Advertisement

Topics in Current Chemistry

, 376:41 | Cite as

Bimetallic Electrocatalysts for CO2 Reduction

  • Wenlei Zhu
  • Brian M. Tackett
  • Jingguang G. ChenEmail author
  • Feng JiaoEmail author
Review
Part of the following topical collections:
  1. Electrocatalysis

Abstract

The increasing concentration of CO2 in the atmosphere has caused various environmental issues. Utilizing CO2 as the carbon feedstock to replace traditional fossil sources in commodity chemical production is a potential solution to reduce CO2 emissions. Electrochemical reduction of CO2 has attracted much attention because it not only converts CO2 into a variety of useful chemicals under mild reaction conditions, but also can be powered by renewable electricity at remote locations. From this review article, we summarize recent literature on the topic of bimetallic electrocatalysts for CO2 reduction. Both selectivity and activity of bimetallic catalysts strongly depend on their compositions and surface structures. Tuning the properties of a bimetallic catalyst could result in a wide range of products, including carbon monoxide, hydrocarbons, carboxylate and liquid oxygenates. By reviewing recent research efforts in the field of bimetallic electrocatalysts for CO2 reduction, we aim to provide the community with a timely overview of the current status of bimetallic CO2 electrocatalysts and to stimulate new ideas to design better catalysts for more efficient CO2 electrolysis processes.

Keywords

Bimetallic Electrocatalysts Carbon dioxide CO2 reduction 

Notes

Acknowledgements

Authors from Columbia University are partially supported by the US Department of Energy, Catalysis Program (DE-FG02-13ER16381). Authors at University of Delaware thank the financial support from the Department of Energy under Award Number DE-FE0029868. The authors also thank the National Science Foundation Faculty Early Career Development program (Award No. CBET-1350911).

References

  1. 1.
    Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Gillett NP, Arora VK, Zickfeld K, Marshall SJ, Merryfield WJ (2011) Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat Geosci 4:83CrossRefGoogle Scholar
  4. 4.
    Malhi Y, Meir P, Brown S (2002) Forests, carbon and global climate. Philos T R Soc A 360:1567–1591CrossRefGoogle Scholar
  5. 5.
    Lu Q, Jiao F (2016) Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29:439–456CrossRefGoogle Scholar
  6. 6.
    Kondratenko EV, Mul G, Baltrusaitis J, Larrazabal GO, Perez-Ramirez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energ Environ Sci 6:3112–3135CrossRefGoogle Scholar
  7. 7.
    Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JGG, Jiao F (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 5:3242PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Haegel NM, Margolis R, Buonassisi T, Feldman D, Froitzheim A, Garabedian R, Green M, Glunz S, Henning HM, Holder B, Kaizuka I, Kroposki B, Matsubara K, Niki S, Sakurai K, Schindler RA, Tumas W, Weber ER, Wilson G, Woodhouse M, Kurtz S (2017) Terawatt-scale photovoltaics: trajectories and challenges. Science 356:141–143PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Choi J, Kim MJ, Ahn SH, Choi I, Jang JH, Ham YS, Kim JJ, Kim S-K (2016) Electrochemical CO2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition. Chem Eng J 299:37–44CrossRefGoogle Scholar
  10. 10.
    Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energ Environ Sci 3:1311–1315CrossRefGoogle Scholar
  11. 11.
    Wu J, Huang Y, Ye W, Li Y (2017) CO2 reduction: from the electrochemical to photochemical approach. Adv Sci 4:1700194CrossRefGoogle Scholar
  12. 12.
    Hori Y (2008) In: Vayenas CG, White RE, Gamboa-Aldeco ME (eds) Modern aspects of electrochemistry. Springer New York, New York, pp 89–189Google Scholar
  13. 13.
    Hidetomo N, Shoichiro I, Yoshiyuki O, Kazumoto I, Masunobu M, Kaname I (1990) Electrochemical reduction of carbon dioxide at various metal electrodes in aqueous potassium hydrogen carbonate solution. Bull Chem Soc Jpn 63:2459–2462CrossRefGoogle Scholar
  14. 14.
    Yoshio H, Katsuhei K, Shin S (1985) Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem Lett 14:1695–1698CrossRefGoogle Scholar
  15. 15.
    Monnier A, Augustynski J, Stalder C (1980) On the electrolytic reduction of carbon dioxide at TiO2 and TiO2–Ru cathodes. J Electroanal Chem Interfacial Electrochem 112:383–385CrossRefGoogle Scholar
  16. 16.
    Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839CrossRefGoogle Scholar
  17. 17.
    Coq B, Figueras F (1998) Structure-activity relationships in catalysis by metals: some aspects of particle size, bimetallic and supports effects. Coord Chem Rev 178:1753–1783CrossRefGoogle Scholar
  18. 18.
    Ozin GA (1977) Very small metallic and bimetallic clusters: metal cluster-metal surface analyogy in catalysis and chemisorption processes. Catal Rev Sci Eng 16:191–289CrossRefGoogle Scholar
  19. 19.
    Sinfelt JH (1977) Catalysis by alloys and bimetallic clusters. Acc Chem Res 10:15–20CrossRefGoogle Scholar
  20. 20.
    Sinfelt JH, Via GH, Lytle FW (1984) Application of EXAFS in catalysis-structure of bimetallic cluster catalysis. Catal Rev Sci Eng 26:81–140CrossRefGoogle Scholar
  21. 21.
    Wang DS, Li YD (2011) Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 23:1044–1060PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Chang Z, Huo S, Zhang W, Fang J, Wang H (2017) The tunable and highly selective reduction products on Ag@Cu bimetallic catalysts toward CO2 electrochemical reduction reaction. J Phys Chem C 121:11368–11379CrossRefGoogle Scholar
  23. 23.
    Roy C, Galipaud J, Fréchette-Viens L, Garbarino S, Qiao J, Guay D (2017) CO2 electroreduction at AuxCu1-x obtained by pulsed laser deposition in O2 atmosphere. Electrochim Acta 246:115–122CrossRefGoogle Scholar
  24. 24.
    Zhao Z, Chen Z, Lu G (2017) Computational discovery of nickel-based catalysts for CO2 reduction to formic acid. J Phys Chem C 121:20865–20870CrossRefGoogle Scholar
  25. 25.
    Takashima T, Suzuki T, Irie H (2017) Electrochemical carbon dioxide reduction on copper-modified palladium nanoparticles synthesized by underpotential deposition. Electrochim Acta 229:415–421CrossRefGoogle Scholar
  26. 26.
    Yin Z, Gao D, Yao S, Zhao B, Cai F, Lin L, Tang P, Zhai P, Wang G, Ma D, Bao X (2016) Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 27:35–43CrossRefGoogle Scholar
  27. 27.
    Zhao X, Luo B, Long R, Wang C, Xiong Y (2015) Composition-dependent activity of Cu–Pt alloy nanocubes for electrocatalytic CO2 reduction. J Mater Chem A 3:4134–4138CrossRefGoogle Scholar
  28. 28.
    Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K (2016) Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal 6:2842–2851CrossRefGoogle Scholar
  29. 29.
    Katoh A, Uchida H, Shibata M, Watanabe M (1994) Design of electrocatalyst for CO2 reduction. V. Effect of the microcrystalline structures of Cu–Sn and Cu–Zn alloys on the electrocatalysis of CO2 reduction. J Electrochem Soc 8:2054–2058CrossRefGoogle Scholar
  30. 30.
    Kim D, Xie C, Becknell N, Yu Y, Karamad M, Chan K, Crumlin EJ, Nørskov JK, Yang P (2017) Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc 139:8329–8336PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lee H, Kim S-K, Ahn SH (2017) Electrochemical preparation of Ag/Cu and Au/Cu foams for electrochemical conversion of CO2 to CO. J Ind Eng Chem 54:218–225CrossRefGoogle Scholar
  32. 32.
    Ma M, Hansen HA, Valenti M, Wang Z, Cao A, Dong M, Smith WA (2017) Electrochemical reduction of CO2 on compositionally variant Au–Pt bimetallic thin films. Nano Energy 42:51–57CrossRefGoogle Scholar
  33. 33.
    Morimoto M, Takatsuji Y, Yamasaki R, Hashimoto H, Nakata I, Sakakura T, Haruyama T (2017) Electrodeposited Cu–Sn alloy for electrochemical CO2 reduction to CO/HCOO. Electrocatalysis 9:323–332CrossRefGoogle Scholar
  34. 34.
    Yoshio H, Akira M, Shin-ya I (1990) Enhanced evolution of CO and suppressed formation of hydrocarbons in electroreduction of CO2 at a copper electrode modified with cadmium. Chem Lett 19:1231–1234CrossRefGoogle Scholar
  35. 35.
    Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K (2015) A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew Chem Int Ed 54:2146–2150CrossRefGoogle Scholar
  36. 36.
    He J, Dettelbach KE, Salvatore DA, Li T, Berlinguette CP (2017) High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction. Angew Chem Int Ed 56:6068–6072CrossRefGoogle Scholar
  37. 37.
    Kim D, Resasco J, Yu Y, Asiri AM, Yang P (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat Commun 5:4948PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Li Q, Fu J, Zhu W, Chen Z, Shen B, Wu L, Xi Z, Wang T, Lu G, J-j Zhu, Sun S (2017) Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc 139:4290–4293PubMedCrossRefGoogle Scholar
  39. 39.
    Sun K, Cheng T, Wu L, Hu Y, Zhou J, Maclennan A, Jiang Z, Gao Y, Goddard WA, Wang Z (2017) Ultrahigh mass activity for carbon dioxide reduction enabled by Gold–iron Core–Shell nanoparticles. J Am Chem Soc 139:15608–15611PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Watanabe M, Shibata M, Kato A, Azuma M, Sakata T (1991) Design of alloy electrocatalysts for CO2 reduction: III. The selective and reversible reduction of on Cu alloy electrodes. J Electrochem Soc 138:3382–3389CrossRefGoogle Scholar
  41. 41.
    Yoshio H, Akira M, Shin-ya I, Yuzuru Y, Osamu K (1989) Nickel and iron modified copper electrode for electroreduction of CO2 by in situ electrodeposition. Chem Lett 18:1567–1570CrossRefGoogle Scholar
  42. 42.
    Luc W, Jiang C, Chen JG, Jiao F (2018) Role of surface oxophilicity in copper-catalyzed water dissociation. ACS Catal 8:9327–9333CrossRefGoogle Scholar
  43. 43.
    Hammer B, Morikawa Y, Nørskov JK (1996) CO chemisorption at metal surfaces and overlayers. Phys Rev Lett 76:2141–2144PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Gorzkowski MT, Lewera A (2015) Probing the limits of d-band center theory: electronic and electrocatalytic properties of Pd-shell–Pt-core nanoparticles. The J Phys Chem C 119:18389–18395CrossRefGoogle Scholar
  46. 46.
    Chen JG, Menning CA, Zellner MB (2008) Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties. Surf Sci Rep 63:201–254CrossRefGoogle Scholar
  47. 47.
    Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, Yamauchi M, Kenis PJA (2017) Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J Am Chem Soc 139:47–50PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Singh S, Gautam RK, Malik K, Verma A (2017) Ag–Co bimetallic catalyst for electrochemical reduction of CO2 to value added products. J CO2 Util 18:139–146CrossRefGoogle Scholar
  49. 49.
    Clark EL, Hahn C, Jaramillo TF, Bell AT (2017) Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J Am Chem Soc 139:15848–15857PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Monzo J, Malewski Y, Kortlever R, Vidal-Iglesias FJ, Solla-Gullon J, Koper MTM, Rodriguez P (2015) Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction. J Mater Chem A 3:23690–23698CrossRefGoogle Scholar
  51. 51.
    Chang Z-Y, Huo S-J, He J-M, Fang J-H (2017) Facile synthesis of Cu–Ag bimetallic electrocatalyst with prior C2 products at lower overpotential for CO2 electrochemical reduction. Surf Interfaces 6:116–121CrossRefGoogle Scholar
  52. 52.
    Zhang S, Kang P, Bakir M, Lapides AM, Dares CJ, Meyer TJ (2015) Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proc Natl Acad Sci 112:15809–15814PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Hoang TTH, Verma S, Ma S, Fister TT, Timoshenko J, Frenkel AI, Kenis PJA, Gewirth AA (2018) Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J Am Chem Soc 140:5791–5797PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Peterson AA, Nørskov JK (2012) Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 3:251–258CrossRefGoogle Scholar
  55. 55.
    Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136:14107–14113PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hansen HA, Shi C, Lausche AC, Peterson AA, Norskov JK (2016) Bifunctional alloys for the electroreduction of CO2 and CO. Phys Chem Chem Phys 18:9194–9201PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Nie X, Esopi MR, Janik MJ, Asthagiri A (2013) Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew Chem Int Ed 52:2459–2462CrossRefGoogle Scholar
  58. 58.
    Nie X, Wang H, Janik MJ, Chen Y, Guo X, Song C (2017) Mechanistic insight into C–C coupling over Fe–Cu bimetallic catalysts in CO2 hydrogenation. J Phys Chem C 121:13164–13174CrossRefGoogle Scholar
  59. 59.
    Garza AJ, Bell AT, Head-Gordon M (2018) Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal 8:1490–1499CrossRefGoogle Scholar
  60. 60.
    Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energ Environ Sci 5:7050–7059CrossRefGoogle Scholar
  61. 61.
    Grote J-P, Zeradjanin AR, Cherevko S, Savan A, Breitbach B, Ludwig A, Mayrhofer KJJ (2016) Screening of material libraries for electrochemical CO2 reduction catalysts—improving selectivity of Cu by mixing with Co. J Catal 343:248–256CrossRefGoogle Scholar
  62. 62.
    Ma S, Sadakiyo M, Luo R, Heima M, Yamauchi M, Kenis PJA (2016) One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J Power Sources 301:219–228CrossRefGoogle Scholar
  63. 63.
    Manthiram K, Beberwyck BJ, Alivisatos AP (2014) Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc 136:13319–13325PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Luc W, Collins C, Wang S, Xin H, He K, Kang Y, Jiao F (2017) Ag–Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc 139:1885–1893PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Cai F, Gao D, Si R, Ye Y, He T, Miao S, Wang G, Bao X (2017) Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate. Electrochem Commun 76:1–5CrossRefGoogle Scholar
  66. 66.
    Kortlever R, Peters I, Koper S, Koper MTM (2015) Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles. ACS Catal 5:3916–3923CrossRefGoogle Scholar
  67. 67.
    Kortlever R, Balemans C, Kwon Y, Koper MTM (2015) Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catal Today 244:58–62CrossRefGoogle Scholar
  68. 68.
    Bai X, Chen W, Zhao C, Li S, Song Y, Ge R, Wei W, Sun Y (2017) Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd–Sn alloy. Angew Chem Int Ed 56:12219–12223CrossRefGoogle Scholar
  69. 69.
    Furuya N, Yamazaki T, Shibata M (1997) High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes. J Electroanal Chem 431:39–41CrossRefGoogle Scholar
  70. 70.
    Lee S, Park G, Lee J (2017) Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal 7:8594–8604CrossRefGoogle Scholar
  71. 71.
    Jovanov ZP, Hansen HA, Varela AS, Malacrida P, Peterson AA, Nørskov JK, Stephens IEL, Chorkendorff I (2016) Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: a theoretical and experimental study of Au–Cd alloys. J Catal 343:215–231CrossRefGoogle Scholar
  72. 72.
    Hahn C, Abram DN, Hansen HA, Hatsukade T, Jackson A, Johnson NC, Hellstern TR, Kuhl KP, Cave ER, Feaster JT, Jaramillo TF (2015) Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. J Mater Chem A 3:20185–20194CrossRefGoogle Scholar
  73. 73.
    Ren D, Ang BS-H, Yeo BS (2016) Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal 6:8239–8247CrossRefGoogle Scholar
  74. 74.
    Lu L, Sun X, Ma J, Yang D, Wu H, Zhang B, Zhang J, Han B (2018) Highly efficient electroreduction of CO2 to methanol on palladium–copper bimetallic aerogels. Angew Chem Int Ed.  https://doi.org/10.1002/anie.201808964 CrossRefGoogle Scholar
  75. 75.
    Zhang W, Qin Q, Dai L, Qin R, Zhao X, Chen X, Ou D, Chen J, Chuong TT, Wu B, Zheng N (2018) Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd–O–Sn interfaces. Angew Chem Int Ed 57:9475–9479CrossRefGoogle Scholar
  76. 76.
    Wen G, Lee DU, Ren B, Hassan FM, Jiang G, Cano ZP, Gostick J, Croiset E, Bai Z, Yang L, Chen Z (2018) Orbital interactions in Bi–Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv Energy Mater.  https://doi.org/10.1002/aenm.201802427 CrossRefGoogle Scholar
  77. 77.
    Shan C, Martin ET, Peters DG, Zaleski JM (2017) Site-selective growth of AgPd nanodendrite-modified au nanoprisms: high electrocatalytic performance for CO2 reduction. Chem Mater 29:6030–6043CrossRefGoogle Scholar
  78. 78.
    Choi SY, Jeong SK, Kim HJ, Baek I-H, Park KT (2016) Electrochemical reduction of carbon dioxide to formate on tin-lead alloys. ACS Sustain Chem Eng 4:1311–1318CrossRefGoogle Scholar
  79. 79.
    Zhang F-Y, Sheng T, Tian N, Liu L, Xiao C, Lu B-A, Xu B-B, Zhou Z-Y, Sun S-G (2017) Cu overlayers on tetrahexahedral Pd nanocrystals with high-index facets for CO2 electroreduction to alcohols. Chem Commun 53:8085–8088CrossRefGoogle Scholar
  80. 80.
    Zhu W, Zhang Y-J, Zhang H, Lv H, Li Q, Michalsky R, Peterson AA, Sun S (2014) Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc 136:16132–16135PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Zhai L, Cui C, Zhao Y, Zhu X, Han J, Wang H, Ge Q (2017) Titania-modified silver electrocatalyst for selective CO2 reduction to CH3OH and CH4 from DFT study. J Phys Chem C 121:16275–16282CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkUSA
  2. 2.Department of Chemical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations