Advertisement

Topics in Current Chemistry

, 377:22 | Cite as

Photocatalytic Reactor Modeling: Application to Advanced Oxidation Processes for Chemical Pollution Abatement

  • María de los Milagros Ballari
  • María Lucila Satuf
  • Orlando M. AlfanoEmail author
Review
  • 95 Downloads
Part of the following topical collections:
  1. Heterogeneous Photocatalysis

Abstract

A methodology for photocatalytic reactor modeling applied to advanced oxidation processes for chemical pollution abatement is presented herein. Three distinct reactor configurations typically employed in the field of air and water purification—wall reactors, slurry reactors, and fixed-bed reactors—are considered to illustrate the suggested approach. Initially, different mechanistically derived kinetic expressions to represent the photocatalytic rate of pollutant degradation are reviewed, indicating the main assumptions made by the authors in the published contributions. These kinetic expressions are needed to solve the mass balances of the reactant species in the photocatalytic reactors. As is well known, at least one of the steps of the reaction mechanism requires evaluation of the rate of electron–hole generation, which depends on the photon absorption rate: a volumetric property for reactions with the catalyst particles in aqueous suspension or a surface property for systems with a fixed catalyst deposited on an inert support. Subsequently, the different techniques for evaluating the optical properties of slurry and immobilized systems, and the numerical methods applied to calculate the photon absorption rate, are described. The experimental and theoretical results of pollutant degradation in each reactor type are then presented and analyzed. Finally, the definition, calculation, and relevance of different efficiency parameters are briefly reviewed. Using these illustrative examples, we emphasize the need for a systematic and rigorous approach for photocatalytic reactor modeling in order to overcome the inherent drawbacks of photocatalysis and to improve the overall efficiency of the process.

Keywords

Photocatalysis Modeling Photon absorption Wall reactor Slurry reactor Fixed-bed reactor 

Notes

Acknowledgements

The authors are grateful to Universidad Nacional del Litoral (UNL, Project PIC50420150100009LI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Project PIP-2015 0100093), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Project PICT-2015-2651, Project PICT 2014-1020) for the financial support. They also thank Claudia M. Romani for her technical assistance.

References

  1. 1.
    Alfano OM, Cassano AE (2009) In De Lasa H, Serrano-Rosales B (eds) Advances in chemical engineering, vol. 36: Photocatalytic Technologies, pp 229–287, Elsevier, New YorkGoogle Scholar
  2. 2.
    Imoberdorf GE, Irazoqui HA, Cassano AE, Alfano OM (2005) Photocatalytic degradation of tetrachloroethylene in gas phase on TiO2 films: a kinetic study. Ind Eng Chem Res 44:6075–6085Google Scholar
  3. 3.
    Alfano OM, Cabrera MI, Cassano AE (1997) Photocatalytic reactions involving hydroxyl radical attack I. Reaction kinetics formulation with explicit photon absorption effects. J Catal 172:370–379Google Scholar
  4. 4.
    Muñoz-Batista MJ, Ballari MM, Kubacka A, Alfano OM, Fernández-García M (2019) Braiding kinetics and spectroscopy in photo-catalysis: the spectro-kinetic approach. Chem Soc Rev 48:637–682PubMedGoogle Scholar
  5. 5.
    Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contamination: mechanisms involving hydroxyl radical attack. J Catal 122:178–192Google Scholar
  6. 6.
    Satuf ML, Brandi RJ, Cassano AE, Alfano OM (2008) Photocatalytic degradation of 4-chlorophenol: a kinetic study. Appl Catal B Environ 82:37–49Google Scholar
  7. 7.
    Marugán J, van Grieken R, Cassano AE, Alfano OM (2008) Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions. Appl Catal B Environ 85:48–60Google Scholar
  8. 8.
    Manassero A, Satuf ML, Alfano OM (2015) Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor. Environ Sci Pollut Res 22:926–937Google Scholar
  9. 9.
    Tolosana-Moranchel A, Casas JA, Carbajo J, Faraldos M, Bahamonde A (2017) Influence of TiO2 optical parameters in a slurry photocatalytic reactor: kinetic modelling. Appl Catal B Environ 200:164–173Google Scholar
  10. 10.
    Mueses MA, Machuca-Martinez F, Li Puma G (2013) Effective quantum yield and reaction rate model for evaluation of photocatalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactors. Chem Eng J 215–216:937–947Google Scholar
  11. 11.
    Brandi RJ, Rintoul G, Alfano OM, Cassano AE (2002) Photocatalytic reactors. Reaction kinetics in a flat plate solar simulator. Catal Today 76:161–175Google Scholar
  12. 12.
    Zalazar CS, Romero RL, Martín CA, Cassano AE (2005) Photocatalytic intrinsic reaction kinetics I: mineralization of dichloroacetic acid. Chem Eng Sci 60:5240–5254Google Scholar
  13. 13.
    Zalazar CS, Romero RL, Martín CA, Cassano AE (2005) Photocatalytic intrinsic reaction kinetics. II: effects of oxygen concentration on the kinetics of the photocatalytic degradation of dichloroacetic acid. Chem Eng Sci 60:4311–4322Google Scholar
  14. 14.
    Ballari MM, Alfano OM, Cassano AE (2009) Photocatalytic degradation of dichloroacetic acid. A kinetic study with a mechanistically based reaction model. Ind Eng Chem Res 48:1847–1858Google Scholar
  15. 15.
    Minero C, Vione D (2006) A quantitative evaluation of the photocatalytic performance of TiO2 slurries. Appl Catal B Environ 67:257–269Google Scholar
  16. 16.
    Camera-Roda G, Augugliaro V, Cardillo AG, Loddo V, Palmisano L, Parrino F, Santarelli F (2015) A reaction engineering approach to kinetic analysis of photocatalytic reactions in slurry system. Catal Today 259:87–96Google Scholar
  17. 17.
    Camera-Roda G, Loddo V, Palmisano L, Parrino F (2017) Guidelines for the assessment of the rate law of slurry photocatalytic reactions. Catal Today 281:221–230Google Scholar
  18. 18.
    Casado C, Marugán J, Timmers R, Muñoz M, van Grieken R (2017) Comprehensive multiphysics modeling of photocatalytic processes by computational fluid dynamics based on intrinsic kinetic parameters determined in a differential photoreactor. Chem Eng J 310:368–380Google Scholar
  19. 19.
    Salvadores F, Minen RI, Carballada J, Alfano OM, Ballari MM (2016) Kinetic study of acetaldehyde degradation in gas phase applying visible light photocatalysis. Chem Eng Technol 39:166–174Google Scholar
  20. 20.
    Li Puma G, Salvadó-Estivill I, Obee TN, Hay SO (2009) Kinetics rate model of the photocatalytic oxidation of trichloroethylene in air over TiO2 thin films. Sep Purif Technol 67:226–232Google Scholar
  21. 21.
    Yu QL, Ballari MM, Brouwers HJH (2010) Indoor air purification using heterogeneous photocatalytic oxidation part II: theoretical study. Appl Catal B Environ 99:58–65Google Scholar
  22. 22.
    Passalía C, Martínez Retamar ME, Alfano OM, Brandi RJ (2010) Photocatalytic degradation of formaldehyde in gas phase on TiO2 Films: a kinetic study. Int J Chem React Eng 8:1–28Google Scholar
  23. 23.
    Passalía C, Alfano OM, Brandi RJ (2011) Modeling and experimental verification of a corrugated plate photocatalytic reactor using computational fluid dynamics. Ind Eng Chem Res 50:9077–9086Google Scholar
  24. 24.
    Passalía C, Alfano OM, Brandi RJ (2012) A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters. J Hazard Mater 211–212:357–365PubMedGoogle Scholar
  25. 25.
    Muñoz-Batista MJ, Kubacka A, Gómez-Cerezo MN, Tudela D, Fernández-García M (2013) Sunlight-driven toluene photo-elimination using CeO2–TiO2 composite systems: a kinetic study. Appl Catal B Environ 140–141:626–635Google Scholar
  26. 26.
    Muñoz-Batista MJ, Ballari MM, Cassano AE, Alfano OM, Kubacka A, Fernández-García M (2015) Ceria promotion of acetaldehyde photo-oxidation in a TiO2-based catalyst: a spectroscopic and kinetic study. Catal Sci Technol 5:1521–1531Google Scholar
  27. 27.
    Manassero A, Zacarías SM, Satuf ML, Alfano OM (2016) Intrinsic kinetics of clofibric acid photocatalytic degradation in a fixed-film reactor. Chem Eng J 283:1384–1391Google Scholar
  28. 28.
    Boyjoo Y, Sun H, Liu J, Pareek VK, Wang S (2017) A review on photocatalysis for air treatment: from catalyst development to reactor design. Chem Eng J 310:537–559Google Scholar
  29. 29.
    Cassano AE, Martín CA, Brandi RJ, Alfano OM (1995) Photoreactor analysis and design: fundamentals and applications. Ind Eng Chem Res 34:2155–2201Google Scholar
  30. 30.
    Salvadó-Estivill I, Brucato A, Li Puma G (2007) Two-dimensional modeling of a flat-plate photocatalytic reactor for oxidation of indoor air pollutants. Ind Eng Chem Res 46:7489–7496Google Scholar
  31. 31.
    Salvadó-Estivill I, Hargreaves DM, Li Puma G (2007) Evaluation of the intrinsic photocatalytic oxidation kinetics of indoor air pollutants. Environ Sci Technol 41:2028–2035PubMedGoogle Scholar
  32. 32.
    Assadi AA, Palauc J, Bouzaza A, Wolbert D (2013) Modeling of a continuous photocatalytic reactor for isovaleraldehyde oxidation: effect of different operating parameters and chemical degradation pathway. Chem Eng Res Des 91:1307–1316Google Scholar
  33. 33.
    Kuhn HJ, Braslavsky SE, Schmidt R (2004) Chemical actinometry (IUPAC technical report). Pure Appl Chem 76(12):2105–2146Google Scholar
  34. 34.
    Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  35. 35.
    Zalazar CS, Labas MD, Martín CA, Brandi RJ, Alfano OM, Cassano AE (2005) The extended use of actinometry in the interpretation of photochemical reaction engineering data. Chem Eng J 109:67–81Google Scholar
  36. 36.
    Roegiers J, van Walsem J, Denys S (2018) CFD- and radiation field modeling of a gas phase photocatalytic multi-tube reactor. Chem Eng J 338:287–299Google Scholar
  37. 37.
    Muñoz V, Casado C, Suárez S, Sánchez B, Marugán J (2019) Photocatalytic NOx removal: rigorous kinetic modelling and ISO standard reactor simulation. Catal Today 326:82–93Google Scholar
  38. 38.
    Zacarías SM, Satuf ML, Vaccari MC, Alfano OM (2012) Efficiency evaluation of different TiO2 coatings on the photocatalytic inactivation of airborne bacterial spores. Ind Eng Chem Res 51:13599–13608Google Scholar
  39. 39.
    Ballari MM, Carballada J, Minen R, Salvadores F, Brouwers HJH, Alfano OM, Cassano AE (2016) Visible light TiO2 photocatalysts assessment for air decontamination. Process Saf Environ 101:124–133Google Scholar
  40. 40.
    Briggiler Marcó M, Quiberoni AL, Negro AC, Reinheimer JA, Alfano OM (2011) Evaluation of the photocatalytic inactivation efficiency of dairy bacteriophages. Chem Eng J 172:987–993Google Scholar
  41. 41.
    Edwards DK (1977) Solar absorption by each element in an absorber-coverglass array. Sol Energy 19:401–402Google Scholar
  42. 42.
    Siegel R, Howell J (2002) Thermal radiation heat transfer, 4th edn. Taylor and Francis, New YorkGoogle Scholar
  43. 43.
    Muñoz-Batista MJ, Ballari MM, Kubacka AM, Cassano AE, Alfano OM, Fernández-García M (2014) Acetaldehyde degradation under UV and visible irradiation using CeO2–TiO2 composite systems: evaluation of the photocatalytic efficiencies. Chem Eng J 255:297–306Google Scholar
  44. 44.
    Mohseni M, Taghipour F (2004) Experimental and CFD analysis of photocatalytic gas phase vinyl chloride (VC) oxidation. Chem Eng Sci 59:1601–1609Google Scholar
  45. 45.
    Wang Z, Liu J, Dai Y, Dong W, Zhang S, Chen J (2012) CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor. J Hazard Mater 215–216:25–31PubMedGoogle Scholar
  46. 46.
    Queffeulou A, Geron L, Archambeau C, Le Gall H, Marquaire PM, Zahraa O (2010) Kinetic study of Acetaldehyde photocatalytic oxidation with a thin film of TiO2 coated on stainless steel and CFD modeling approach. Ind Eng Chem Res 49:6890–6897Google Scholar
  47. 47.
    Jovic F, Kosar V, Tomasic V, Gomzi Z (2012) Non-ideal flow in an annular photocatalytic reactor. Chem Eng Res Des 90:1297–1306Google Scholar
  48. 48.
    Passalía C, Alfano OM, Brandi RJ (2017) Integral design methodology of photocatalytic reactors for air pollution remediation. Molecules 22:945–961PubMedCentralGoogle Scholar
  49. 49.
    Einaga H, Tokura J, Teraoka Y, Ito K (2015) Kinetic analysis of TiO2-catalyzed heterogeneous photocatalytic oxidation of ethylene using computational fluid dynamics. Chem Eng J 263:325–335Google Scholar
  50. 50.
    Trujillo FJ, Safinski T, Adesina AA (2009) Solid–liquid mass transfer analysis in a multi-phase tank reactor containing submerged coated inclined-plates: a computational fluid dynamics approach. Chem Eng Sci 42:1143–1153Google Scholar
  51. 51.
    Imoberdorf GE, Cassano AE, Alfano OM, Irazoqui HA (2006) Modeling of a multiannular photocatalytic reactor for perchloroethylene degradation in air. AIChE J 52(5):1814–1823Google Scholar
  52. 52.
    Imoberdorf GE, Irazoqui HA, Alfano OM, Cassano AE (2007) Scaling-up from first principles of a photocatalytic reactor for air pollution remediation. Chem Eng Sci 62:793–804Google Scholar
  53. 53.
    Imoberdorf GE, Cassano AE, Irazoqui HA, Alfano OM (2007) Optimal design and modeling of annular photocatalytic wall reactors. Catal Today 129:118–126Google Scholar
  54. 54.
    Tomasic V, Jovic F, Gomzi Z (2008) Photocatalytic oxidation of toluene in the gas phase: modelling an annular photocatalytic reactor. Catal Today 137:350–356Google Scholar
  55. 55.
    Marecic M, Jovic F, Kosar V, Tomasic V (2011) Modelling of an annular photocatalytic reactor. React Kinet Mech Cat 103:19–29Google Scholar
  56. 56.
    Vincent G, Marquaire PM, Zahraa O (2008) Abatement of volatile organic compounds using an annular photocatalytic reactor: study of gaseous acetone. J Photochem Photobiol A Chem 197:177–189Google Scholar
  57. 57.
    Adjimi S, Roux J-C, Sergent N, Delpech F, Thivel P-X, Pera-Titus M (2014) Photocatalytic oxidation of ethanol using paper-based nano-TiO2 immobilized on porous silica: a modelling study. Chem Eng J 251:381–391Google Scholar
  58. 58.
    Demeestere K, De Visscher A, Dewulf J, Van Leeuwen M, Van Langenhove H (2004) A new kinetic model for titanium dioxide mediated heterogeneous photocatalytic degradation of trichloroethylene in gas-phase. Appl Catal B Environ 54:261–274Google Scholar
  59. 59.
    Vezzoli M, Martens WN, Bell JM (2011) Investigation of phenol degradation: true reaction kinetics on fixed film titanium dioxide photocatalyst. Appl Catal A Gen 404:155–163Google Scholar
  60. 60.
    Padoin N, Soares C (2017) An explicit correlation for optimal TiO2 film thickness in immobilized photocatalytic reaction systems. Chem Eng J 310:381–388Google Scholar
  61. 61.
    Ozisik MN (1973) Radiative transfer and interactions with conduction and convection. Wiley, New YorkGoogle Scholar
  62. 62.
    de Lasa H, Serrano B, Salaices M (2005) Photocatalytic reaction engineering. Springer, New YorkGoogle Scholar
  63. 63.
    Satuf ML, Brandi RJ, Cassano AE, Alfano OM (2005) Experimental method to evaluate the optical properties of aqueous titanium dioxide suspensions. Ind Eng Chem Res 44:6643–6649Google Scholar
  64. 64.
    Marugán J, van Grieken R, Alfano OM, Cassano AE (2006) Optical and physicochemical properties of silica-supported TiO2 photocatalysts. AIChE J 52:2832–2843Google Scholar
  65. 65.
    Tolosana-Moranchel A, Manassero A, Satuf ML, Alfano OM, Casas JA, Bahamonde A (2019) Influence of TiO2-rGO optical properties on the photocatalytic activity and efficiency to photograde an emerging pollutant. Appl Catal B Environ 246:1–11Google Scholar
  66. 66.
    Duderstadt JJ, Martin R (1979) Transport theory. Wiley, New YorkGoogle Scholar
  67. 67.
    Modest MF (2003) Radiative heat transfer, 2nd edn. Academic Press, New YorkGoogle Scholar
  68. 68.
    Howell JR, Siegel R, Pinar Mengüc M (2011) Thermal radiation heat transfer, 5th edn. CRC Press, Boca RatonGoogle Scholar
  69. 69.
    Brucato A, Rizzuti L (1997) Simplified modeling of radiant fields in heterogeneous photoreactors. 1. Case of zero reflectance. Ind Eng Chem Res 36:4740–4747Google Scholar
  70. 70.
    Brucato A, Rizzuti L (1997) Simplified modeling of radiant fields in heterogeneous photoreactors. 2. Limiting “two-flux” model for the case of reflectance greater than zero. Ind Eng Chem Res 36:4748–4755Google Scholar
  71. 71.
    Brucato A, Cassano AE, Grisafi F, Montante G, Rizzuti L, Vella G (2006) Estimating radiant fields in flat heterogeneous photoreactors by the six-flux model. AIChE J 52:3882–3890Google Scholar
  72. 72.
    Colina-Márquez J, Machuca-Martínez F, Li Puma G (2009) Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field. Environ Sci Technol 43:8953–8960PubMedGoogle Scholar
  73. 73.
    Otálvaro-Marín HL, Mueses MA, Machuca-Martínez F (2014) Boundary layer of photon absorption applied to heterogeneous photocatalytic solar flat plate reactor design. Int J Photoenergy 1-8Google Scholar
  74. 74.
    Busciglio A, Alfano OM, Scargiali F, Brucato A (2016) A probabilistic approach to radiant field modeling in dense particulate systems. Chem Eng Sci 142:79–88Google Scholar
  75. 75.
    Satuf ML, José S, Paggi JC, Brandi RJ, Cassano AE, Alfano OM (2010) Reactor modeling in heterogeneous photocatalysis: toxicity and biodegradability assessment. Water Sci Technol 61:2491–2499PubMedGoogle Scholar
  76. 76.
    Romero RL, Alfano OM, Cassano AE (1997) Cylindrical photocatalytic reactors. Radiation absorption and scattering effects produced by suspended fine particles in an annular space. Ind Eng Chem Res 36:3094–3109Google Scholar
  77. 77.
    Romero RL, Alfano OM, Cassano AE (2003) Radiation field in an annular, slurry photocatalytic reactor. 2. Model and experiments. Ind Eng Chem Res 42:2479–2488Google Scholar
  78. 78.
    Romero RL, Alfano OM, Cassano AE (2009) Photocatalytic reactor employing titanium dioxide: from a theoretical model to realistic experimental results. Ind Eng Chem Res 48:10456–10466Google Scholar
  79. 79.
    Marugán J, van Grieken R, Pablos C, Satuf ML, Cassano AE, Alfano OM (2013) Modelling of a bench-scale photocatalytic reactor for water disinfection from laboratory-scale kinetic data. Chem Eng J 224:39–45Google Scholar
  80. 80.
    Camera Roda G, Santarelli F (2007) A rational approach to the design of photocatalytic reactors. Ind Eng Chem Res 46:7637–7644Google Scholar
  81. 81.
    Pareek V, Chong S, Tadé M, Adesina AA (2008) Light intensity distribution in heterogenous photocatalytic reactors. Asia Pac J Chem Eng 3:171–201Google Scholar
  82. 82.
    Duran JE, Taghipour F, Mohseni M (2010) Irradiance modeling in annular photoreactors using the finite-volume method. J Photochem Photobiol A 215:81–89Google Scholar
  83. 83.
    Huang Q, Liu T, Yang J, Yao L, Gao L (2011) Evaluation of radiative transfer using the finite volume method in cylindrical photoreactors. Chem Eng Sci 66:3930–3940Google Scholar
  84. 84.
    Spadoni G, Bandini E, Santarelli F (1978) Scattering effects in photosensitized reactions. Chem Eng Sci 33:517–524Google Scholar
  85. 85.
    Pasquali M, Santarelli F, Porter JF, Yue PL (1996) Radiative transfer in photocatalytic systems. AIChE J 42:532–537Google Scholar
  86. 86.
    Yang Q, Ang PL, Ray MB, Pehkonen SO (2005) Light distribution field in catalyst suspensions within an annular photoreactor. Chem Eng Sc 60:5255–5268Google Scholar
  87. 87.
    Moreira J, Serrano B, Ortíz A, de Lasa H (2010) Evaluation of photon absorption in an aqueous TiO2 slurry reactor using Monte Carlo simulations and macroscopic balance. Ind Eng Chem Res 49:10524–10534Google Scholar
  88. 88.
    Zekri M, Colbeau-Justin C (2013) A mathematical model to describe the photocatalytic reality: what is the probability that a photon does its job? Chem Eng J 225:547–557Google Scholar
  89. 89.
    Doll T, Frimmel F (2004) Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways. Water Res 38:955–964PubMedGoogle Scholar
  90. 90.
    Alfano OM, Satuf ML, Manassero A (2017) Photon transport phenomena: radiation absorption and scattering effects on photoreactors. Chapter 4, pp 97–122, Word Scientific Pub. EuropeGoogle Scholar
  91. 91.
    Imoberdorf GE, Alfano OM, Cassano AE, Irazoqui HA (2007) Monte Carlo model of UV-radiation interaction with TiO2-coated spheres. AIChE J 53:2688–2703Google Scholar
  92. 92.
    Loddo V, Yurdakal S, Palmisano G, Imoberdorf GE, Irazoqui HA, Alfano OM, Augugliaro V, Berber H, Palmisano L (2007) Selective photocatalytic oxidation of 4-methoxybenzyl alcohol to p-anisaldehyde in organic-free water in a continuous annular fixed bed reactor. Int J Chem Reactor Eng 5:A57Google Scholar
  93. 93.
    Verbruggen SW, Ribbens S, Tytgat T, Hauchecorne B, Smits M, Meynen V, Cool P, Martens JA, Lenaerts S (2011) The benefit of glass bead supports for efficient gas phase photocatalysis: case study of a commercial and a synthesised photocatalyst. Chem Eng J 174:318–325Google Scholar
  94. 94.
    Vaiano V, Sacco O, Pisano D, Sannino D, Ciambelli P (2015) From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem Eng Sci 137:152–160Google Scholar
  95. 95.
    Ramos B, Ookawara S, Matsushita Y, Yoshikawa S (2015) Intensification of solar photocatalysis with immobilized TiO2 by using micro-structured reaction spaces. J Environ Chem Eng 3:681–688Google Scholar
  96. 96.
    Claes T, Dilissen A, Leblebici ME, Van Gerven T (2019) Translucent packed bed structures for high throughput photocatalytic reactors. Chem Eng J 361:725–735Google Scholar
  97. 97.
    Imoberdorf GE, Vella G, Sclafani A, Rizzuti L, Alfano OM, Cassano AE (2010) Radiation model of a TiO2-coated, quartz wool, packed-bed photocatalytic reactor. AIChE J 56(4):1030–1044Google Scholar
  98. 98.
    Vella G, Imoberdorf GE, Sclafani A, Cassano AE, Alfano OM, Rizzuti L (2010) Modeling of a TiO2-coated quartz wool packed bed photocatalytic reactor. Appl Catal B Environ 96:399–407Google Scholar
  99. 99.
    Changrani RG, Raupp GB (1999) Monte Carlo simulation of the radiation field in a reticulated foam photocatalytic reactor. AIChE J 45:1085–1094Google Scholar
  100. 100.
    Changrani RG, Raupp GB (2000) Two-dimensional heterogeneous model for a reticulated foam photocatalytic reactor. AIChE J 46:829–842Google Scholar
  101. 101.
    Kouamé AN, Masson R, Robert D, Keller N, Keller V (2013) β-SiC foams as a promising structured photocatalytic support for water and air detoxification. Catal Today 209:13–20Google Scholar
  102. 102.
    Alexiadis A, Baldi G, Mazzarino I (2001) Modelling of a photocatalytic reactor with a fixed bed of supported catalyst. Catal Today 66:467–474Google Scholar
  103. 103.
    Sampaio MJ, Silva CG, Silva AMT, Vilar VJP, Boaventura RAR, Faria JL (2013) Photocatalytic activity of TiO2-coated glass raschig rings on the degradation of phenolic derivatives under simulated solar light irradiation. Chem Eng J 224:32–38Google Scholar
  104. 104.
    Cloteaux A, Gérardin F, Thomas D, Midoux N, André J-C (2014) Fixed bed photocatalytic reactor for formaldehyde degradation: experimental and modeling study. Chem Eng J 249:121–129Google Scholar
  105. 105.
    Manassero A, Satuf ML, Alfano OM (2017) Photocatalytic degradation of an emerging pollutant by TiO2-coated glass rings: a kinetic study. Environ Sci Pollut Res 24:6031–6039Google Scholar
  106. 106.
    Cerdá J, Marchetti JL, Cassano AE (1977) Radiation efficiencies in elliptical photoreactors. Lat Am J Heat Mass Transf 1:33–63Google Scholar
  107. 107.
    Passalía C, Alfano OM, Brandi RJ (2013) Optimal design of a corrugated-wall photocatalytic reactor using efficiencies in series and computational fluid dynamics (CFD) modeling. Ind Eng Chem Res 52:6916–6922Google Scholar
  108. 108.
    Imoberdorf GE, Cassano AE, Irazoqui HA, Alfano OM (2007) Simulation of a multi-annular photocatalytic reactor for degradation of perchloroethylene in air: parametric analysis of radiative energy efficiencies. Chem Eng Sci 64:1138–1154Google Scholar
  109. 109.
    Motegh M, Cen J, Appel PW, van Ommen JR, Kreutzer M (2012) Photocatalytic-reactor efficiencies and simplified expressions to assess their relevance in kinetic experiments. Chem Eng J 207–208:607–615Google Scholar
  110. 110.
    Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC technical report). Pure Appl Chem 73(4):627–637Google Scholar
  111. 111.
    Serrano B, de Lasa H (1997) Photocatalytic degradation of water organic pollutants. Kinetic modeling and energy efficiency. Ind Eng Chem Res 36:4705–4711Google Scholar
  112. 112.
    de Lasa H, Serrano B, Moreira J, Valades-Pelayo P (2016) Efficiency factors in photocatalytic reactors: quantum yield and photochemical thermodynamic efficiency factor. Chem Eng Technol 39:51–65Google Scholar
  113. 113.
    Li D, Xiong K, Li W, Yang Z, Liu C, Feng X, Lu X (2010) Comparative study in liquid phase heterogeneous photocatalysis: model for photoreactor scale-up. Ind Eng Chem Res 49:8397–8405Google Scholar
  114. 114.
    Leblebici ME, Stefanidis GD, Van Gerven T (2015) Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment. Chem Eng Process 97:106–111Google Scholar
  115. 115.
    Brandi RJ, Citroni MA, Alfano OM, Cassano AE (2003) Absolute quantum yields in photocatalytic slurry reactors. Chem Eng Sci 58:979–985Google Scholar
  116. 116.
    Manassero A, Satuf ML, Alfano OM (2013) Evaluation of UV and visible light activity of TiO2 catalysts for water remediation. Chem Eng J 225:378–386Google Scholar
  117. 117.
    Ryu J, Choi W (2008) Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application. Environ Sci Technol 42:294–300PubMedGoogle Scholar
  118. 118.
    Manassero A, Satuf ML, Alfano OM (2017) Photocatalytic reactors with suspended and immobilized TiO2: comparative efficiency evaluation. Chem Eng J 326:29–36Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María de los Milagros Ballari
    • 1
  • María Lucila Satuf
    • 1
  • Orlando M. Alfano
    • 1
    Email author
  1. 1.Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET)Santa FeArgentina

Personalised recommendations