fonfria VA, Tunon I, Marti-Gastaldo C (2019) Translocation of enzymes into a mesoporous MOF for enhanced catalytic activity under extreme conditions. Chem Sci 10:4082–4088PubMedPubMedCentralGoogle Scholar
  32. 32.
    Kempahanumakkagari S, Kumar V, Samaddar P, Kumar P, Ramakrishnappa T, Kim KH (2018) Biomolecule-embedded metal–organic frameworks as an innovative sensing platform. Biotechnol Adv 36:467–481PubMedGoogle Scholar
  33. 33.
    Qiu Q, Chen H, Wang Y, Ying Y (2019) Recent advances in the rational synthesis and sensing applications of metal–organic framework biocomposites. Coord Chem Rev 387:60–78Google Scholar
  34. 34.
    He C, Lu K, Liu D, Lin W (2014) Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 136:5181–5184PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wuttke S, Braig S, Preiss T, Zimpel A, Sicklinger J, Bellomo C, Radler JO, Vollmar AM, Bein T (2015) MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chem Commun 51:15752–15755Google Scholar
  36. 36.
    Navarro-Sanchez J, Argente-Garcia AI, Moliner-Martinez Y, Roca-Sanjuan D, Antypov D, Campins-Falco P, Rosseinsky MJ, Marti-Gastaldo C (2017) Peptide metal–organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc 139:4294–4297PubMedGoogle Scholar
  37. 37.
    Ren Z, Luo J, Wan Y (2018) Highly permeable biocatalytic membrane prepared by 3D modification: metal–organic frameworks ameliorate its stability for micropollutants removal. Chem Eng J 348:389–398Google Scholar
  38. 38.
    Lian X, Huang Y, Zhu Y, Fang Y, Zhao R, Joseph E, Li J, Pellois JP, Zhou HC (2018) Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy. Angew Chem Int Ed 57:5725–5730Google Scholar
  39. 39.
    Ling P, Qian C, Gao F, Lei J (2018) Enzyme-immobilized metal–organic framework nanosheets as tandem catalysts for the generation of nitric oxide. Chem Commun 54:11176–11179Google Scholar
  40. 40.
    Nadar SS, Rathod VK (2018) Magnetic-metal organic framework (magnetic-MOF): a novel platform for enzyme immobilization and nanozyme applications. Int J Biol Macromol 120:2293–2302PubMedGoogle Scholar
  41. 41.
    Majewski MB, Howarth AJ, Li P, Wasielewski MR, Hupp JT, Farha OK (2017) Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm 19:4082–4091Google Scholar
  42. 42.
    Wang Q, Zhang X, Huang L, Zhang Z, Dong S (2017) GOx@ZIF-8(NiPd) nanoflower: an artificial enzyme system for tandem catalysis. Angew Chem Int Ed 56:16082–16085Google Scholar
  43. 43.
    Zhong Z, Pang S, Wu Y, Jiang S, Ouyang J (2017) Synthesis and characterization of mesoporous Cu-MOF for laccase immobilization. J Chem Technol Biotechnol 92:1841–1847Google Scholar
  44. 44.
    Ikezoe Y, Fang J, Wasik TL, Shi M, Uemura T, Kitagawa S, Matsui H (2015) Peptide-metal organic framework swimmers that direct the motion toward chemical targets. Nano Lett 15:4019–4023PubMedGoogle Scholar
  45. 45.
    Katsoulidis AP, Park KS, Antypov D, Marti-Gastaldo C, Miller GJ, Warren JE, Robertson CM, Blanc F, Darling GR, Berry NG et al (2014) Guest-adaptable and water-stable peptide-based porous materials by imidazolate side chain control. Angew Chem Int Ed 53:193–198Google Scholar
  46. 46.
    Shen H, Liu J, Lei J, Ju H (2018) A core-shell nanoparticle-peptide@metal–organic framework as pH and enzyme dual-recognition switch for stepwise-responsive imaging in living cells. Chem Commun 54:9155–9158Google Scholar
  47. 47.
    Feng Y, Wang H, Zhang S, Zhao Y, Gao J, Zheng Y, Zhao P, Zhang Z, Zaworotko MJ, Cheng P et al (2019) Antibodies@MOFs: an in vitro protective coating for preparation and storage of biopharmaceuticals. Adv Mater 31:1805148Google Scholar
  48. 48.
    Bhardwaj SK, Bhardwaj N, Mohanta GC, Kumar P, Sharma AL, Kim KH, Deep A (2015) Immunosensing of atrazine with antibody-functionalized Cu-MOF conducting thin films. ACS Appl Mater Interfaces 7:26124–26130PubMedGoogle Scholar
  49. 49.
    Wang C, Gao J, Tan H (2018) Integrated antibody with catalytic metal–organic framework for colorimetric immunoassay. ACS Appl Mater Interfaces 10:25113–25120PubMedGoogle Scholar
  50. 50.
    Wu S, Li C, Shi H, Huang Y, Li G (2018) Design of metal–organic framework-based nanoprobes for multicolor detection of DNA targets with improved sensitivity. Anal Chem 90:9929–9935PubMedGoogle Scholar
  51. 51.
    Chen WH, Yu X, Cecconello A, Sohn YS, Nechushtai R, Willner I (2017) Stimuli-responsive nucleic acid-functionalized metal–organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chem Sci 8:5769–5780PubMedPubMedCentralGoogle Scholar
  52. 52.
    Chang J, Wang X, Wang J, Li H, Li F (2019) Nucleic acid-functionalized metal–organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal Chem 91:3604–3610PubMedGoogle Scholar
  53. 53.
    Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61Google Scholar
  54. 54.
    Lian X, Fang Y, Joseph E, Wang Q, Li J, Banerjee S, Lollar C, Wang X, Zhou HC (2017) Enzyme-MOF (metal–organic framework) composites. Chem Soc Rev 46:3386–3401PubMedGoogle Scholar
  55. 55.
    Pisklak TJ, Macías M, Coutinho DH, Huang RS Jr, Balkus KJ (2006) Hybrid materials for immobilization of MP-11 catalyst. Top Catal 38:269–278Google Scholar
  56. 56.
    Zhang HT, Zhang JW, Huang G, Du ZY, Jiang HL (2014) An amine-functionalized metal–organic framework as a sensing platform for DNA detection. Chem Commun 50:12069–12072Google Scholar
  57. 57.
    Zhu X, Zheng H, Wei X, Lin Z, Guo L, Qiu B, Chen G (2013) Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chem Commun 49:1276–1278Google Scholar
  58. 58.
    Ma W, Jiang Q, Yu P, Yang L, Mao L (2013) Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal Chem 85:7550–7557PubMedGoogle Scholar
  59. 59.
    Liu WL, Lo SH, Singco B, Yang CC, Huang HY, Lin CH (2013) Novel trypsin–FITC@MOF bioreactor efficiently catalyzes protein digestion. J Mater Chem B 1:928–932Google Scholar
  60. 60.
    Liu WL, Wu CY, Chen CY, Singco B, Lin CH, Huang HY (2014) Fast multipoint immobilized MOF bioreactor. Chem Eur J 20:8923–8928PubMedGoogle Scholar
  61. 61.
    Liu WL, Yang NS, Chen YT, Lirio S, Wu CY, Lin CH, Huang HY (2015) Lipase-supported metal–organic framework bioreactor catalyzes warfarin synthesis. Chem Eur J 21:115–119PubMedGoogle Scholar
  62. 62.
    Liu D, Zou D, Zhu H, Zhang J (2018) Mesoporous metal–organic frameworks: synthetic strategies and emerging applications. Small 14:1801454Google Scholar
  63. 63.
    Lykourinou V, Chen Y, Wang XS, Meng L, Hoang T, Ming LJ, Musselman RL, Ma S (2011) Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J Am Chem Soc 133:10382–10385PubMedGoogle Scholar
  64. 64.
    Cao Y, Wu Z, Wang T, Xiao Y, Huo Q, Liu Y (2016) Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal–organic framework material: a biocatalyst for esterification. Dalton Trans 45:6998–7003PubMedGoogle Scholar
  65. 65.
    Peng S, Bie B, Sun Y, Liu M, Cong H, Zhou W, Xia Y, Tang H, Deng H, Zhou X (2018) Metal–organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat Commun 9:1293PubMedPubMedCentralGoogle Scholar
  66. 66.
    Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619Google Scholar
  67. 67.
    Xuan W, Zhu C, Liu Y, Cui Y (2012) Mesoporous metal–organic framework materials. Chem Soc Rev 41:1677–1695PubMedGoogle Scholar
  68. 68.
    Xu W, Thapa KB, Ju Q, Fang Z, Huang W (2018) Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coord Chem Rev 373:199–232Google Scholar
  69. 69.
    Guan H-Y, LeBlanc RJ, Xie S-Y, Yue Y (2018) Recent progress in the syntheses of mesoporous metal–organic framework materials. Coord Chem Rev 369:76–90Google Scholar
  70. 70.
    Chen Y, Lykourinou V, Hoang T, Ming LJ, Ma S (2012) Size-selective biocatalysis of myoglobin immobilized into a mesoporous metal–organic framework with hierarchical pore sizes. Inorg Chem 51:9156–9158PubMedGoogle Scholar
  71. 71.
    Chen Y, Lykourinou V, Vetromile C, Hoang T, Ming LJ, Larsen RW, Ma S (2012) How can proteins enter the interior of a MOF? investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. J Am Chem Soc 134:13188–13191PubMedGoogle Scholar
  72. 72.
    Chen Y, Han S, Li X, Zhang Z, Ma S (2014) Why does enzyme not leach from metal–organic frameworks (MOFs)? Unveiling the interactions between an enzyme molecule and a MOF. Inorg Chem 53:10006–10008PubMedGoogle Scholar
  73. 73.
    Feng D, Liu TF, Su J, Bosch M, Wei Z, Wan W, Yuan D, Chen YP, Wang X, Wang K et al (2015) Stable metal–organic frameworks containing single-molecule traps for enzyme encapsulation. Nat Commun 6:5979PubMedGoogle Scholar
  74. 74.
    Lian X, Chen YP, Liu TF, Zhou HC (2016) Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chem Sci 7:6969–6973PubMedPubMedCentralGoogle Scholar
  75. 75.
    Lian X, Erazo-Oliveras A, Pellois JP, Zhou HC (2017) High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal–organic frameworks. Nat Commun 8:2075PubMedPubMedCentralGoogle Scholar
  76. 76.
    Zhang C, Wang X, Hou M, Li X, Wu X, Ge J (2017) Immobilization on metal–organic framework engenders high sensitivity for enzymatic electrochemical detection. ACS Appl Mater Interfaces 9:13831–13836PubMedGoogle Scholar
  77. 77.
    Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y et al (2018) Ordered macro–microporous metal–organic framework single crystals. Science 359:206–210PubMedGoogle Scholar
  78. 78.
    Chen L, Zheng H, Zhu X, Lin Z, Guo L, Qiu B, Chen G, Chen ZN (2013) Metal–organic frameworks-based biosensor for sequence-specific recognition of double-stranded DNA. Analyst 138:3490–3493PubMedGoogle Scholar
  79. 79.
    Ikezoe Y, Fang J, Wasik TL, Uemura T, Zheng YT, Kitagawa S, Matsui H (2015) Peptide assembly-driven metal–organic framework (MOF) motors for micro electric generators. Adv Mater 27:288–291PubMedGoogle Scholar
  80. 80.
    And ZW, Cohen SM (2007) Postsynthetic covalent modification of a neutral metal–organic framework. J Am Chem Soc 129:12368–12369Google Scholar
  81. 81.
    Jung S, Kim Y, Kim SJ, Kwon TH, Huh S, Park S (2011) Bio-functionalization of metal–organic frameworks by covalent protein conjugation. Chem Commun 47:2904–2906Google Scholar
  82. 82.
    Wang W, Xie Z (2016) Nanoscale metal–organic frameworks-hemoglobin conjugates. Chem Asian J 11:750–756PubMedGoogle Scholar
  83. 83.
    Tudisco C, Zolubas G, Seoane B, Zafarani HR, Kazemzad M, Gascon J, Hagedoorn PL, Rassaei L (2016) Covalent immobilization of glucose oxidase on amino MOFs via post-synthetic modification. RSC Adv 6:108051–108055Google Scholar
  84. 84.
    Kumar P, Deep A, Paul AK, Bharadwaj LM (2014) Bioconjugation of MOF-5 for molecular sensing. J Porous Mater 21:99–104Google Scholar
  85. 85.
    Kumar P, Kim KH, Bansal V, Paul AK, Deep A (2016) Practical utilization of nanocrystal metal organic framework biosensor for parathion specific recognition. Microchem J 128:102–107Google Scholar
  86. 86.
    Morris W, Briley WE, Auyeung E, Cabezas MD, Mirkin CA (2014) Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J Am Chem Soc 136:7261–7264PubMedGoogle Scholar
  87. 87.
    Kahn JS, Freage L, Enkin N, Garcia MA, Willner I (2017) Stimuli-responsive DNA-functionalized metal–organic frameworks (MOFs). Adv Mater 29:1602782Google Scholar
  88. 88.
    Lyu F, Zhang Y, Zare RN, Ge J, Liu Z (2014) One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities. Nano Lett 14:5761–5765PubMedGoogle Scholar
  89. 89.
    Shieh FK, Wang SC, Yen CI, Wu CC, Dutta S, Chou LY, Morabito JV, Hu P, Hsu MH, Wu KC et al (2015) Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals. J Am Chem Soc 137:4276–4279PubMedGoogle Scholar
  90. 90.
    Liang W, Xu H, Carraro F, Maddigan NK, Li Q, Bell SG, Huang DM, Tarzia A, Solomon MB, Amenitsch H et al (2019) Enhanced activity of enzymes encapsulated in hydrophilic metal–organic frameworks. J Am Chem Soc 141:2348–2355PubMedGoogle Scholar
  91. 91.
    Wu X, Ge J, Yang C, Hou M, Liu Z (2015) Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chem Commun 51:13408–13411Google Scholar
  92. 92.
    Liao FS, Lo WS, Hsu YS, Wu CC, Wang SC, Shieh FK, Morabito JV, Chou LY, Wu KC, Tsung CK (2017) Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach. J Am Chem Soc 139:6530–6533PubMedGoogle Scholar
  93. 93.
    Liang K, Carbonell C, Styles MJ, Ricco R, Cui J, Richardson JJ, Maspoch D, Caruso F, Falcaro P (2015) Biomimetic replication of microscopic metal–organic framework patterns using printed protein patterns. Adv Mater 27:7293–7298PubMedGoogle Scholar
  94. 94.
    Chen WH, Luo GF, Vazquez-Gonzalez M, Cazelles R, Sohn YS, Nechushtai R, Mandel Y, Willner I (2018) Glucose-responsive metal–organic-framework nanoparticles act as “Smart” sense-and-treat carriers. ACS Nano 12:7538–7545PubMedGoogle Scholar
  95. 95.
    Kang L, Coghlan CJ, Bell SG, Doonan C, Falcaro P (2015) Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation. Chem Commun 52:473–476Google Scholar
  96. 96.
    Liang K, Richardson JJ, Doonan CJ, Mulet X, Ju Y, Cui J, Caruso F, Falcaro P (2017) An enzyme-coated metal–organic framework shell for synthetically adaptive cell survival. Angew Chem Int Ed 56:8510–8515Google Scholar
  97. 97.
    Li SB, Dharmarwardana M, Welch RP, Benjamin CE, Shamir AM, Nielsen SO, Gassensmith JJ (2018) Investigation of controlled growth of metal–organic frameworks on anisotropic virus particles. ACS Appl Mater Interfaces 10:18161–18169PubMedGoogle Scholar
  98. 98.
    Chen TT, Yi JT, Zhao YY, Chu X (2018) Biomineralized metal–organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J Am Chem Soc 140:9912–9920PubMedGoogle Scholar
  99. 99.
    Zhang Y, Wang FM, Ju EG, Liu Z, Chen ZW, Ren JS, Qu XG (2016) Metal–organic-framework-based vaccine platforms for enhanced systemic immune and memory response. Adv Funct Mater 26:6454–6461Google Scholar
  100. 100.
    Congzhou Wang D, Tadepalli S, Luan J, Liu KK, Prof JJM, Prof EDK, Dr RRN, Srikanth Singamaneni P (2017) Metal–organic framework as a protective coating for biodiagnostic chips. Adv Mater 29:1604433Google Scholar
  101. 101.
    Wang C, Sun H, Luan J, Jiang Q, Tadepalli S, Morrissey JJ, Kharasch ED, Singamaneni S (2018) Metal–organic framework encapsulation for biospecimen preservation. Chem Mater 30:1291–1300Google Scholar
  102. 102.
    Duan Y, Ye F, Huang Y, Qin Y, He C, Zhao S (2018) One-pot synthesis of a metal–organic framework-based drug carrier for intelligent glucose-responsive insulin delivery. Chem Commun 54:5377–5380Google Scholar
  103. 103.
    Pan Y, Li H, Farmakes J, Xiao F, Chen B, Ma S, Yang Z (2018) How do enzymes orient when trapped on metal–organic framework (MOF) surfaces? J Am Chem Soc 140:16032–16036PubMedGoogle Scholar
  104. 104.
    Imaz I, Rubio-Martínez M, An J, Solé-Font I, Rosi NL, Maspoch D (2011) Metal–biomolecule frameworks (MBioFs). Chem Commun 47:7287Google Scholar
  105. 105.
    Broomell CC, Birkedal H, Oliveira CLP, Pedersen JS, Gertenbach J-A, Young M, Douglas T (2010) Protein cage nanoparticles as secondary building units for the synthesis of 3-dimensional coordination polymers. Soft Matter 6:3167–3171Google Scholar
  106. 106.
    Sontz PA, Bailey JB, Ahn S, Tezcan FA (2015) A metal organic framework with spherical protein nodes: rational chemical design of 3D protein crystals. J Am Chem Soc 137:11598–11601PubMedGoogle Scholar
  107. 107.
    Cai H, Li M, Lin XR, Chen W, Chen GH, Huang XC, Li D (2015) Spatial, hysteretic, and adaptive host-guest chemistry in a metal–organic framework with open Watson-Crick sites. Angew Chem Int Ed 54:10454–10459Google Scholar
  108. 108.
    Hu Y, Dai L, Liu D, Du W, Wang Y (2018) Progress & prospect of metal–organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renew Sust Energy Rev 91:793–801Google Scholar
  109. 109.
    Gao S, Hou J, Deng Z, Wang T, Beyer S, Buzanich AG, Richardson JJ, Rawal A, Seidel R, Zulkifli MY et al (2019) Improving the acidic stability of zeolitic imidazolate frameworks by biofunctional molecules. Chem 5:1597–1608Google Scholar
  110. 110.
    Wu YN, Zhou M, Zhang B, Wu B, Li J, Qiao J, Guan X, Li F (2014) Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal. Nanoscale 6:1105–1112PubMedGoogle Scholar
  111. 111.
    Li P, Chen Q, Wang TC, Vermeulen NA, Mehdi BL, Dohnalkoya A, Browning ND, Shen D, Anderson R, Gomez-Gualdron DA et al (2018) Hierarchically engineered mesoporous metal–organic frameworks toward cell-free immobilized enzyme systems. Chem 4:1022–1034Google Scholar
  112. 112.
    Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S (2012) Large-pore apertures in a series of metal–organic frameworks. Science 336:1018–1023PubMedGoogle Scholar
  113. 113.
    Shih Y-H, Lo S-H, Yang N-S, Singco B, Cheng Y-J, Wu C-Y, Chang IH, Huang H-Y, Lin C-H (2012) Trypsin-immobilized metal–organic framework as a biocatalyst in proteomics analysis. ChemPlusChem 77:982–986Google Scholar
  114. 114.
    Zhang H, Lv Y, Tan T, Van der Spoel D (2016) Atomistic simulation of protein encapsulation in metal–organic frameworks. J Phys Chem B 120:477–484PubMedGoogle Scholar
  115. 115.
    Cao SL, Yue DM, Li XH, Smith TJ, Li N, Zong MH, Wu H, Ma YZ, Lou WY (2016) Novel nano-/micro-biocatalyst: soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1, 2-octanediol in deep eutectic solvents. ACS Sustain Chem Eng 4:3586–3595Google Scholar
  116. 116.
    Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246PubMedGoogle Scholar
  117. 117.
    Leung C, Kinns H, Hoogenboom BW, Howorka S, Mesquida P (2009) Imaging surface charges of individual biomolecules. Nano Lett 9:2769–2773PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinPeople’s Republic of China
  2. 2.School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingPeople’s Republic of China
  3. 3.College of PharmacyNankai UniversityTianjinPeople’s Republic of China
  4. 4.College of ChemistryNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations