Topics in Current Chemistry

, 376:44 | Cite as

Continuous-Flow Microreactors for Polymer Synthesis: Engineering Principles and Applications

  • Yuanhai Su
  • Yang Song
  • Liang Xiang
Part of the following topical collections:
  1. Sustainable Flow Chemistry


Polymerization is widely involved in the fabrication of high-performance materials. With its advantages, microreactors are typically applied to reaction processes which are limited by transport properties of conventional batch reactors. As demonstrated in this review, numerous polymerization processes are suitable to be conducted in microreactors with showing excellent polymerization performance (e.g., precisely controllable molecular weights and structures of polymer products). However, distinctive differences between polymerization processes and small-molecular reaction systems can be easily expected since fluid physical properties vary significantly during the polymerization. Herein, we firstly clearly describe the engineering principles such as mass transport phenomena and energy dissipation related to polymerization processes in microreactors, and then give a great deal of application examples (classified as homogeneous polymerization, heterogeneous polymerization, and photopolymerization) through which readers indeed can further understand these relevant principles. Finally, the remaining challenges associated with the application of microreactor technology for polymerization processes and remarking conclusions are presented.


Microreactors Flow chemistry Photochemistry Mass transfer Polymers Polymerization 



Y. S. would like to acknowledge financial support from the National Natural Science Foundation of China (no. 21676164) and the Recruitment Program for Young Professionals initiated by Government of China. We also thank Mr. Wenhua Xu for his help in collecting some relevant references.


  1. 1.
    Li X, Mastan E, Wang W-J, Li B-G, Zhu S (2016) React. Chem. Eng. 1:23CrossRefGoogle Scholar
  2. 2.
    Junkers T (2017) J. Flow. Chem. 7:106CrossRefGoogle Scholar
  3. 3.
    Alcock B, Peijs T (2013) Adv. Polym. Sci. 251:1Google Scholar
  4. 4.
    Ebewele RO (2000) Polymer science and technology. CRC, Boca RatonCrossRefGoogle Scholar
  5. 5.
    Goto A, Fukuda T (2004) Prog. Polym. Sci. 29:329CrossRefGoogle Scholar
  6. 6.
    O’Shaughnessy B, Yu J (1994) Phys. Rev. Lett. 73:1723CrossRefPubMedGoogle Scholar
  7. 7.
    Cabral JT, Hudson SD, Harrison C, Douglas JF (2004) Langmuir 20:10020CrossRefPubMedGoogle Scholar
  8. 8.
    Junkers T, Wenn B (2016) React. Chem. Eng. 1:60CrossRefGoogle Scholar
  9. 9.
    Chen M, Zhong M, Johnson JA (2016) Chem. Rev. 116:10167CrossRefPubMedGoogle Scholar
  10. 10.
    Odian GG (2004) Principles of polymerization. Wiley, New YorkCrossRefGoogle Scholar
  11. 11.
    Gemoets HP, Su Y, Shang M, Hessel V, Luque R, Noël T (2016) Chem. Soc. Rev. 45:83CrossRefPubMedGoogle Scholar
  12. 12.
    Wang K, Luo G (2017) Chem. Eng. Sci. 169:18CrossRefGoogle Scholar
  13. 13.
    Li G, Shang M, Song Y, Su Y (2018) AIChE J. 64:1106CrossRefGoogle Scholar
  14. 14.
    Jensen KF (1999) AIChE J. 45:2051CrossRefGoogle Scholar
  15. 15.
    Jähnisch K, Hessel V, Löwe H, Baerns M (2004) Angew. Chem. Int. Ed. 43:406CrossRefGoogle Scholar
  16. 16.
    Kirschning A, Solodenko W, Mennecke K (2006) Chem. Eur. J. 12:5972CrossRefPubMedGoogle Scholar
  17. 17.
    Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT (2007) Chem. Rev. 107:2300CrossRefPubMedGoogle Scholar
  18. 18.
    Wiles C, Watts P (2008) Eur. J. Org. Chem. 2008:1655CrossRefGoogle Scholar
  19. 19.
    Frost CG, Mutton L (2010) Green Chem. 12:1687CrossRefGoogle Scholar
  20. 20.
    Webb D, Jamison TF (2010) Chem. Sci. 1:675CrossRefGoogle Scholar
  21. 21.
    Glasnov TN, Kappe CO (2011) J. Heterocycl. Chem. 48:11CrossRefGoogle Scholar
  22. 22.
    Hartman RL, McMullen JP, Jensen KF (2011) Angew. Chem. Int. Ed. 123:7642CrossRefGoogle Scholar
  23. 23.
    Noel T, Buchwald SL (2011) Chem. Soc. Rev. 40:5010CrossRefPubMedGoogle Scholar
  24. 24.
    Wegner J, Ceylan S, Kirschning A (2011) Chem. Commun. 47:4583CrossRefGoogle Scholar
  25. 25.
    McQuade DT, Seeberger PH (2013) J. Org. Chem. 78:6384CrossRefPubMedGoogle Scholar
  26. 26.
    Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q (2013) Chemsuschem 6:746CrossRefPubMedGoogle Scholar
  27. 27.
    Pastre JC, Browne DL, Ley SV (2013) Chem. Soc. Rev. 42:8849CrossRefPubMedGoogle Scholar
  28. 28.
    Levesque F, Seeberger PH (2012) Angew. Chem. Int. Ed. 51:1706CrossRefGoogle Scholar
  29. 29.
    Maskill KG, Knowles JP, Elliott LD, Alder RW, Booker-Milburn KI (2013) Angew. Chem. Int. Ed. 52:1499CrossRefGoogle Scholar
  30. 30.
    Straathof NJW, Gemoets HPL, Wang X, Schouten JC, Hessel V, Noel T (2014) Chemsuschem 7:1612CrossRefPubMedGoogle Scholar
  31. 31.
    Noël T, Su Y, Hessel V (2015) Top. Organomet. Chem. 57:1CrossRefGoogle Scholar
  32. 32.
    Yao C, Zhao Y, Chen G (2018) Chem. Eng. Sci. 189:340CrossRefGoogle Scholar
  33. 33.
    Knowles JP, Elliott LD, Booker-Milburn KI (2012) Beilstein J. Org. Chem. 8:2025CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tonhauser C, Nataello A, Lowe H, Frey H (2012) Macromolecules 45:9551CrossRefGoogle Scholar
  35. 35.
    Su Y, Straathof NJ, Hessel V, Noël T (2014) Chem. Eur. J. 20:10562CrossRefPubMedGoogle Scholar
  36. 36.
    Lobry E, Jasinski F, Penconi M, Chemtob A, Croutxe-Barghorn C, Oliveros E, Braun AM, Criqui A (2014) Rsc Adv. 4:43756CrossRefGoogle Scholar
  37. 37.
    Razzaq T, Kappe CO (2010) Chem-Asian J. 5:1274PubMedGoogle Scholar
  38. 38.
    Kockmann N, Gottsponer M, Roberge DM (2011) Chem. Eng. J. 167:718CrossRefGoogle Scholar
  39. 39.
    Elvira KS, i Solvas XC, Wootton RC, deMello AJ (2013) Nat Chem 5:905CrossRefPubMedGoogle Scholar
  40. 40.
    Matsushita Y, Ichimura T, Ohba N, Kumada S, Sakeda K, Suzuki T, Tanibata H, Murata T (2007) Pure Appl. Chem. 79:1959CrossRefGoogle Scholar
  41. 41.
    Coyle EE, Oelgemöller M (2008) Photochem. Photobiol. Sci. 7:1313CrossRefPubMedGoogle Scholar
  42. 42.
    Oelgemöller M, Shvydkiv O (2011) Molecules 16:7522CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Oelgemoeller M (2012) Chem. Eng. Technol. 35:1144CrossRefGoogle Scholar
  44. 44.
    Noel T, Wang X, Hessel V (2013) Chim. Oggi 31:10Google Scholar
  45. 45.
    Schuster EM, Wipf P (2014) Isr. J. Chem. 54:361CrossRefGoogle Scholar
  46. 46.
    Garlets ZJ, Nguyen JD, Stephenson CR (2014) Isr. J. Chem. 54:351CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Buss BL, Miyake GM (2018) Chem. Mater. 30:3931CrossRefGoogle Scholar
  48. 48.
    Bourne JR (2003) Org. Process Res. Dev. 7:471CrossRefGoogle Scholar
  49. 49.
    Su Y, Chen G, Yuan Q (2012) AIChE J. 58:1660CrossRefGoogle Scholar
  50. 50.
    Su Y, Lautenschleger A, Chen G, Kenig EY (2014) Ind. Eng. Chem. Res. 53:390CrossRefGoogle Scholar
  51. 51.
    Engler M, Kockmann N, Kiefer T, Woias P (2004) Chem. Eng. J. 101:315CrossRefGoogle Scholar
  52. 52.
    Soleymani A, Kolehmainen E, Turunen I (2008) Chem. Eng. J. 135:S219CrossRefGoogle Scholar
  53. 53.
    Li G, Pu X, Shang M, Zha L, Su Y (2018) AIChE J.
  54. 54.
    Rosa P, Karayiannis TG, Collins MW (2009) Appl. Therm. Eng. 29:3447CrossRefGoogle Scholar
  55. 55.
    Song Y, Shang M, Zhang H, Xu W-H, Pu X, Lu Q, Su Y (2018) Ind. Eng. Chem. Res. 57:10922CrossRefGoogle Scholar
  56. 56.
    Metzner AB, Otto RE (1957) AIChE J. 3:3CrossRefGoogle Scholar
  57. 57.
    Su Y, Chen G, Yuan Q (2014) Chem. Eng. Technol. 37:427CrossRefGoogle Scholar
  58. 58.
    Plais C, Augier F (2016) Theor. Found. Chem. Eng. 50:969CrossRefGoogle Scholar
  59. 59.
    Pogrebnyak VG, Toryanik AI (1979) Polym. Sci. U.S.S.R 21:990CrossRefGoogle Scholar
  60. 60.
    Mehta KN, Sood S (1992) Int. J. Eng. Sci. 30:1083CrossRefGoogle Scholar
  61. 61.
    Song Y, Shang MJ, Li GX, Luo ZH, Su YH (2018) AIChE J. 64:1828CrossRefGoogle Scholar
  62. 62.
    Wilke CR, Chang P (1955) AIChE J. 1:264CrossRefGoogle Scholar
  63. 63.
    Masaro L, Zhu XX (1999) Prog. Polym. Sci. 24:731CrossRefGoogle Scholar
  64. 64.
    Phillies GDJ (1986) Macromolecules 19:2367CrossRefGoogle Scholar
  65. 65.
    Phillies GDJ (1987) Macromolecules 20:558CrossRefGoogle Scholar
  66. 66.
    Ober TJ, Foresti D, Lewis JA (2015) Proc. Natl. Acad. Sci. U.S.A. 112:12293CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Atencia J, Beebe DJ (2005) Nature 437:648CrossRefPubMedGoogle Scholar
  68. 68.
    Kockmann N, Kiefer T, Engler M, Woias P (2006) Sens. Actuators B Chem. 117:495CrossRefGoogle Scholar
  69. 69.
    Kockmann N, Gottsponer M, Zimmermann B, Roberge DM (2008) Chem. Eur. J. 14:7470CrossRefPubMedGoogle Scholar
  70. 70.
    Edmondson S, Gilbert M (2017) Brydson’s plastics materials. Butterworth-Heinemann, OxfordGoogle Scholar
  71. 71.
    Hartman RL, McMullen JP, Jensen KF (2011) Angew. Chem. Int. Ed. 50:7502CrossRefGoogle Scholar
  72. 72.
    Taylor G (1953) Proc. R. Soc. A Math. Phys. 219:186CrossRefGoogle Scholar
  73. 73.
    Aris R (1956) Proc. R. Soc. A Math. Phys. 235:67CrossRefGoogle Scholar
  74. 74.
    Zha L, Pu X, Shang M, Li G, Xu W, Lu Q, Su Y (2018) AIChE J. 64:3479CrossRefGoogle Scholar
  75. 75.
    Dean WR (1928) Proc. R. Soc. Lond. A 121:402CrossRefGoogle Scholar
  76. 76.
    Mishra P, Gupta SN (1979) Ind. Eng. Chem. Process Des. Dev. 18:130CrossRefGoogle Scholar
  77. 77.
    Mishra P, Gupta SN (1979) Ind. Eng. Chem. Process Des. Dev. 18:137CrossRefGoogle Scholar
  78. 78.
    Saxena AK, Nigam KDP (1983) Chem. Eng. Commun. 23:277CrossRefGoogle Scholar
  79. 79.
    Saxena AK, Nigam KDP (1984) AIChE J. 30:363CrossRefGoogle Scholar
  80. 80.
    Herranz-Blanco B, Arriaga LR, Makila E, Correia A, Shrestha N, Mirza S, Weitz DA, Salonen J, Hirvonen J, Santos HA (2014) Lab Chip 14:1083CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Dong PF, Xu JH, Zhao H, Luo GS (2013) Chem. Eng. J. 214:106CrossRefGoogle Scholar
  82. 82.
    Wang W, Zhang MJ, Chu LY (2014) Acc. Chem. Res. 47:373CrossRefPubMedGoogle Scholar
  83. 83.
    Wang K, Li L, Xie P, Luo G (2017) React. Chem. Eng. 2:611CrossRefGoogle Scholar
  84. 84.
    Jensen KF (2017) AIChE J. 63:858CrossRefGoogle Scholar
  85. 85.
    Su Y (2017) Photochemical processes in continuous-flow reactors: from engineering principles to chemical application. World Scientific, HackensackGoogle Scholar
  86. 86.
    Kashid MN, Renken A, Kiwi-Minsker L (2011) Chem. Eng. Sci. 66:3876CrossRefGoogle Scholar
  87. 87.
    Su Y, Zhao Y, Chen G, Yuan Q (2010) Chem. Eng. Sci. 65:3947CrossRefGoogle Scholar
  88. 88.
    Yao C, Dong Z, Zhao Y, Chen G (2014) Chem. Eng. Sci. 112:15CrossRefGoogle Scholar
  89. 89.
    Woitalka A, Kuhn S, Jensen KF (2014) Chem. Eng. Sci. 116:1CrossRefGoogle Scholar
  90. 90.
    Bercˇicˇ G, Pintar A (1997) Chem. Eng. Sci. 52:3709CrossRefGoogle Scholar
  91. 91.
    van Baten JM, Krishna R (2004) Chem. Eng. Sci. 59:2535CrossRefGoogle Scholar
  92. 92.
    Song H, Tice JD, Ismagilov RF (2003) Angew. Chem. Int. Ed. 42:792CrossRefGoogle Scholar
  93. 93.
    Sattari-Najafabadi M, Nasr Esfahany M, Wu Z, Sunden B (2018) Chem. Eng. Process. 127:213CrossRefGoogle Scholar
  94. 94.
    Winkelman JGM, Schuur B, Heeres HJ, Yue J (2016) Ind Eng Chem Res 55:4691CrossRefGoogle Scholar
  95. 95.
    Song Y, Song J, Shang M, Xu W, Liu S, Wang B, Lu Q, Su Y (2018) Chem. Eng. J. 353:769CrossRefGoogle Scholar
  96. 96.
    Huang J, Kaner RB (2006) Chem. Commun. (Camb) 4:367CrossRefGoogle Scholar
  97. 97.
    Singh P, Singh RA (2012) Syn. Met. 162:2193CrossRefGoogle Scholar
  98. 98.
    Li T, Qin Z, Liang B, Tian F, Zhao J, Liu N, Zhu M (2015) Electrochim. Acta 177:343CrossRefGoogle Scholar
  99. 99.
    Huang J, Kaner RB (2004) J. Am. Chem. Soc. 126:851CrossRefPubMedGoogle Scholar
  100. 100.
    Haber J, Kashid MN, Renken A, Kiwi-Minsker L (2011) Ind. Eng. Chem. Res. 51:1474CrossRefGoogle Scholar
  101. 101.
    Bergman TL, Incropera FP (2011) Fundamentals of heat and mass transfer. Wiley, HobokenGoogle Scholar
  102. 102.
    Deen WM (1998) Analysis of transport phenomena. Oxford University Press, New YorkGoogle Scholar
  103. 103.
    Su Y, Hessel V, Noël T (2015) AIChE J. 61:2215CrossRefGoogle Scholar
  104. 104.
    Bally F, Serra CA, Hessel V, Hadziioannou G (2010) Macromol. React. Eng. 4:543CrossRefGoogle Scholar
  105. 105.
    Iwasaki T, Yoshida J (2005) Macromolecules 38:1159CrossRefGoogle Scholar
  106. 106.
    Méndez-Portillo LS, Dubois C, Tanguy PA (2014) Chem. Eng. J. 256:212CrossRefGoogle Scholar
  107. 107.
    Iwasaki T, Kawano N, Yoshida J (2006) Org. Process. Res. Dev. 10:1126CrossRefGoogle Scholar
  108. 108.
    Szwarc M, Levy M, Milkovich R (1956) J. Am. Chem. Soc. 78:192Google Scholar
  109. 109.
    Cunningham MF (2008) Prog. Polym. Sci. 33:365CrossRefGoogle Scholar
  110. 110.
    Qiu J, Charleux B, Matyjaszewski K (2001) Prog. Polym. Sci. 26:2083CrossRefGoogle Scholar
  111. 111.
    Grubbs RB, Grubbs RH (2017) Macromolecules 50:6979CrossRefGoogle Scholar
  112. 112.
    Nagaki A, Takumi M, Tani Y, Yoshida J-i (2015) Tetrahedron 71:5973CrossRefGoogle Scholar
  113. 113.
    Nagaki A, Tomida Y, Miyazaki A, Yoshida J-i (2009) Macromolecules 42:4384CrossRefGoogle Scholar
  114. 114.
    Nagaki A, Nakahara Y, Furusawa M, Sawaki T, Yamamoto T, Toukairin H, Tadokoro S, Shimazaki T, Ito T, Otake M, Arai H, Toda N, Ohtsuka K, Takahashi Y, Moriwaki Y, Tsuchihashi Y, Hirose K, Yoshida J-i (2016) Org Process Res Dev 20:1377CrossRefGoogle Scholar
  115. 115.
    Matyjaszewski K (2012) Macromolecules 45:4015CrossRefGoogle Scholar
  116. 116.
    Parida D, Serra CA, Garg DK, Hoarau Y, Muller R, Bouquey M (2014) Macromol. React. Eng. 8:597CrossRefGoogle Scholar
  117. 117.
    Parida D, Serra CA, Bally F, Garg DK, Hoarau A (2012) Green Process Synth. 1:525Google Scholar
  118. 118.
    Hornung CH, Guerrero-Sanchez C, Brasholz M, Saubern S, Chiefari J, Moad G, Rizzardo E, Thang SH (2011) Org. Process Res. Dev. 15:593CrossRefGoogle Scholar
  119. 119.
    Hornung CH, Postma A, Saubern S, Chiefari J (2012) Macromol. React. Eng. 6:246CrossRefGoogle Scholar
  120. 120.
    Hornung CH, Nguyen X, Dumsday G, Saubern S (2012) Macromol. React. Eng. 6:458CrossRefGoogle Scholar
  121. 121.
    Diehl C, Laurino P, Azzouz N, Seeberger PH (2010) Macromolecules 43:10311CrossRefGoogle Scholar
  122. 122.
    Derboven P, Van Steenberge PH, Vandenbergh J, Reyniers MF, Junkers T, D’Hooge DR, Marin GB (2015) Macromol. Rapid Commun. 36:2149CrossRefPubMedGoogle Scholar
  123. 123.
    Xiang L, Wang WJ, Li BG, Zhu SP (2017) Macromol. React. Eng. 11:170023CrossRefGoogle Scholar
  124. 124.
    Studer A, Ryu I, Fukuyama T, Kajihara Y (2012) Synthesis 44:2555CrossRefGoogle Scholar
  125. 125.
    Rosenfeld C, Serra C, Brochon C, Hadziioannou G (2007) Chem. Eng. Sci. 62:5245CrossRefGoogle Scholar
  126. 126.
    Yokozawa T, Yokoyama A (2009) Chem. Rev. 109:5595CrossRefPubMedGoogle Scholar
  127. 127.
    Wang P, Wang K, Zhang J, Luo G (2015) Rsc Adv. 5:64055CrossRefGoogle Scholar
  128. 128.
    Kessler D, Löwe H, Theato P (2009) Macromol. Chem. Phys. 210:807CrossRefGoogle Scholar
  129. 129.
    Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G (2017) Annu. Rev. Chem. Biomol. Eng. 8:285CrossRefPubMedGoogle Scholar
  130. 130.
    Okubo Y, Maki T, Nakanishi F, Hayashi T, Mae K (2010) Chem. Eng. Sci. 65:386CrossRefGoogle Scholar
  131. 131.
    Liu Z, Lu Y, Yang B, Luo G (2011) Ind. Eng. Chem. Res. 50:11853CrossRefGoogle Scholar
  132. 132.
    Liu YLY, Guangsheng L (2013) Chin. J. Catal. 34:1635CrossRefGoogle Scholar
  133. 133.
    Wang W, Zhang MJ, Xie R, Ju XJ, Yang C, Mou CL, Weitz DA, Chu LY (2013) Angew. Chem. Int. Ed. 52:8084CrossRefGoogle Scholar
  134. 134.
    Nie Z, Xu S, Seo M, Lewis PC, Kumacheva E (2005) J. Am. Chem. Soc. 127:8058CrossRefPubMedGoogle Scholar
  135. 135.
    Nie Z, Li W, Seo M, Shengqing XuA, Kumacheva E (2006) J. Am. Chem. Soc. 128:9408CrossRefPubMedGoogle Scholar
  136. 136.
    Yang B, Lu Y, Luo G (2012) Ind. Eng. Chem. Res. 51:9016CrossRefGoogle Scholar
  137. 137.
    Yang B, Lu Y, Ren T, Luo G (2013) React. Funct. Polym. 73:122CrossRefGoogle Scholar
  138. 138.
    Shen Y, Zhu S, Pelton R (2000) Macromol. Rapid Commun. 21:956CrossRefGoogle Scholar
  139. 139.
    Shen Y, Zhu S (2002) AIChE J. 48:2609CrossRefGoogle Scholar
  140. 140.
    Konkolewicz D, Wang Y, Krys P, Zhong M, Isse AA, Gennaro A, Matyjaszewski K (2014) Polym. Chem. 5:4409CrossRefGoogle Scholar
  141. 141.
    Matyjaszewski K, Qiu J, Tsarevsky NV, Charleux B (2000) J. Polym. Sci. Pol. Chem. 38:4724CrossRefGoogle Scholar
  142. 142.
    Chen H, Zhang M, Yu M, Jiang H (2011) J. Polym. Sci. Pol. Chem. 49:4721CrossRefGoogle Scholar
  143. 143.
    Burns JA, Houben C, Anastasaki A, Waldron C, Lapkin AA, Haddleton DM (2013) Polym. Chem. 4:4809CrossRefGoogle Scholar
  144. 144.
    Russum JP, Jones CW, Schork FJ (2005) Ind. Eng. Chem. Res. 44:2484CrossRefGoogle Scholar
  145. 145.
    Müller M, Cunningham MF, Hutchinson RA (2008) Macromol. React. Eng. 2:31CrossRefGoogle Scholar
  146. 146.
    Li Z, Chen W, Zhang Z, Zhang L, Cheng Z, Zhu X (2015) Polym. Chem. 6:1937CrossRefGoogle Scholar
  147. 147.
    Li Z, Chen W, Zhang L, Cheng Z, Zhu X (2015) Polym. Chem. 6:5030CrossRefGoogle Scholar
  148. 148.
    Peng J, Tian C, Zhang L, Cheng Z, Zhu X (2017) Polym. Chem. 8:1495CrossRefGoogle Scholar
  149. 149.
    Corrigan N, Manahan R, Lew ZT, Yeow J, Xu J, Boyer C (2018) Macromolecules 51:4553CrossRefGoogle Scholar
  150. 150.
    Kundu S, Bhangale AS, Wallace WE, Flynn KM, Guttman CM, Gross RA, Beers KL (2011) J. Am. Chem. Soc. 133:6006CrossRefPubMedGoogle Scholar
  151. 151.
    Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K (2018) Macromol. Rapid Commun. 39:1700807CrossRefGoogle Scholar
  152. 152.
    Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K (2018) Chem. Eng. J. 333:43CrossRefGoogle Scholar
  153. 153.
    Vos DED, Dams M, And BFS, Jacobs PA (2002) Chem. Rev. 102:3615CrossRefPubMedGoogle Scholar
  154. 154.
    Coperet C, Basset JM (2007) Adv. Synth. Catal. 349:78CrossRefGoogle Scholar
  155. 155.
    Van Berlo B, Houthoofd K, Sels BF, Jacobs PA (2008) Adv. Synth. Catal. 350:1949CrossRefGoogle Scholar
  156. 156.
    Skowerski K, Czarnocki SJ, Knapkiewicz P (2014) Chemsuschem 7:536CrossRefPubMedGoogle Scholar
  157. 157.
    Song J, Zhang S, Wang K, Wang Y (2018) J. Taiwan Inst. Chem. E.
  158. 158.
    Daniloska V, Tomovska R, Asua JM (2013) Chem. Eng. J. 222:136CrossRefGoogle Scholar
  159. 159.
    Chemtob A, Rannée A, Chalan L, Fischer D, Bistac S (2016) Eur. Polym. J. 80:247CrossRefGoogle Scholar
  160. 160.
    Braun AM, Peschl GH, Oliveros E (2012) CRC handbook of organic photochemistry and photobiology. CRC, Boca RatonGoogle Scholar
  161. 161.
    Braun AM, Jakob L, Oliveros E, Nascimento CAOd (1993) Adv. Collodid Interface 18:235Google Scholar
  162. 162.
    Aillet T, Loubiere K, Dechy-Cabaret O, Prat L (2014) Int. J. Chem. React. Eng. 12:1Google Scholar
  163. 163.
    Jamali A, Vanraes R, Hanselaer P, Van Gerven T (2013) Chem. Eng. Process. 71:43CrossRefGoogle Scholar
  164. 164.
    Xu W, Su Y, Song Y, Shang M, Zha L, Lu Q (2018) Ind. Eng. Chem. Res. 57:2476CrossRefGoogle Scholar
  165. 165.
    Cambie D, Bottecchia C, Straathof NJ, Hessel V, Noel T (2016) Chem. Rev. 116:10276CrossRefPubMedGoogle Scholar
  166. 166.
    Gemoets HPL, Laudadio G, Verstraete K, Hessel V, Noel T (2017) Angew. Chem. Int. Ed. 56:7161CrossRefGoogle Scholar
  167. 167.
    Wenn B, Conradi M, Carreiras AD, Haddleton DM, Junkers T (2014) Polym. Chem. 5:3053CrossRefGoogle Scholar
  168. 168.
    Chuang Y-M, Wenn B, Gielen S, Ethirajan A, Junkers T (2015) Polym. Chem. 6:6488CrossRefGoogle Scholar
  169. 169.
    Rubens M, Latsrisaeng P, Junkers T (2017) Polym. Chem. 8:6496CrossRefGoogle Scholar
  170. 170.
    Kermagoret A, Wenn B, Debuigne A, Jérôme C, Junkers T, Detrembleur C (2015) Polym. Chem. 6:3847CrossRefGoogle Scholar
  171. 171.
    Chen M, Johnson JA (2015) Chem. Commun. 51:6742CrossRefGoogle Scholar
  172. 172.
    Melker A, Fors BP, Hawker CJ, Poelma JE (2015) J. Polym. Sci. Pol. Chem. 53:2693CrossRefGoogle Scholar
  173. 173.
    Eckardt O, Wenn B, Biehl P, Junkers T, Schacher FH (2017) React. Chem. Eng. 2:479CrossRefGoogle Scholar
  174. 174.
    Gong H, Zhao Y, Shen X, Lin J, Chen M (2018) Angew. Chem. Int. Ed. 57:333CrossRefGoogle Scholar
  175. 175.
    Xu J, Shanmugam S, Duong HT, Boyer C (2015) Polym. Chem. 6:5615CrossRefGoogle Scholar
  176. 176.
    Gardiner J, Hornung CH, Tsanaktsidis J, Guthrie D (2016) Eur. Polym. J. 80:200CrossRefGoogle Scholar
  177. 177.
    Corrigan N, Rosli D, Jones JWJ, Xu J, Boyer C (2016) Macromolecules 49:6779CrossRefGoogle Scholar
  178. 178.
    Wenn B, Junkers T (2016) Macromolecules 49:6888CrossRefGoogle Scholar
  179. 179.
    Corrigan N, Almasri A, Taillades W, Xu J, Boyer C (2017) Macromolecules 50:8438CrossRefGoogle Scholar
  180. 180.
    Ramsey BL, Pearson RM, Beck LR, Miyake GM (2017) Macromolecules 50:2668CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Wojcik F, O’Brien AG, Gotze S, Seeberger PH, Hartmann L (2013) Chemistry 19:3090CrossRefPubMedGoogle Scholar
  182. 182.
    Xu JH, Luo GS, Chen GG, Tan B (2005) J. Memb. Sci. 249:75CrossRefGoogle Scholar
  183. 183.
    McMullen JP, Jensen KF (2010) Annu. Rev. Anal. Chem. 3:19CrossRefGoogle Scholar
  184. 184.
    Yue J, Schouten JC, Nijhuis TA (2012) Ind. Eng. Chem. Res. 51:14583CrossRefGoogle Scholar
  185. 185.
    Kenig EY, Su Y, Lautenschleger A, Chasanis P, Grünewald M (2013) Sep. Purif. Technol. 120:245CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Thin Film and Microfabrication (Ministry of Education)Shanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations