Advertisement

Topics in Current Chemistry

, 376:37 | Cite as

Electrostatic Gate Control in Molecular Transistors

  • Hyunwook Song
Review
  • 113 Downloads
Part of the following topical collections:
  1. Molecular-Scale Electronics: Current Status and Perspective

Abstract

Molecular transistors, in which single molecules serve as active channel components in a three-terminal device geometry, constitute the building blocks of molecular scale electronic circuits. To demonstrate such devices, a gate electrode has been incorporated in several test beds of molecular electronics. The frontier orbitals’ alignments of a molecular transistor can be delicately tuned by modifying the molecular orbital energy with the gate electrode. In this review, we described electrostatic gate control of solid-state molecular transistors. In particular, we focus on recent experimental accomplishments in fabrication and characterization of molecular transistors.

Keywords

Molecular electronics Molecular transistor Charge transport Break junction 

Notes

Acknowledgement

This work was supported by the National Research Foundation of Korea (2016R1D1A1B03935647).

References

  1. 1.
    Song H, Reed MA, Lee T (2011) Adv Mater 23:1583CrossRefPubMedGoogle Scholar
  2. 2.
    Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Chem Rev 116:4318CrossRefGoogle Scholar
  3. 3.
    Tao NJ (2006) Nat Nanotechnol 1:173CrossRefPubMedGoogle Scholar
  4. 4.
    Li T, Hu W, Zhu D (2010) Adv Mater 22:286CrossRefPubMedGoogle Scholar
  5. 5.
    Karthäuser S (2011) J Phys Condens Mater 23:013001CrossRefGoogle Scholar
  6. 6.
    Moth-Poulsen K, Bjørnholm T (2009) Nat Nanotechnol 4:551CrossRefPubMedGoogle Scholar
  7. 7.
    Ebling M, Ochs R, Koentopp M, Fischer M, von Hänisch C, Weigend F, Evers F, Weber HB, Mayor M (2005) Proc Natl Acad Sci USA 102:8815CrossRefGoogle Scholar
  8. 8.
    Aviram A, Ratner MA (1974) Chem Phys Lett 29:277CrossRefGoogle Scholar
  9. 9.
    Metzger RM, Chen B, Hopfner U, Lakshmikantham MV, Vuillaume D, Kawai T, Wu X, Tachibana H, Hughes TV, Sakurai H, Baldwin JW, Hosch C, Cava MP, Brehmer L, Ashwell GJ (1997) J Am Chem Soc 119:10455CrossRefGoogle Scholar
  10. 10.
    Kubatkin S, Danilov A, Hjort M, Cornil J, Brédas J-L, Stuhr-Hansen N, Hedegård P, Bjørnholm T (2003) Nature 425:698CrossRefPubMedGoogle Scholar
  11. 11.
    Park H, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL (2000) Nature 407:57CrossRefPubMedGoogle Scholar
  12. 12.
    Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, McEuen PL, Ralph DC (2002) Nature 417:722CrossRefPubMedGoogle Scholar
  13. 13.
    Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Nature 462:1039CrossRefPubMedGoogle Scholar
  14. 14.
    van der Molen SJ, Liljeroth P (2010) J Phys Condens Mater 22:133001CrossRefGoogle Scholar
  15. 15.
    Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L (2009) Nat Nanotechnol 4:230CrossRefPubMedGoogle Scholar
  16. 16.
    Blum AS, Kushmerick JG, Long DP, Patterson CH, Yang JC, Henderson JC, Yao Y, Tour JM, Shashidhar R, Ratna BR (2005) Nat Mater 4:167CrossRefPubMedGoogle Scholar
  17. 17.
    Guo X, Small JP, Klare JE, Wang Y, Purewal MS, Tam IW, Hong BH, Caldwell R, Huang L, O’Brien S, Yan J, Breslow R, Wind SJ, Hone J, Kim P, Nuckolls C (2006) Science 311:356CrossRefPubMedGoogle Scholar
  18. 18.
    Choi BY, Kahng SJ, Kim S, Kim H, Kim HW, Song YJ, Ihm J, Kuk Y (2006) Phys Rev Lett 96:156106CrossRefPubMedGoogle Scholar
  19. 19.
    Lee J, Chang H, Kim S, Bang GS, Lee H (2009) Angew Chem 121:8653CrossRefGoogle Scholar
  20. 20.
    Lörtscher E, Ciszek JW, Tour J, Riel H (2006) Small 2:973CrossRefPubMedGoogle Scholar
  21. 21.
    Lörtscher E, Gotsmann B, Lee Y, Yu L, Rettner C, Riel H (2012) ACS Nano 6:4931CrossRefPubMedGoogle Scholar
  22. 22.
    Green JE, Choi JW, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff BA, Xu K, Shin YS, Tseng H-R, Stoddart JF, Heath JR (2007) Nature 445:414CrossRefPubMedGoogle Scholar
  23. 23.
    van der Zant HSJ, Kervennic Y-V, Poot M, O’Neill K, de Groot Z, Heeersche HB, Stuhr-Hansen N, Bjørnholm T, Vanmaekelbergh D, van Walree CA, Jenneskens LW (2006) Faraday Discuss 131:347CrossRefPubMedGoogle Scholar
  24. 24.
    Perrin ML, Burzurí E, van der Zant HSJ (2015) Chem Soc Rev 44:902CrossRefPubMedGoogle Scholar
  25. 25.
    Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. 26.
    Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Nature 417:725CrossRefPubMedGoogle Scholar
  27. 27.
    Natelson D, Yu LH, Ciszek JW, Keane ZK, Tour JM (2006) Chem Phys 324:267CrossRefGoogle Scholar
  28. 28.
    Heersche HB, de Groot Z, Folk JA, Kouwenhoven LP, van der Zant HSJ, Houck AA, Labaziewicz J, Chuang IL (2006) Phys Rev Lett 96:017205CrossRefPubMedGoogle Scholar
  29. 29.
    Osorio EA, O’Neill K, Wegewijs M, Stuhr-Hansen N, Paaske J, Bjørnholm T, van der Zant HSJ (2007) Nano Lett 7:3336CrossRefPubMedGoogle Scholar
  30. 30.
    Scott GD, Keane ZK, Ciszek JW, Tour JM, Natelson D (2009) Phys Rev B 79:165413CrossRefGoogle Scholar
  31. 31.
    Scott GD, Natelson D (2010) ACS Nano 4:3560CrossRefPubMedGoogle Scholar
  32. 32.
    Osorio EA, Bjørnholm T, Lehn J-M, Ruben M, van der Zant HSJ (2008) J Phys Condens Mater 20:374121CrossRefGoogle Scholar
  33. 33.
    Yu LH, Keane ZK, Ciszek JW, Cheng L, Stewart MP, Tour JM, Natelson D (2004) Phys Rev Lett 93:266802CrossRefPubMedGoogle Scholar
  34. 34.
    Moreland J, Ekin JW (1985) J Appl Phys 58:3888CrossRefGoogle Scholar
  35. 35.
    Muller CJ, van Ruitenbeek JM, de Jongh LJ (1992) Phys C 191:485CrossRefGoogle Scholar
  36. 36.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252CrossRefGoogle Scholar
  37. 37.
    Champagne AR, Pasupathy AN, Ralph DC (2005) Nano Lett 5:305CrossRefPubMedGoogle Scholar
  38. 38.
    Martin CA, Smit RHM, van der Zant HSJ, van Ruitenbeek JM (2009) Nano Lett 9:2940CrossRefPubMedGoogle Scholar
  39. 39.
    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D (2013) Nano Lett 13:2809CrossRefPubMedGoogle Scholar
  40. 40.
    Jia C, Ma B, Xin N, Guo X (2015) Acc Chem Res 48:2CrossRefGoogle Scholar
  41. 41.
    Prins F, Barreiro A, Ruitenberg JW, Seldenthuis JS, Aliaga-Alcalde N, Vandersypen LMK, van der Zant HSJ (2011) Nano Lett 11:4607CrossRefPubMedGoogle Scholar
  42. 42.
    Prins F, Hayashi T, de vos van Steenwijk BJA, Gao B, Osorio EA, Muraki K, van der Zant HSJ (2009) Appl Phys Lett 94:123108CrossRefGoogle Scholar
  43. 43.
    Panzer MJ, Frisbie CD (2008) Adv Mater 20:3177CrossRefGoogle Scholar
  44. 44.
    Díez-Pérez I, Li Z, Guo S, Madden C, Huang H, Che Y, Yang X, Zang L, Tao N (2012) ACS Nano 6:7044CrossRefPubMedGoogle Scholar
  45. 45.
    Diez-Perez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Oleynik II, Tao N (2009) Nat Chem 1:635CrossRefPubMedGoogle Scholar
  46. 46.
    Kamenetska M, Quek SY, Whalley AC, Steigerwald ML, Choi HJ, Louie SG, Nuckolls C, Hybertsen MS, Neaton JB, Venkataraman L (2010) J Am Chem Soc 132:6817CrossRefPubMedGoogle Scholar
  47. 47.
    Osorio HM, Catarelli S, Cea P, Gluyas JBG, Hartl F, Higgins SJ, Leary E, Low PJ, Martin S, Nichols RJ, Tory J, Ulstrup J, Vezzoli A, Milan DC, Zeng Q (2015) J Am Chem Soc 137:14319CrossRefPubMedGoogle Scholar
  48. 48.
    Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton JB, Nuckolls C, Venkataraman L (2014) Nano Lett 14:1400CrossRefPubMedGoogle Scholar
  49. 49.
    Li X, Xu B, Xiao X, Yang X, Zang L, Tao N (2006) Faraday Discuss 131:111CrossRefPubMedGoogle Scholar
  50. 50.
    He J, Fu Q, Lindsay S, Ciszek JW, Tour JM (2006) J Am Chem Soc 128:14828CrossRefPubMedGoogle Scholar
  51. 51.
    Darwish N, Díez-Pérez I, Da Silva P, Tao N, Gooding JJ, Paddon-Row MN (2012) Angew Chem Int Ed 51:3203CrossRefGoogle Scholar
  52. 52.
    Venkataraman L, Klare JE, Tam IW, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Nano Lett 6:458CrossRefPubMedGoogle Scholar
  53. 53.
    Song H, Kim Y, Jeong H, Reed MA, Lee T (2010) J Phys Chem C 114:20431CrossRefGoogle Scholar
  54. 54.
    Poot M, Osorio E, O’Neill K, Thijssen JM, Vanmaekelbergh D, van Walree CA, Jenneskens LW, van der Zant HSJ (2006) Nano Lett 6:1031CrossRefGoogle Scholar
  55. 55.
    Beebe JM, Kim B, Gadzuk JW, Frisbie CD, Kushmerick JG (2006) Phys Rev Lett 97:026801CrossRefPubMedGoogle Scholar
  56. 56.
    Huisman EH, Guédon CM, van Wees BJ, van der Molen SJ (2009) Nano Lett 9:3909CrossRefPubMedGoogle Scholar
  57. 57.
    Baldea I (2010) Chem Phys 377:15CrossRefGoogle Scholar
  58. 58.
    Araidai M, Tsukada M (2010) Phys Rev B 81:235114CrossRefGoogle Scholar
  59. 59.
    Chen J, Markussen T, Thygesen KS (2010) Phys Rev B 82:121412CrossRefGoogle Scholar
  60. 60.
    Beebe JM, Kim B, Frisbie CD, Kushmerick JG (2008) ACS Nano 2:827CrossRefPubMedGoogle Scholar
  61. 61.
    Jaklevic RC, Lambe J (1966) Phys Rev Lett 17:1139CrossRefGoogle Scholar
  62. 62.
    Lambe J, Jaklevic RC (1968) Phys Rev 165:821CrossRefGoogle Scholar
  63. 63.
    Wang W, Lee T, Kretzschmar I, Reed MA (2004) Nano Lett 4:643CrossRefGoogle Scholar
  64. 64.
    Kushmerick JG, Lazorcik J, Patterson CH, Shashidhar R, Seferos DS, Bazan GC (2004) Nano Lett 4:639CrossRefGoogle Scholar
  65. 65.
    Persson BNJ, Baratoff A (1987) Phys Rev Lett 59:339CrossRefPubMedGoogle Scholar
  66. 66.
    Galperin M, Ratner MA, Nitzan A (2004) J Chem Phys 121:11965CrossRefPubMedGoogle Scholar
  67. 67.
    Kim Y, Song H (2016) Appl Spectrosc Rev 51:603CrossRefGoogle Scholar
  68. 68.
    Di Ventra M, Pantelides ST, Lang ND (2010) Appl Phys Lett 76:3448CrossRefGoogle Scholar
  69. 69.
    Solomon PM, Lang ND (2008) ACS Nano 2:435CrossRefPubMedGoogle Scholar
  70. 70.
    Damle P, Rakshit T, Paulsson M, Datta S (2002) IEEE Trans Nanotechnol 1:145CrossRefGoogle Scholar
  71. 71.
    Lang ND, Solomon PM (2005) Nano Lett 5:921CrossRefPubMedGoogle Scholar
  72. 72.
    Ghosh AW, Rakshit T, Datta S (2004) Nano Lett 4:565CrossRefGoogle Scholar
  73. 73.
    Datta SS, Strachan DR, Johnson ATC (2009) Phys Rev B 79:205404CrossRefGoogle Scholar
  74. 74.
    Piva PG, DiLabio GA, Pitters JL, Zikovsky J, Rezeq M, Dogel S, Hofer WA, Wolkow RA (2005) Nature 435:658CrossRefPubMedGoogle Scholar
  75. 75.
    Xiang A, Li H, Chen S, Liu S-X, Decurtins S, Bai M, Hou S, Liao J (2015) Nanoscale 7:7665CrossRefPubMedGoogle Scholar
  76. 76.
    Perrin ML, Verzijl CJO, Martin CA, Shaikh AJ, Eelkema R, van Esch JH, van Ruitenbeek JM, Thijssen JM, van der Zant HSJ, Dulić D (2013) Nat Nanotechnol 8:282CrossRefPubMedGoogle Scholar
  77. 77.
    Kim Y, Jeong W, Kim K, Lee W, Reddy P (2014) Nat Nanotechnol 9:881CrossRefPubMedGoogle Scholar
  78. 78.
    Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton JB, Nuckolls C, Venkataraman L (2014) Nano Lett 143:1400CrossRefGoogle Scholar
  79. 79.
    Behnia S, Fathizadeh S, Ziaei J (2017) Phys Lett A 381:36CrossRefGoogle Scholar
  80. 80.
    Fu B, Mosquera MA, Schatz GC, Ratner MA, Hsu LY (2018) Nano Lett 18:5015CrossRefPubMedGoogle Scholar
  81. 81.
    Fathizadeh S, Behnia S, Ziaei J (2018) J Phys Chem B 122:2487CrossRefPubMedGoogle Scholar
  82. 82.
    Komoto Y, Fujii S, Kiguchi M (2018) Mater Chem Front 2:214CrossRefGoogle Scholar
  83. 83.
    Nasri A, Boubaker A, Hafsi B, Khaldi W, Kalboussi A (2017) Org Electron 48:7CrossRefGoogle Scholar
  84. 84.
    Yamamoto M, Azuma Y, Sakamoto M, Teranishi T, Ishii H, Majima Y, Noguchi Y (2017) Sci Rep 7:1589CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Troiani F, Godfrin C, Thiele S, Balestro F, Wernsdorfer W, Klyatskaya S, Ruben M, Affronte M (2017) Phys Rev Lett 118:257701CrossRefPubMedGoogle Scholar
  86. 86.
    Lovat G, Choi B, Paley DW, Steigerwald ML, Venkataraman L, Roy X (2017) Nat Nanotechnol 12:1050CrossRefPubMedGoogle Scholar
  87. 87.
    Mitchell AK, Pedersen KGL, Hedegård P, Paaske J (2017) Nat Commun 8:15210CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Xu Q, Scuri G, Mathewson C, Kim P, Nuckolls C, Bouilly D (2017) Nano Lett 17:5335CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Applied PhysicsKyung Hee UniversityYonginSouth Korea

Personalised recommendations