Topics in Current Chemistry

, 377:26 | Cite as

Lignin Depolymerization to BTXs

  • Luis SerranoEmail author
  • Juan Antonio Cecilia
  • Cristina García-Sancho
  • Araceli GarcíaEmail author
Part of the following topical collections:
  1. Lignin Chemistry


Lignin, one of the main components of lignocellulosic biomass, is the largest renewable source of aromatics on the planet and presents an extraordinary opportunity for being used in the production of bio-based products. It can be transformed for the substitution of aromatic chemical-derived petrol as BTXs. The wide range of applications that it can be obtained from BTXs building blocks makes the selective depolymerization of lignin a great scientific challenge. This review emphasizes the different strategies for the fragmentation of lignin to monomers or aromatics hydrocarbons. Thus, a by-product traditionally discarded or used for energy generation, it could be valorized into high added-value products.


Lignin Depolymerization BTXs Catalysis 



The authors would like to thank the Spanish Ministry of Economy, Industry and Competitiveness (postdoctoral contract Juan de la Cierva Incorporacion IJCI-2015-23168 and Ramon y Cajal contract RYC-2015-17109) for financial support during this work. J.A.C. and C.G.S. thank Malaga University for financial support.


  1. 1.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL (2006) Science 311:484–489PubMedGoogle Scholar
  2. 2.
    Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Energy Environ Sci 1:542–564Google Scholar
  3. 3.
    Wang T, Nolte M, Shanks B (2014) Green Chem 16:548–572Google Scholar
  4. 4.
    Demirbas A (2001) Energy Convers Manage 42:1357–1378Google Scholar
  5. 5.
    Cheng F, Brewer CE (2017) Renew Sust Energ Rev 72:673–722Google Scholar
  6. 6.
    Taherzadeh M, Karimi K (2008) Int J Mol Sci 9:1621–1651PubMedPubMedCentralGoogle Scholar
  7. 7.
    Brandt A, Grasvik J, Hallett J, Welton T (2013) Green Chem 15:550–583Google Scholar
  8. 8.
    Xu C, Arancon RAD, Labidi J, Luque R (2014) Chem Soc Rev 43:7485–7500PubMedGoogle Scholar
  9. 9.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Science 344:1246843Google Scholar
  10. 10.
    Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Chem Rev 118:614–678PubMedPubMedCentralGoogle Scholar
  11. 11.
    Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chem Soc Rev 47:852–908PubMedGoogle Scholar
  12. 12.
    Boyce CK, Zwieniecki MA, Cody GD, Jacobsen C, Wirick S, Knoll AH, Holbrook NM, Natl P (2004) Acad Sci USA 101:17555–17558Google Scholar
  13. 13.
    Chakar FS, Ragauskas AJ (2004) Ind Crops Prod 20:131–141Google Scholar
  14. 14.
    García Calvo-Flores F, Dobado JA (2010) Chemsuschem 3:1227–1235Google Scholar
  15. 15.
    Menon V, Rao M (2012) Prog Energ Combust Sci 38:522–550Google Scholar
  16. 16.
    Lazaridis PA, Fotopoulos AP, Karakoulia SA, Triantafyllidis KS (2018) Front Chem 6:295PubMedPubMedCentralGoogle Scholar
  17. 17.
    Olcese RN, Francois J, Bettahar MM, Petitjean D, Dufour A (2013) Energy Fuels 27:975–984Google Scholar
  18. 18.
    Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Angew Chem Int Ed 55:8164–8215Google Scholar
  19. 19.
    Elfadly AM, Zeid IF, Yehia FZ, Rabie AM, Aboualala MM, Park SE (2016) Int J Biol Macromol 91:278–293PubMedGoogle Scholar
  20. 20.
    Sirous-Rezaei P, Jae J, Ha JM, Ko CH, Kim JM, Jeon JK, Park YK (2018) Green Chem 20:1472–1483Google Scholar
  21. 21.
    Heeres A, Schenk N, Muizebelt I, Blees R, De Waele B, Zeeuw AJ, Meyer N, Carr R, Wilbers E, Heeres HJ (2018) ACS Sustain Chem Eng 6:3472–3480PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zheng A, Zhao Z, Chang S, Huang Z, Wu H, Wang X, He F, Li H (2014) J Mol Catal A 383:23–30Google Scholar
  23. 23.
    Sultana A, Fujitani T (2017) Catal Commun 88:26–29Google Scholar
  24. 24.
    Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Science 327:1110–1114PubMedGoogle Scholar
  25. 25.
    Huber GW, Iborra S, Corma A (2006) Chem Ver 106:4044–4098Google Scholar
  26. 26.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552–3599PubMedGoogle Scholar
  27. 27.
    Vispute TP, Zhang HY, Sanna A, Xiao R, Huber GW (2010) Science 330:1222–1227PubMedGoogle Scholar
  28. 28.
    Agblevor FA, Beis S, Mante O, Abdoulmoumine N (2010) Ind Eng Chem Res 49:3533–3538Google Scholar
  29. 29.
    Carlson TR, Cheng YT, Jae J, Huber GW (2011) Energy. Environ Sci 4:145–161Google Scholar
  30. 30.
    Schultz TP, Fisher TH, Dershem SM (1989) In: Adhesives from renewable resources, ACS Publications, WashingtonGoogle Scholar
  31. 31.
    Britt PF, Buchanan AC, Thomas KB, Lee SK (1995) J Anal Appl Pyrolysis 33:1–19Google Scholar
  32. 32.
    Heitz M, Wu G, Lapointe J, Rubio M (1995) J Wood Chem Technol 15:515–528Google Scholar
  33. 33.
    Miller JE, Evans L, Littlewolf A, Trudell DE (1999) Fuel 78:1363–1366Google Scholar
  34. 34.
    Dorrestijn E, Kranenburg M, Poinsot D, Mulder P (2005) Holzforschung 53:611–616Google Scholar
  35. 35.
    Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) Holzforschung 64:577–580Google Scholar
  36. 36.
    Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Green Chem 12:1225–1236Google Scholar
  37. 37.
    Stärk K, Taccardi N, Bösmann A, Wasserscheid P (2010) Chemsuschem 3:719–723PubMedGoogle Scholar
  38. 38.
    Gasser CA, Hommes G, Schäffer A, Corvini PFX (2012) Appl Microbiol Biotechnol 95:1115–1134PubMedGoogle Scholar
  39. 39.
    Seong G, Dejhosseini M, Adschiri T (2018) Appl Catal A 550:284–296Google Scholar
  40. 40.
    Fan M, Deng S, Wang T, Li Q (2014) Chin J Chem Phys 27:221–226Google Scholar
  41. 41.
    Zhou M, Sharma BK, Li J, Zhao J, Xu J, Jiang J (2019) Fuel 239:239–244Google Scholar
  42. 42.
    Fernandes MRC, Huang X, Abbenhuis HCL, Hensen EJM (2019) Int J Biol Macromol 123:1044–1051PubMedGoogle Scholar
  43. 43.
    Kast & Ehinger Gmbh (1943) Procédé d’extraction de lignine entrant en réaction, à partir de la lignine de sacchariication du bois, Patent code: BE 448826 19430200, BelgiumGoogle Scholar
  44. 44.
    Mayer C (1975) Obtaining aromatic fuels and intermediate products from fossil natural products by thermal depolymerization and stabilizing pyrolysis, Patent code: DE 2358960 A1 19750528, GermanyGoogle Scholar
  45. 45.
    Shabtai JS, Zmierczak WW, Chornet E (1999) Process for conversion of lignin to reformulated hydrocarbon gasoline, Patent code: WO 9910450 A1 19990304, USAGoogle Scholar
  46. 46.
    Watanabe T, Messner K, Koller K (1999) Chemical method for lignin depolymerization, Patent code: WO 9909244 A1 19990225, JapanGoogle Scholar
  47. 47.
    Shabtai JS, Zmierczak WW, Chornet E, Johnson D (2003) Process for converting lignins into a high octane blending component, Patent code: US 20030115792 A1 20030626, USAGoogle Scholar
  48. 48.
    Shabtai JS, Zmierczak WW, Chornet E (2000) Process for conversion of lignin to reformulated, partially oxygenated gasoline, Patent code: WO 2000011112 A1 20000302, USAGoogle Scholar
  49. 49.
    Zhang X (2014) Conversion of lignin to phenolic and carboxylate compounds which can be used as antimicrobial agents, for polymer applications, or hydrogenated to hydrocarbon fuels, Patent code: WO 2014200509 A1 20141218, USAGoogle Scholar
  50. 50.
    Sarkanen S, Wang Y, Nutsubidze NN (2000) Isolation and activities of lignin depolymerase from Trametes cingulata and its use for depolymerizing lignin and delignifying kraft pulp, Patent code: WO 2000073426 A1 20001207, USAGoogle Scholar
  51. 51.
    Laxmikant DP, Kelkar AA, Matsagar BM, Singh SK (2014) Production of aromatic compounds by depolymerization of lignin, Patent code: WO 2014181360 A1 20141113, IndiaGoogle Scholar
  52. 52.
    Li W, Wang H, Liu Q, Ma L, Zhang Q, Wei X (2018) Method for catalytically depolymerizing lignin, Patent code: CN 108014782 A 20180511, ChinaGoogle Scholar
  53. 53.
    Lewin M, Goldstein JS (1991) Wood structure and composition. International fiber science and technology. CRC Press, Boca RatonGoogle Scholar
  54. 54.
    Sjöström E (1981) Wood chemistry, fundamentals and applications. Academic Press, MillbraeGoogle Scholar
  55. 55.
    Kamm B, Gruber PR, Kamm M (2006) Biorefineries—industrial processes and products. Wiley–VCH Verlag, WeinheimGoogle Scholar
  56. 56.
    Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Chem Rev 115:11559–11624PubMedGoogle Scholar
  57. 57.
    Brunow G (2006) In: Biorefineries-Industrial proccesses and products, Wiley-VCH, WeinheimGoogle Scholar
  58. 58.
    Wen JL, Xue BL, Xu F, Sun RC, Pinkert A (2013) Ind Crops Prod 42:332–343Google Scholar
  59. 59.
    Pandey MP, Kim CS (2011) Chem Eng Tech 34:29–41Google Scholar
  60. 60.
    Serrano L, Esakkimuthu ES, Marlin N, Brochier-Salon MC, Mortha G, Bertaud F (2018) Energy Fuels 32:5969–5977Google Scholar
  61. 61.
    Sakakibara A, Sano Y (2001) Wood and cellulose chemistry. Marcel Dekker, New YorkGoogle Scholar
  62. 62.
    Sannigrahi P, Pu Y, Ragauskas A (2010) Curr Opin Env Sust 2:383–393Google Scholar
  63. 63.
    Lewis NG, Yamamoto E (1990) Annu Rev Plant Physiol Plant Mol Biol 41:455–496PubMedGoogle Scholar
  64. 64.
    Sette M, Wechselberger R, Crestini C (2011) Chem Eur J 17:9529–9535PubMedGoogle Scholar
  65. 65.
    Crestini C, Lange H, Setter M, Argyropolulos DS (2017) Green Chem 19:4104–4121Google Scholar
  66. 66.
    Vishtal A, Kraslawski A (2011) BioResources 6:3547–3568Google Scholar
  67. 67.
    Rahimi A, Ulbrich A, Stahl SS, Coon JJ (2014) Nature 515:249–252PubMedGoogle Scholar
  68. 68.
    Laskar DD, Yang B, Wang H, Lee J (2013) Biofuels Bioprod Biorefin 7:602–626Google Scholar
  69. 69.
    Deuss PJ, Lancefield CS, Narani A, de Vries JG, Westwood NJ, Barta K (2017) Green Chem 19:2774–2782Google Scholar
  70. 70.
    Chung H, Washburn NR (2013) Green Mater 1:137–160Google Scholar
  71. 71.
    Galkin MV, Samec JSM (2016) Chem Sus Chem 9:1544–1558Google Scholar
  72. 72.
    Chatel G, Rogers RD (2014) ACS Sust Chem Eng 2:322–339Google Scholar
  73. 73.
    Long J, Lou W, Wang L, Yin B, Li X (2015) Chem Eng Sci 122:24–33Google Scholar
  74. 74.
    Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Chem Rev 115:11559–11624PubMedGoogle Scholar
  75. 75.
    Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Łukasik RM, Anastas PT (2017) Green Chem 00:1–3Google Scholar
  76. 76.
    Bouxin FP, McVeigh A, Tran F, Westwood NJ, Jarvis MC, Jackson SD (2015) Green Chem 17:1235–1242Google Scholar
  77. 77.
    Erickson M, Larsson S, Miksche GE (1973) Acta Chem Scand 27:903–904Google Scholar
  78. 78.
    Nimz HH (1974) Agew Chem Int Ed 13:313–321Google Scholar
  79. 79.
    Alder E (1977) Wood Sci Technol 11:169–218Google Scholar
  80. 80.
    Glasser WG, Glasser HR (1981) Pap Puu 63:71–83Google Scholar
  81. 81.
    Miller JE, Evans LR, Littlewolf AE, Trudell DE (2002) Sandia National Laboratories report SAND2002–1317, USAGoogle Scholar
  82. 82.
    Toledano A, Serrano L, Labidi J, Pineda A, Balu AM, Luque R (2013) Chem Cat Chem 5:977–985Google Scholar
  83. 83.
    Toledano A, Serrano L, Pineda A, Romero AA, Luque R, Labidi J (2014) Appl Catal B-Environ 145:43–55Google Scholar
  84. 84.
    Li J, Henriksson G, Gellerstedt G (2007) Biores Tech 98:3061–3068Google Scholar
  85. 85.
    Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Chem Eur J 17:5939–5948PubMedGoogle Scholar
  86. 86.
    Toledano A, Serrano L, Labidi J (2014) Fuel 116:617–624Google Scholar
  87. 87.
    Zhao C, Lercher JA (2013) In: The role of catalysis for the sustainable production of bio-fuels and bio-chemicals, Elsevier Science, AmsterdamGoogle Scholar
  88. 88.
    Yamazaki J, Minami E, Saka S (2006) J Wood Sci 52:527–532Google Scholar
  89. 89.
    Hewson WB, Hibbert H (1943) J Am Chem Soc 65:1173–1176Google Scholar
  90. 90.
    Gasson JR, Forchheim D, Sutter T, Hornung U, Kruse A, Barth T (2012) Ind Eng Chem Res 51:10595–10606Google Scholar
  91. 91.
    Aida TM, Sato T, Sekiguchi G, Adschiri T, Arai K (2002) Fuel 81:1453–1461Google Scholar
  92. 92.
    Tsujino J, Kawamoto H, Saka S (2003) Wood Sci Technol 37:299–307Google Scholar
  93. 93.
    Adjaye JD, Bakhshi NN (1995) Fuel Process Technol 45:161–183Google Scholar
  94. 94.
    Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS (2013) J Am Chem Soc 135:6415–6418PubMedGoogle Scholar
  95. 95.
    Pu Y, Jiang N, Ragauskas AJ (2007) J Wood Chem Technol 27:23–33Google Scholar
  96. 96.
    George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM (2011) Green Chem 13:3375–3385Google Scholar
  97. 97.
    Crestini C, Crucianelli M, Orlandi M, Saladino R (2010) Catal Today 156:8–22Google Scholar
  98. 98.
    Oasmaa A, Czernik S (1999) Energy Fuels 13:914Google Scholar
  99. 99.
    Ma Z, Troussard E, van Bokhoven JA (2012) Appl Catal A 423:130–136Google Scholar
  100. 100.
    Jackson MA, Compton DL, Boateng AA (2009) J Anal Appl Pyrolysis 85:226–230Google Scholar
  101. 101.
    Huber GW, Corma A (2007) Angew Chem Int Ed 46:7184–7201Google Scholar
  102. 102.
    Rezaei PS, Shafaghat H, Daud WMAW (2014) Appl Catal A 469:490–511Google Scholar
  103. 103.
    Shen D, Zhao J, Xiao R (2016) Energ Convers Manage 124:61–72Google Scholar
  104. 104.
    Park HJ, Park KH, Jeon JK, Kim J, Ryoo R, Jeong KE, Park SH, Park YK (2012) Fuel 97:379–384Google Scholar
  105. 105.
    Choi SJ, Park SH, Jeon JK, Lee IG, Ryu C, Suh DJ, Park YK (2013) Renew Energ 54:105–110Google Scholar
  106. 106.
    Shabtai JS, Zmierczak WW, Chornet E (2001) US Patent 6172272Google Scholar
  107. 107.
    Sheu YHE, Anthony RG, Soltes EJ (1988) Fuel Process Technol 19:31–50Google Scholar
  108. 108.
    Harris EE, D’Ianni J, Adkins H (1938) J Am Chem Soc 60:1467–1470Google Scholar
  109. 109.
    Horacek J, Homola F, Kubickova I, Kubicka D (2012) Catal Today 179:191–198Google Scholar
  110. 110.
    Odebunmi EO, Ollis DF (1983) J Catal 80:65–75Google Scholar
  111. 111.
    Sun J, Karim AM, Zhang H, Kovarik L, Li XS, Hensley AJ, McEwen JS, Wang Y (2013) J Catal 306:47–57Google Scholar
  112. 112.
    Zhu X, Lobban LL, Mallinson RG, Resasco DE (2011) J Catal 281:21–29Google Scholar
  113. 113.
    Huuska MK (1986) Polyhedron 5:233–236Google Scholar
  114. 114.
    Yang Y, Ochoa-Hernández C, O’Shea VA, Pizarro P, Coronado JM, Serrano DP (2014) Appl Catal B: Environ 145:91–100Google Scholar
  115. 115.
    Olcese RN, Bettahar M, Petitjean D, Malaman B, Giovanella F, Dufour A (2012) Appl Catal B 115–116:63–73Google Scholar
  116. 116.
    Olcese R, Bettahar MM, Malamanc B, Ghanbajac J, Tibavizco L, Petitjean D, Dufour A (2013) Appl Catal B 129:528–538Google Scholar
  117. 117.
    Xu X, Jiang E, Du Y, Li B (2016) Renew Energ 96:458–468Google Scholar
  118. 118.
    He T, Liu X, Ge Y, Han D, Li J, Wang Z, Wu J (2017) Catal Commun 102:127–130Google Scholar
  119. 119.
    Ardiyanti AR, Khromova SA, Venderbosch RH, Yakovlev VA, Heeres HJ (2012) Appl Catal B 117–118:105–117Google Scholar
  120. 120.
    Whiffen VML, Smith KJ (2010) Energy Fuels 24:4728–4737Google Scholar
  121. 121.
    Ghampson IT, Sepúlveda C, Garcia R, Radovic LR, Fierro JLG, DeSisto WJ, Escalona N (2012) Appl Catal A 439–440:111–124Google Scholar
  122. 122.
    Lee WS, Wang Z, Wu RJ, Bhan A (2014) J Catal 319:44–53Google Scholar
  123. 123.
    Li K, Wang R, Chen J (2011) Energy Fuels 25:854–863Google Scholar
  124. 124.
    Zhao HY, Li D, Bui P, Oyama ST (2011) Appl Catal A 391:305–310Google Scholar
  125. 125.
    Chen Q, Marshall MN, Geib SM, Tien M, Richard TL (2012) Bioresource Technol 117:186–192Google Scholar
  126. 126.
    Roberts SM, Turner NJ, Willetts AJ, Turner MK (1995) Camb Univ Press 2:34–40Google Scholar
  127. 127.
    Salvachúa D, Katahira R, Cleveland NS, Khanna P, Resch MG, Black BA, Purvine SO, Zink EM, Prieto A, Martínez MJ, Martínez AT, Simmons BA, Gladden JM, Beckham GT (2016) Green Chem 18:6046–6062Google Scholar
  128. 128.
    Kirk TK, Farrell RL (1987) Annu Rev Microbiol 41:465–501PubMedGoogle Scholar
  129. 129.
    Salvachúa D, Prieto A, Martínez AT, Martínez MJ (2013) Appl Environ Microbiol 79:4316–4324PubMedPubMedCentralGoogle Scholar
  130. 130.
    Dashtban M, Schraft H, Syed TA, Qin W (2010) Int J Biochem Mol Biol 1:36–50PubMedPubMedCentralGoogle Scholar
  131. 131.
    Husarcíková J, Voß H, Domínguez de María P, Schallmey A (2018) Appl Microbiol Biotechnol 102:5391–5401PubMedGoogle Scholar
  132. 132.
    Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD (2011) Bugg TD 50:5096–5107Google Scholar
  133. 133.
    Salvachúa D, Karp EM, Nimlos CT, Vardon DR, Beckham GT (2015) Green Chem 17:4951–4967Google Scholar
  134. 134.
    Rico A, Rencoret J, del Río J, Martínez AT, Gutiérrez A (2014) Biotechnol Biofuels 7:6PubMedPubMedCentralGoogle Scholar
  135. 135.
    Kolb M, Sieber V, Amann M, Faulstich M, Schieder D (2012) Bioresour Technol 104:298–304PubMedGoogle Scholar
  136. 136.
    Tengerdy RP, Szakacs G (2003) Biochem Eng J 13:169–179Google Scholar
  137. 137.
    Rochefort D, Leech D, Bourbonnais R (2004) Green Chem 6:14–24Google Scholar
  138. 138.
    Bourbonnais R, Paice M, Reid I, Lanthier P (1995) Yaguchi. M Appl Environ Microb 61:1876–1880Google Scholar
  139. 139.
    Shleev S, Persson P, Shumakovich G, Mazhugo Y, Yaropolov A, Ruzgas T (2006) Gorton. Enzyme Microb Tech 39:841–847Google Scholar
  140. 140.
    Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P (2003) Org Biomol Chem 1:191–197PubMedGoogle Scholar
  141. 141.
    Ruiz-Dueñas FJ, Martínez AT (2009) Microb Biotechnol 2:164–177PubMedPubMedCentralGoogle Scholar
  142. 142.
    Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Int Microbiol 8:195–204PubMedGoogle Scholar
  143. 143.
    Wariishi H, Dunford HB, MacDonald ID, Gold MII (1989) J Biol Chem 264:3335–3340PubMedGoogle Scholar
  144. 144.
    Gold MH, Youngs HL, Gelpke MD (2000) Met Ions Biol Syst 37:559–586PubMedGoogle Scholar
  145. 145.
    Kapich A, Hofrichter M, Vares T, Hatakka A (1999) Biochem Biophys Res Commun 259:212–219PubMedGoogle Scholar
  146. 146.
    Kapich AN, Jensen KA, Hammel KE (1999) FEBS Lett 461:115–119PubMedGoogle Scholar
  147. 147.
    Camarero S, Sarkar S, Ruiz-Dueiias FJ, Martinez MAJ, Martinez AT (1999) J Biol Chem 274:10324–10330PubMedGoogle Scholar
  148. 148.
    Dordick JS, Marletta MA, Klibanov AM (1986) Proc Natl Acad Sci USA 83:6255–6257PubMedGoogle Scholar
  149. 149.
    Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y, Jing Q (2013) Bioprocess Biosyst Eng 36:1957–1965PubMedPubMedCentralGoogle Scholar
  150. 150.
    Liu D, Yan X, Zhuo S, Si M, Liu M, Wang S, Ren L, Chai L, Shi Y (2018) Bioresour Technol 257:62–68PubMedGoogle Scholar
  151. 151.
    Ortiz-Bermúdez P, Srebotnik E, Hammel KE (2003) Appl Environ Microbiol 69:5015–5018PubMedPubMedCentralGoogle Scholar
  152. 152.
    Brown ME, Barros T, Chang MCY (2012) ACS Chem Biol 7:2074–2081PubMedGoogle Scholar
  153. 153.
    Rahmanpour R, Bugg TDH (2015) Arch Biochem Biophys 574:93–98PubMedGoogle Scholar
  154. 154.
    de Gonzalo G, Colpa DI, Habib MHM, Fraaije MW (2016) J Biotechnol 236:110–119PubMedGoogle Scholar
  155. 155.
    Hofrichter M, Ullrich R, Pecyna M, Liers C, Lundell T (2010) Appl Microbiol Biotechnol 87:871–897PubMedGoogle Scholar
  156. 156.
    Picart P, Müller C, Mottweiler J, Wiermans L, Bolm C, Domínguez de María P, Schallmey A (2014) Chemsuschem 7:3164–3171PubMedGoogle Scholar
  157. 157.
    Reiter J, Strittmatter H, Wiemann LO, Schieder D, Sieber V (2013) Green Chem 15:01373–01381Google Scholar
  158. 158.
    Picart P, Sevenich M, Domínguez de María P, Schallmey A (2015) Green Chem 17:4931–4940Google Scholar
  159. 159.
    Ohta Y, Hasegawa R, Kurosawa K, Maeda AH, Koizumi T, Nishimura H, Okada H, Qu C, Saito K, Watanabe T, Hatada Y (2016) Chemsuschem 10:425–433PubMedPubMedCentralGoogle Scholar
  160. 160.
    Gall DL, Kontur WS, Lan W, Kim H, Li Y, Ralph J, Donohue TJ, Noguera DR (2018) Appl Environ Microbiol 84:e02076-17PubMedPubMedCentralGoogle Scholar
  161. 161.
    Picart P, Liu H, Grande PM, Anders N, Zhu L, Klankermayer J, Leitner W, Domínguez de María P, Schwaneberg U, Schallmey A (2017) Appl Microbiol Biotechnol 101:6277–6287PubMedGoogle Scholar
  162. 162.
    Toledano A, Serrano L, Pineda A, Balu AM, Labidi J, Luque R (2013) Chemsuschem 6:529–536PubMedGoogle Scholar
  163. 163.
    Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Energy Environ Sci 6:994–1007Google Scholar
  164. 164.
    Gosselink RJA, Teunissen W, Van Dam JEG, de Jong E, Gellerstedt G, Scott EL, Sanders JPM (2011) Bioresour Technol 106:173–177PubMedGoogle Scholar
  165. 165.
    Barta K, Warner GR, Beach ES, Anastas PT (2014) Green Chem 16:191–196Google Scholar
  166. 166.
    Jongerius AL, Bruijnincx PCA, Weckhuysen BM (2013) Green Chem 15:3049–3056Google Scholar
  167. 167.
    Güvenatam B, Jurs O, Heeres EHJ, Pidko EA, Hensen EJM (2014) Catal Today 233:83–91Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Química Inorgánica e Ingeniería QuímicaUniversidad de CórdobaCórdobaSpain
  2. 2.Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de CienciasUniversidad de MálagaMálagaSpain
  3. 3.NANOVAL FQM-383 Research Group, Departamento de Química OrgánicaUniversidad de CórdobaCórdobaSpain

Personalised recommendations