Advertisement

Topics in Current Chemistry

, 376:43 | Cite as

Electrometabolic Pathways: Recent Developments in Bioelectrocatalytic Cascades

  • David P. Hickey
  • Erin M. Gaffney
  • Shelley D. Minteer
Review
Part of the following topical collections:
  1. Electrocatalysis

Abstract

In biological systems, the majority of chemistry occurs in enzymatic pathways. Pathways are essentially cascades of protein catalysts used for catabolism or metabolism. However, in cellular-free systems, catalytic cascades have been rarely studied until recently. This review will introduce the lessons that can be learned from in vivo enzymatic pathways and novel enzymatic pathways that have been developed for synthetic biology of electrochemical energy production and conversion. This review will also discuss the recent bio-inspired developments to utilize catalytic cascades for non-biological applications ranging from energy conversion to biosensing and the electrochemical production of important chemicals such as methanol from carbon dioxide and ammonia from agricultural waste runoff.

Keywords

Bioelectrocatalysis Enzymes Mediated electron transfer Catalytic cascades Electrocatalysis 

Notes

Acknowledgements

The authors would like to thank the Army Research Office MURI award (W911NF-14-1-0263) for funding.

References

  1. 1.
    Sundaresan VB, Sarles SA, Leo DJ (2006) Stack of BioCells converting ATP to electrical power and possible applications. MRS Proc.  https://doi.org/10.1557/proc-0950-d01-03 CrossRefGoogle Scholar
  2. 2.
    Qian H, Autzen Henriette E (2012) A little engine that could: ATP-powered electrical battery and heater inside cells. Biophys J 103(7):1409–1410.  https://doi.org/10.1016/j.bpj.2012.08.047 CrossRefGoogle Scholar
  3. 3.
    Chen Y, Choi S, Thompson LT (2015) Low-temperature CO2 hydrogenation to liquid products via a heterogeneous cascade catalytic system. ACS Cat 5(3):1717–1725.  https://doi.org/10.1021/cs501656x CrossRefGoogle Scholar
  4. 4.
    Macazo FC, Minteer SD (2017) Enzyme cascades in biofuel cells. Curr Opin Electrochem 5(1):114–120.  https://doi.org/10.1016/j.coelec.2017.07.010 CrossRefGoogle Scholar
  5. 5.
    Szczupak A, Aizik D, Moraïs S, Vazana Y, Barak Y, Bayer E, Alfonta L (2017) The electrosome: a surface-displayed enzymatic cascade in a biofuel cell’s anode and a high-density surface-displayed biocathodic enzyme. Nanomaterials 7(7):153CrossRefGoogle Scholar
  6. 6.
    Wu G, Gao Y, Zhao D, Ling P, Gao F (2017) Methanol/oxygen enzymatic biofuel cell using laccase and NAD + -dependent dehydrogenase cascades as biocatalysts on carbon nanodots electrodes. ACS Appl Mater Interfaces 9(46):40978–40986.  https://doi.org/10.1021/acsami.7b12295 CrossRefGoogle Scholar
  7. 7.
    Franco JH, Minteer SD, de Andrade AR (2018) Product analysis of operating an ethanol/O2 biofuel cell shows the synergy between enzymes within an enzymatic cascade. J Electrochem Soc 165(9):H575–H579.  https://doi.org/10.1149/2.0931809jes CrossRefGoogle Scholar
  8. 8.
    Birmingham WR, Turner NJ (2018) A single enzyme oxidative “cascade” via a dual-functional galactose oxidase. ACS Cat 8(5):4025–4032.  https://doi.org/10.1021/acscatal.8b00043 CrossRefGoogle Scholar
  9. 9.
    Williams KR, Gregory DP (1963) Electrolytes for low-temperature fuel cells. J Electrochem Soc 110(3):209–213.  https://doi.org/10.1149/1.2425712 CrossRefGoogle Scholar
  10. 10.
    Du H, Zhao CX, Lin J, Guo J, Wang B, Hu Z, Shao Q, Pan D, Wujcik EK, Guo Z (2018) Carbon nanomaterials in direct liquid fuel cells. Chem Rep 22:22.  https://doi.org/10.1002/tcr.201800008 CrossRefGoogle Scholar
  11. 11.
    Ong BC, Kamarudin SK, Basri S (2017) Direct liquid fuel cells: a review. Int J Hydrog Energy 42(15):10142–10157.  https://doi.org/10.1016/j.ijhydene.2017.01.117 CrossRefGoogle Scholar
  12. 12.
    Li Y, Feng Y, Sun X, He Y (2017) A sodium-ion-conducting direct formate fuel cell: generating electricity and producing base. Angewandte Chemie 56(21):5734–5737.  https://doi.org/10.1002/anie.201701816 CrossRefGoogle Scholar
  13. 13.
    Wang R, Wu M, Haller S, Métivier P, Wang Y, Xia Y (2018) Hypophosphites as eco-compatible fuels for membrane-free direct liquid fuel cells. Chem Eur J 24(41):10310–10314.  https://doi.org/10.1002/chem.201801888 CrossRefGoogle Scholar
  14. 14.
    Palmore GTR, Bertschy H, Bergens SH, Whitesides GM (1998) A methanol/dioxygen biofuel cell that uses NAD + -dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J Electroanal Chem 443(1):155–161.  https://doi.org/10.1016/S0022-0728(97)00393-8 CrossRefGoogle Scholar
  15. 15.
    Sokic-Lazic D, Minteer SD (2009) Pyruvate/air enzymatic biofuel cell capable of complete oxidation. Electrochem Solid State Lett 12(9):F26–F28.  https://doi.org/10.1149/1.3170904 CrossRefGoogle Scholar
  16. 16.
    Zhu Z, Sun F, Zhang X, Zhang YHP (2012) Deep oxidation of glucose in enzymatic fuel cells through a synthetic enzymatic pathway containing a cascade of two thermostable dehydrogenases. Biosens Bioelectron 36(1):110–115.  https://doi.org/10.1016/j.bios.2012.04.001 CrossRefGoogle Scholar
  17. 17.
    Zhu Z, Kin Tam T, Sun F, You C, Percival Zhang YH (2014) A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun.  https://doi.org/10.1038/ncomms4026 CrossRefGoogle Scholar
  18. 18.
    Zhu Z, Ma C, Percival Zhang YH (2018) Co-utilization of mixed sugars in an enzymatic fuel cell based on an in vitro enzymatic pathway. Electrochim Acta 263:184–191.  https://doi.org/10.1016/j.electacta.2017.11.083 CrossRefGoogle Scholar
  19. 19.
    Tasca F, Timur S, Ludwig R, Haltrich D, Volc J, Antiochia R, Gorton L (2007) Amperometric biosensors for detection of sugars based on the electrical wiring of different pyranose oxidases and pyranose dehydrogenases with osmium redox polymer on graphite electrodes. Electroanalysis 19(2–3):294–302.  https://doi.org/10.1002/elan.200603740 CrossRefGoogle Scholar
  20. 20.
    Habrioux A, Merle G, Servat K, Kokoh KB, Innocent C, Cretin M, Tingry S (2008) Concentric glucose/O2 biofuel cell. J Electroanal Chem 622(1):97–102.  https://doi.org/10.1016/j.jelechem.2008.05.011 CrossRefGoogle Scholar
  21. 21.
    Shao M, Nadeem Zafar M, Sygmund C, Guschin DA, Ludwig R, Peterbauer CK, Schuhmann W, Gorton L (2013) Mutual enhancement of the current density and the coulombic efficiency for a bioanode by entrapping bi-enzymes with Os-complex modified electrodeposition paints. Biosens Bioelectron 40(1):308–314.  https://doi.org/10.1016/j.bios.2012.07.069 CrossRefGoogle Scholar
  22. 22.
    Holade Y, Yuan M, Milton RD, Hickey DP, Sugawara A, Peterbauer CK, Haltrich D, Minteer SD (2017) Rational combination of promiscuous enzymes yields a versatile enzymatic fuel cell with improved coulombic efficiency. J Electrochem Soc 164(3):H3073–H3082.  https://doi.org/10.1149/2.0111703jes CrossRefGoogle Scholar
  23. 23.
    Beltrán-Prieto JC, Kolomazník K, Pecha J (2013) A review of catalytic systems for glycerol oxidation: alternatives for waste valorization. Aust J Chem 66(5):511–521.  https://doi.org/10.1071/CH12514 CrossRefGoogle Scholar
  24. 24.
    Sokic-Lazic D, Arechederra RL, Treu BL, Minteer SD (2010) Oxidation of biofuels: fuel diversity and effectiveness of fuel oxidation through multiple enzyme cascades. Electroanalysis 22(7–8):757–764.  https://doi.org/10.1002/elan.200980010 CrossRefGoogle Scholar
  25. 25.
    Arechederra RL, Minteer SD (2009) Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel Cells 9(1):63–69.  https://doi.org/10.1002/fuce.200800029 CrossRefGoogle Scholar
  26. 26.
    Arechederra RL, Treu BL, Minteer SD (2007) Development of glycerol/O2 biofuel cell. J Power Sources 173(1):156–161.  https://doi.org/10.1016/j.jpowsour.2007.08.012 CrossRefGoogle Scholar
  27. 27.
    Hickey DP, McCammant MS, Giroud F, Sigman MS, Minteer SD (2014) Hybrid enzymatic and organic electrocatalytic cascade for the complete oxidation of glycerol. J Am Chem Soc 136(45):15917–15920.  https://doi.org/10.1021/ja5098379 CrossRefGoogle Scholar
  28. 28.
    Abdellaoui S, Seow Chavez M, Matanovic I, Stephens AR, Atanassov P, Minteer SD (2017) Hybrid molecular/enzymatic catalytic cascade for complete electro-oxidation of glycerol using a promiscuous NAD-dependent formate dehydrogenase from Candida boidinii. Chem Commun 53(39):5368–5371.  https://doi.org/10.1039/c7cc01027c CrossRefGoogle Scholar
  29. 29.
    Abdellaoui S, Hickey DP, Stephens AR, Minteer SD (2015) Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol. Chem Commun 51(76):14330–14333.  https://doi.org/10.1039/c5cc06131h CrossRefGoogle Scholar
  30. 30.
    Macazo FC, Hickey DP, Abdellaoui S, Sigman MS, Minteer SD (2017) Polymer-immobilized, hybrid multi-catalyst architecture for enhanced electrochemical oxidation of glycerol. Chem Commun 53(74):10310–10313.  https://doi.org/10.1039/c7cc05724e CrossRefGoogle Scholar
  31. 31.
    Hickey DP, Milton RD, Chen D, Sigman MS, Minteer SD (2015) TEMPO-modified linear poly(ethylenimine) for immobilization-enhanced electrocatalytic oxidation of alcohols. ACS Cat 5(9):5519–5524.  https://doi.org/10.1021/acscatal.5b01668 CrossRefGoogle Scholar
  32. 32.
    Wang Z, Xia L, Xia J, An Z, Gong S (2016) Direct energy harvesting from starch by hybrid enzymatic and non-enzymatic cascade bioanode. RSC Adv 6(31):26421–26424.  https://doi.org/10.1039/c6ra02059c CrossRefGoogle Scholar
  33. 33.
    Kopiec G, Starzec K, Kochana J, Kinnunen-Skidmore TP, Schuhmann W, Campbell WH, Ruff A, Plumeré N (2018) Bioelectrocatalytic and electrochemical cascade for phosphate sensing with up to 6 electrons per analyte molecule. Biosens Bioelectron 117:501–507.  https://doi.org/10.1016/j.bios.2018.06.047 CrossRefGoogle Scholar
  34. 34.
    Duca M, Weeks JR, Fedor JG, Weiner JH, Vincent KA (2015) Combining noble metals and enzymes for relay cascade electrocatalysis of nitrate reduction to ammonia at neutral pH. ChemElectroChem 2(8):1086–1089.  https://doi.org/10.1002/celc.201500166 CrossRefGoogle Scholar
  35. 35.
    Obert R, Dave BC (1999) Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol–gel matrices. J Am Chem Soc 121(51):12192–12193.  https://doi.org/10.1021/ja991899r CrossRefGoogle Scholar
  36. 36.
    Park DS, Abdelrahman OA, Vinter KP, Howe PM, Bond JQ, Reineke TM, Zhang K, Dauenhauer PJ (2018) Multifunctional cascade catalysis of itaconic acid hydrodeoxygenation to 3-methyl-tetrahydrofuran. ACS Sustain Chem Eng 6(7):9394–9402.  https://doi.org/10.1021/acssuschemeng.8b01743 CrossRefGoogle Scholar
  37. 37.
    Brasch M, Putri RM, de Ruiter MV, Luque D, Koay MST, Castón JR, Cornelissen JJLM (2017) Assembling enzymatic cascade pathways inside virus-based nanocages using dual-tasking nucleic acid tags. J Am Chem Soc 139(4):1512–1519.  https://doi.org/10.1021/jacs.6b10948 CrossRefGoogle Scholar
  38. 38.
    Parlett Christopher MA, Isaacs Mark A, Beaumont Simon K, Bingham Laura M, Hondow Nicole S, Wilson K, Lee Adam F (2015) Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions. Nat Mater 15:178.  https://doi.org/10.1038/nmat4478 CrossRefGoogle Scholar
  39. 39.
    Maune HT, S-p Han, Barish RD, Bockrath M, Iii WAG, Rothemund PWK, Winfree E (2009) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotech 5:61.  https://doi.org/10.1038/nnano.2009.311 CrossRefGoogle Scholar
  40. 40.
    You C, Myung S, Zhang Y-HP (2012) Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew Chem Int Ed 51(35):8787–8790.  https://doi.org/10.1002/anie.201202441 CrossRefGoogle Scholar
  41. 41.
    Liu F, Banta S, Chen W (2013) Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production. Chem Commun 49(36):3766–3768.  https://doi.org/10.1039/c3cc40454d CrossRefGoogle Scholar
  42. 42.
    Moehlenbrock MJ, Toby TK, Waheed A, Minteer SD (2010) Metabolon catalyzed pyruvate/air biofuel cell. J Am Chem Soc 132(18):6288–6289.  https://doi.org/10.1021/ja101326b CrossRefGoogle Scholar
  43. 43.
    Wu F, Minteer S (2015) Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angew Chem Int Ed 54(6):1851–1854.  https://doi.org/10.1002/anie.201409336 CrossRefGoogle Scholar
  44. 44.
    Wu F, Pelster LN, Minteer SD (2015) Krebs cycle metabolon formation: metabolite concentration gradient enhanced compartmentation of sequential enzymes. Chem Commun 51(7):1244–1247.  https://doi.org/10.1039/c4cc08702j CrossRefGoogle Scholar
  45. 45.
    Wheeldon I, Minteer SD, Banta S, Barton SC, Atanassov P, Sigman M (2016) Substrate channelling as an approach to cascade reactions. Nat Chem 8(4):299–309.  https://doi.org/10.1038/nchem.2459 CrossRefGoogle Scholar
  46. 46.
    Liu Y, Hickey DP, Guo J-Y, Earl E, Abdellaoui S, Milton RD, Sigman MS, Minteer SD, Calabrese Barton S (2017) Substrate channeling in an artificial metabolon: a molecular dynamics blueprint for an experimental peptide bridge. ACS Cat 7(4):2486–2493.  https://doi.org/10.1021/acscatal.6b03440 CrossRefGoogle Scholar
  47. 47.
    Earl E, Calabrese Barton S (2017) Simulation of intermediate transport in nanoscale scaffolds for multistep catalytic reactions. PCCP 19(23):15463–15470.  https://doi.org/10.1039/c7cp00239d CrossRefGoogle Scholar
  48. 48.
    Liu Y, Matanovic I, Hickey DP, Minteer SD, Atanassov P, Barton SC (2018) Cascade kinetics of an artificial metabolon by molecular dynamics and kinetic Monte Carlo. ACS Cat 8(8):7719–7726.  https://doi.org/10.1021/acscatal.8b01041 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departments of Chemistry and Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations