Advertisement

Topics in Current Chemistry

, 377:23 | Cite as

Recent Advances in First-Row Transition Metal/Chiral Phosphoric Acid Combined Catalysis

  • Gui-Chun Fang
  • Yong-Feng Cheng
  • Zhang-Long Yu
  • Zhong-Liang Li
  • Xin-Yuan LiuEmail author
Review
  • 242 Downloads
Part of the following topical collections:
  1. Asymmetric Organocatalysis Combined with Metal Catalysis

Abstract

Since the pioneering independent reports of Akiyama and Terada, the use of chiral phosphoric acids (CPAs) and derivatives as a versatile tool for asymmetric synthesis with good reactivity, regioselectivity, diastereoselectivity and enantioselectivity has emerged, forming an important part of the implementation of asymmetric counteranion-directed catalysis reported to date. In these achievements, the combination of metals with CPAs has enabled various catalytic modes beyond the scope of typical acid catalysis, such as relay catalysis, ion-pairing catalysis, and binary acid catalysis. The first-row transition metals (Sc–Zn) are considered to be sustainable transition metals and have received a great deal of attention. These naturally abundant metals display excellent Lewis acidity and function as powerful redox catalysts in synthesis involving both one and two-electron transfers. Hence, in this chapter, we summarize recent advances in the development of asymmetric reactions using a combination of first-row transition metals and CPAs. Furthermore, we provide a detailed discussion of the mechanisms involved in order to understand the interaction of the metal/phosphate and the origins of the asymmetric control of the transformations.

Keywords

Asymmetric catalysis First-row transition metals Chiral phosphoric acids Relay catalysis Binary-acid catalysis Enantioselectivity 

Notes

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos 21722203, 21831002, and 21801116) and Shenzhen Nobel Prize Scientists Laboratory Project (C17783101) is greatly appreciated.

References

  1. 1.
    Mlynarski J (ed) (2017) Chiral Lewis acids in organic synthesis. Wiley, WeinheimGoogle Scholar
  2. 2.
    Akiyama T (2007) Chem Rev 107:5744–5758PubMedGoogle Scholar
  3. 3.
    Parmar D, Sugiono E, Raja S, Rueping M (2014) Chem Rev 114:9047–9153PubMedGoogle Scholar
  4. 4.
    Parmar D, Sugiono E, Raja S, Rueping M (2017) Chem Rev 117:10608–10620PubMedGoogle Scholar
  5. 5.
    Maji R, Mallojjala SC, Wheeler SE (2018) Chem Soc Rev 47:1142–1158PubMedGoogle Scholar
  6. 6.
    Akiyama T, Itoh J, Yokota K, Fuchibe K (2004) Angew Chem Int Ed 43:1566–1568Google Scholar
  7. 7.
    Uraguchi D, Terada M (2004) J Am Chem Soc 126:5356–5357PubMedGoogle Scholar
  8. 8.
    Terada M (2008) Chem Commun 35:4097–4112Google Scholar
  9. 9.
    Terada M (2010) Synthesis 12:1929–1982Google Scholar
  10. 10.
    Masahiro T (2010) Bull Chem Soc Jpn 83:101–119Google Scholar
  11. 11.
    Schenker S, Zamfir A, Freund M, Tsogoeva SB (2011) Eur J Org Chem 12:2209–2222Google Scholar
  12. 12.
    Stemper J, Isaac K, Duret V, Retailleau P, Voituriez A, Betzer J-F, Marinetti A (2013) Chem Commun 49:6084–6086Google Scholar
  13. 13.
    Stemper J, Isaac K, Ghosh N, Lauwick H, Le Duc G, Retailleau P, Voituriez A, Betzer J-F, Marinetti A (2017) Adv Synth Catal 359:519–526Google Scholar
  14. 14.
    Stemper J, Isaac K, Pastor J, Frison G, Retailleau P, Voituriez A, Betzer J-F, Marinetti A (2013) Adv Synth Catal 355:3613–3624Google Scholar
  15. 15.
    Zhu J-C, Cui D-X, Li Y-D, Jiang R, Chen W-P, Wang P-A (2018) ChemCatChem 10:907–919Google Scholar
  16. 16.
    Isaac K, Stemper J, Servajean V, Retailleau P, Pastor J, Frison G, Kaupmees K, Leito I, Betzer J-F, Marinetti A (2014) J Org Chem 79:9639–9646PubMedGoogle Scholar
  17. 17.
    Yang C, Xue X-S, Jin J-L, Li X, Cheng J-P (2013) J Org Chem 78:7076–7085PubMedGoogle Scholar
  18. 18.
    Rueping M, Kuenkel A, Atodiresei I (2011) Chem Soc Rev 40:4539–4549PubMedGoogle Scholar
  19. 19.
    Chen D-F, Han Z-Y, Zhou X-L, Gong L-Z (2014) Acc Chem Res 47:2365–2377PubMedGoogle Scholar
  20. 20.
    Allen AE, MacMillan DWC (2012) Chem Sci 3:633–658Google Scholar
  21. 21.
    Du Z, Shao Z (2013) Chem Soc Rev 42:1337–1378PubMedGoogle Scholar
  22. 22.
    Shao Z, Zhang H (2009) Chem Soc Rev 38:2745–2755PubMedGoogle Scholar
  23. 23.
    Zhong C, Shi X (2010) Eur J Org Chem 16:2999–3025Google Scholar
  24. 24.
    Inamdar SM, Shinde VS, Patil NT (2015) Org Biomol Chem 13:8116–8162PubMedGoogle Scholar
  25. 25.
    Yang Z-P, Zhang W, You S-L (2014) J Org Chem 79:7785–7798PubMedGoogle Scholar
  26. 26.
    Rueping M, Koenigs RM, Atodiresei I (2010) Chem Eur J 16:9350–9365PubMedGoogle Scholar
  27. 27.
    Phipps RJ, Hamilton GL, Toste FD (2012) Nat Chem 4:603–614PubMedGoogle Scholar
  28. 28.
    Brak K, Jacobsen EN (2013) Angew Chem Int Ed 52:534–561Google Scholar
  29. 29.
    Mayer S, List B (2006) Angew Chem Int Ed 45:4193–4195Google Scholar
  30. 30.
    Parra A, Reboredo S, Martín Castro AM, Alemán J (2012) Org Biomol Chem 10:5001–5020PubMedGoogle Scholar
  31. 31.
    Mahlau M, List B (2013) Angew Chem Int Ed 52:518–533Google Scholar
  32. 32.
    Lv J, Luo S (2013) Chem Commun 49:847–858Google Scholar
  33. 33.
    Mukherjee S, List B (2007) J Am Chem Soc 129:11336–11337PubMedGoogle Scholar
  34. 34.
    Yan S-Y, Han Y-Q, Yao Q-J, Nie X-L, Liu L, Shi B-F (2018) Angew Chem Int Ed 57:9093–9097Google Scholar
  35. 35.
    Lin H-C, Wang P-S, Tao Z-L, Chen Y-G, Han Z-Y, Gong L-Z (2016) J Am Chem Soc 138:14354–14361PubMedGoogle Scholar
  36. 36.
    Rueping M, Antonchick AP, Brinkmann C (2007) Angew Chem Int Ed 46:6903–6906Google Scholar
  37. 37.
    Terada M, Li F, Toda Y (2014) Angew Chem Int Ed 53:235–239Google Scholar
  38. 38.
    Hu W, Xu X, Zhou J, Liu W-J, Huang H, Hu J, Yang L, Gong L-Z (2008) J Am Chem Soc 130:7782–7783PubMedGoogle Scholar
  39. 39.
    Jiang J, Xu H-D, Xi J-B, Ren B-Y, Lv F-P, Guo X, Jiang L-Q, Zhang Z-Y, Hu W-H (2011) J Am Chem Soc 133:8428–8431PubMedGoogle Scholar
  40. 40.
    Alamsetti SK, Spanka M, Schneider C (2016) Angew Chem Int Ed 55:2392–2396Google Scholar
  41. 41.
    Li C, Wang C, Villa-Marcos B, Xiao J (2008) J Am Chem Soc 130:14450–14451PubMedGoogle Scholar
  42. 42.
    Miura T, Nishida Y, Morimoto M, Murakami M (2013) J Am Chem Soc 135:11497–11500PubMedGoogle Scholar
  43. 43.
    Rong Z-Q, Zhang Y, Chua RHB, Pan H-J, Zhao Y (2015) J Am Chem Soc 137:4944–4947PubMedGoogle Scholar
  44. 44.
    Han Z-Y, Xiao H, Chen X-H, Gong L-Z (2009) J Am Chem Soc 131:9182–9183PubMedGoogle Scholar
  45. 45.
    Liu X-Y, Che C-M (2009) Org Lett 11:4204–4207PubMedGoogle Scholar
  46. 46.
    Muratore ME, Holloway CA, Pilling AW, Storer RI, Trevitt G, Dixon DJ (2009) J Am Chem Soc 131:10796–10797PubMedGoogle Scholar
  47. 47.
    Hamilton GL, Kang EJ, Mba M, Toste FD (2007) Science 317:496PubMedGoogle Scholar
  48. 48.
    Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ (2012) Science 336:324–327PubMedPubMedCentralGoogle Scholar
  49. 49.
    Cai Q, Zhao Z-A, You S-L (2009) Angew Chem Int Ed 48:7428–7431Google Scholar
  50. 50.
    Sorimachi K, Terada M (2008) J Am Chem Soc 130:14452–14453PubMedGoogle Scholar
  51. 51.
    Komanduri V, Krische MJ (2006) J Am Chem Soc 128:16448–16449PubMedGoogle Scholar
  52. 52.
    Pellissier H (2019) Coord Chem Rev 386:1–31Google Scholar
  53. 53.
    Yu P, Lin J-S, Li L, Zheng S-C, Xiong Y-P, Zhao L-J, Tan B, Liu X-Y (2014) Angew Chem Int Ed 53:11890–11894Google Scholar
  54. 54.
    Rauniyar V, Wang ZJ, Burks HE, Toste FD (2011) J Am Chem Soc 133:8486–8489PubMedGoogle Scholar
  55. 55.
    Ren L, Lei T, Ye J-X, Gong L-Z (2012) Angew Chem Int Ed 51:771–774Google Scholar
  56. 56.
    Chen L, Zhang L, Lv J, Cheng J-P, Luo S (2012) Chem Eur J 18:8891–8895PubMedGoogle Scholar
  57. 57.
    Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T (2018) J Am Chem Soc 140:6203–6207PubMedGoogle Scholar
  58. 58.
    Hatano M, Moriyama K, Maki T, Ishihara K (2010) Angew Chem Int Ed 49:3823–3826Google Scholar
  59. 59.
    Alix A, Lalli C, Retailleau P, Masson G (2012) J Am Chem Soc 134:10389–10392PubMedGoogle Scholar
  60. 60.
    Domżalska A, Ulikowski A, Furman B (2017) Alkaline earth metal based chiral lewis acids. In: Mlynarski J (ed) Chiral Lewis acids in organic synthesis. Wiley-VCH, Weinheim, pp 1–23  https://doi.org/10.1002/9783527802142.ch1 Google Scholar
  61. 61.
    Lv J, Zhang L, Luo S, Cheng J-P (2013) Angew Chem Int Ed 52:9786–9790Google Scholar
  62. 62.
    Wang L, Lv J, Zhang L, Luo S (2017) Angew Chem Int Ed 56:10867–10871Google Scholar
  63. 63.
    Chirik P, Morris R (eds) (2015) Special Issue: Earth abundant metals in homogeneous catalysis. Acc Chem Res 48:(whole issue)Google Scholar
  64. 64.
    Egorova KS, Ananikov VP (2016) Angew Chem Int Ed 55:12150–12162Google Scholar
  65. 65.
    Alig L, Fritz M, Schneider S (2019) Chem Rev 119:2681–2751PubMedGoogle Scholar
  66. 66.
    Crossley SWM, Obradors C, Martinez RM, Shenvi RA (2016) Chem Rev 116:8912–9000PubMedPubMedCentralGoogle Scholar
  67. 67.
    Pellissier H, Clavier H (2014) Chem Rev 114:2775–2823PubMedGoogle Scholar
  68. 68.
    Bauer I, Knölker H-J (2015) Chem Rev 115:3170–3387PubMedGoogle Scholar
  69. 69.
    Tzouras NV, Stamatopoulos IK, Papastavrou AT, Liori AA, Vougioukalakis GC (2017) Coord Chem Rev 343:25–138Google Scholar
  70. 70.
    Chirik P, Morris R (2015) Acc Chem Res 48:2495PubMedGoogle Scholar
  71. 71.
    Choi J, Fu GC (2017) Science 356:7230–7239Google Scholar
  72. 72.
    Wang F, Chen P, Liu G (2018) Acc Chem Res 51:2036–2046PubMedGoogle Scholar
  73. 73.
    Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC (2016) Science 351:681PubMedPubMedCentralGoogle Scholar
  74. 74.
    Fischer C, Fu GC (2005) J Am Chem Soc 127:4594–4595PubMedGoogle Scholar
  75. 75.
    Son S, Fu GC (2008) J Am Chem Soc 130:2756–2757PubMedGoogle Scholar
  76. 76.
    Schley ND, Fu GC (2014) J Am Chem Soc 136:16588–16593PubMedPubMedCentralGoogle Scholar
  77. 77.
    Tasker SZ, Standley EA, Jamison TF (2014) Nature 509:299PubMedPubMedCentralGoogle Scholar
  78. 78.
    Liao S, List B (2010) Angew Chem Int Ed 49:628–631Google Scholar
  79. 79.
    McGarrigle EM, Gilheany DG (2005) Chem Rev 105:1563–1602PubMedGoogle Scholar
  80. 80.
    Merten C, Pollok CH, Liao S, List B (2015) Angew Chem Int Ed 54:8841–8845Google Scholar
  81. 81.
    Gebauer K, Reuß F, Spanka M, Schneider C (2017) Org Lett 19:4588–4591PubMedGoogle Scholar
  82. 82.
    El-Sepelgy O, Haseloff S, Alamsetti SK, Schneider C (2014) Angew Chem Int Ed 53:7923–7927Google Scholar
  83. 83.
    Chen X, Jiang H, Hou B, Gong W, Liu Y, Cui Y (2017) J Am Chem Soc 139:13476–13482PubMedGoogle Scholar
  84. 84.
    Liao S, List B (2012) Adv Synth Catal 354:2363–2367Google Scholar
  85. 85.
    Narute S, Parnes R, Toste FD, Pappo D (2016) J Am Chem Soc 138:16553–16560PubMedGoogle Scholar
  86. 86.
    Narute S, Pappo D (2017) Org Lett 19:2917–2920PubMedGoogle Scholar
  87. 87.
    Morris RH (2016) Chem Rev 116:8588–8654PubMedGoogle Scholar
  88. 88.
    Zhang Z, Butt NA, Zhou M, Liu D, Zhang W (2018) Chin J Chem 36:443–454Google Scholar
  89. 89.
    Quintard A, Rodriguez J (2014) Angew Chem Int Ed 53:4044–4055Google Scholar
  90. 90.
    Zhou S, Fleischer S, Junge K, Beller M (2011) Angew Chem Int Ed 50:5120–5124Google Scholar
  91. 91.
    Zhou S, Fleischer S, Jiao H, Junge K, Beller M (2014) Adv Synth Catal 356:3451–3455Google Scholar
  92. 92.
    Fleischer S, Werkmeister S, Zhou S, Junge K, Beller M (2012) Chem Eur J 18:9005–9010PubMedGoogle Scholar
  93. 93.
    Fleischer S, Zhou S, Werkmeister S, Junge K, Beller M (2013) Chem Eur J 19:4997–5003PubMedGoogle Scholar
  94. 94.
    Hopmann KH (2015) Chem Eur J 21:10020–10030PubMedGoogle Scholar
  95. 95.
    Lu L-Q, Li Y, Junge K, Beller M (2015) J Am Chem Soc 137:2763–2768PubMedGoogle Scholar
  96. 96.
    Yang L, Zhu Q, Guo S, Qian B, Xia C, Huang H (2010) Chem Eur J 16:1638–1645PubMedGoogle Scholar
  97. 97.
    Lv J, Zhong X, Luo S (2014) Chem Eur J 20:8293–8296PubMedGoogle Scholar
  98. 98.
    Zhang L, Zhang J, Ma J, Cheng D-J, Tan B (2017) J Am Chem Soc 139:1714–1717PubMedGoogle Scholar
  99. 99.
    Lalli C, van de Weghe P (2014) Chem Commun 50:7495–7498Google Scholar
  100. 100.
    Breugst M, Grée R, Houk KN (2013) J Org Chem 78:9892–9897PubMedGoogle Scholar
  101. 101.
    Tsui GC, Liu L, List B (2015) Angew Chem Int Ed 54:7703–7706Google Scholar
  102. 102.
    Saito K, Kajiwara Y, Akiyama T (2013) Angew Chem Int Ed 52:13284–13288Google Scholar
  103. 103.
    Yazaki R, Kumagai N, Shibasaki M (2010) J Am Chem Soc 132:10275–10277PubMedGoogle Scholar
  104. 104.
    Yazaki R, Kumagai N, Shibasaki M (2011) Chem Asian J 6:1778–1790PubMedGoogle Scholar
  105. 105.
    Yazaki R, Kumagai N, Shibasaki M (2011) Org Lett 13:952–955PubMedGoogle Scholar
  106. 106.
    Zhu Y, Cornwall RG, Du H, Zhao B, Shi Y (2014) Acc Chem Res 47:3665–3678PubMedPubMedCentralGoogle Scholar
  107. 107.
    Zhao B, Du H, Shi Y (2009) J Org Chem 74:8392–8395PubMedPubMedCentralGoogle Scholar
  108. 108.
    Zhao B, Peng X, Cui S, Shi Y (2010) J Am Chem Soc 132:11009–11011PubMedPubMedCentralGoogle Scholar
  109. 109.
    Zhao B, Peng X, Zhu Y, Ramirez TA, Cornwall RG, Shi Y (2011) J Am Chem Soc 133:20890–20900PubMedPubMedCentralGoogle Scholar
  110. 110.
    Plesniak MP, Huang H-M, Procter DJ (2017) Nat Rev Chem 1:77–92Google Scholar
  111. 111.
    Miyabe H, Kawashima A, Yoshioka E, Kohtani S (2017) Chem Eur J 23:6225–6236PubMedGoogle Scholar
  112. 112.
    Sibi MP, Manyem S, Zimmerman J (2003) Chem Rev 103:3263–3296PubMedGoogle Scholar
  113. 113.
    Tian Y, Chen S, Gu Q-S, Lin J-S, Liu X-Y (2018) Tetrahedron Lett 59:203–215Google Scholar
  114. 114.
    Li T, Yu P, Du Y-M, Lin J-S, Zhi Y, Liu X-Y (2017) J Fluor Chem 203:210–214Google Scholar
  115. 115.
    Lin J-S, Dong X-Y, Li T-T, Jiang N-C, Tan B, Liu X-Y (2016) J Am Chem Soc 138:9357–9360PubMedGoogle Scholar
  116. 116.
    Lin J-S, Wang F-L, Dong X-Y, He W-W, Yuan Y, Chen S, Liu X-Y (2017) Nat Commun 8:14841–14851PubMedPubMedCentralGoogle Scholar
  117. 117.
    Wang F-L, Dong X-Y, Lin J-S, Zeng Y, Jiao G-Y, Gu Q-S, Guo X-Q, Ma C-L, Liu X-Y (2017) Chem 3:979–990Google Scholar
  118. 118.
    Li X-F, Lin J-S, Wang J, Li Z-L, Gu Q-S, Liu X-Y (2018) Acta Chim Sin 76:878–882Google Scholar
  119. 119.
    Zeng Y, Liu X-D, Guo X-Q, Gu Q-S, Li Z-L, Chang X-Y, Liu X-Y (2019) Sci China Chem.  https://doi.org/10.1007/s11426-019-9528-2 CrossRefGoogle Scholar
  120. 120.
    Cheng Y-F, Dong X-Y, Gu Q-S, Yu Z-L, Liu X-Y (2017) Angew Chem Int Ed 56:8883–8886Google Scholar
  121. 121.
    Lin J-S, Li T-T, Liu J-R, Jiao G-Y, Gu Q-S, Cheng J-T, Guo Y-L, Hong X, Liu X-Y (2019) J Am Chem Soc 141:1074–1083PubMedGoogle Scholar
  122. 122.
    Incerti-Pradillos CA, Hudson D, Malkov AV (2015) Asymmetric Catal 2:45–50Google Scholar
  123. 123.
    Lacasse M-C, Poulard C, Charette AB (2005) J Am Chem Soc 127:12440–12441PubMedGoogle Scholar
  124. 124.
    Cornwall RG, Wong OA, Du H, Ramirez TA, Shi Y (2012) Org Biomol Chem 10:5498–5513PubMedGoogle Scholar
  125. 125.
    Zheng Y, Zhang J (2010) Adv Synth Catal 352:1810–1817Google Scholar
  126. 126.
    Voituriez A, Charette AB (2006) Adv Synth Catal 348:2363–2370Google Scholar
  127. 127.
    Voituriez A, Zimmer LE, Charette AB (2010) J Org Chem 75:1244–1250PubMedGoogle Scholar
  128. 128.
    Fuchs M, Schober M, Orthaber A, Faber K (2013) Adv Synth Catal 355:2499–2505PubMedPubMedCentralGoogle Scholar
  129. 129.
    Wang G-P, Chen M-Q, Zhu S-F, Zhou Q-L (2017) Chem Sci 8:7197–7202PubMedPubMedCentralGoogle Scholar
  130. 130.
    Furuno H, Hanamoto T, Sugimoto Y, Inanaga J (2000) Org Lett 2:49–52PubMedGoogle Scholar
  131. 131.
    Furuno H, Kambara T, Tanaka Y, Hanamoto T, Kagawa T, Inanaga J (2003) Tetrahedron Lett 44:6129–6132Google Scholar
  132. 132.
    Furuno H, Hayano T, Kambara T, Sugimoto Y, Hanamoto T, Tanaka Y, Jin YZ, Kagawa T, Inanaga J (2003) Tetrahedron 59:10509–10523Google Scholar
  133. 133.
    Jin XL, Sugihara H, Daikai K, Tateishi H, Jin YZ, Furuno H, Inanaga J (2002) Tetrahedron 58:8321–8329Google Scholar
  134. 134.
    Jin XL, Sugihara H, Daikai K, Tateishi H, Jin YZ, Furuno H, Inanaga J (2003) Tetrahedron 59:877Google Scholar
  135. 135.
    Sugihara H, Daikai K, Jin XL, Furuno H, Inanaga J (2002) Tetrahedron Lett 43:2735–2739Google Scholar
  136. 136.
    Suzuki S, Furuno H, Yokoyama Y, Inanaga J (2006) Tetrahedron Asymmetry 17:504–507Google Scholar
  137. 137.
    Liu C, Lv J, Luo S, Cheng J-P (2014) Org Lett 16:5458–5461PubMedGoogle Scholar
  138. 138.
    Jeong HJ, Kim DY (2018) Org Lett 20:2944–2947PubMedGoogle Scholar
  139. 139.
    Gualandi A, Rodeghiero G, Cozzi PG (2018) Asian J Org Chem 7:1957–1981Google Scholar
  140. 140.
    Terada M, Ota Y, Li F, Toda Y, Kondoh A (2016) J Am Chem Soc 138:11038–11043PubMedGoogle Scholar
  141. 141.
    Ota Y, Kondoh A, Terada M (2018) Angew Chem Int Ed 57:13917–13921Google Scholar
  142. 142.
    Terada M, Toda Y (2009) J Am Chem Soc 131:6354–6355PubMedGoogle Scholar
  143. 143.
    Terada M, Komuro T, Toda Y, Korenaga T (2014) J Am Chem Soc 136:7044–7057PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and TechnologyShenzhenChina
  2. 2.SUSTech Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenChina

Personalised recommendations