Advertisement

Topics in Current Chemistry

, 376:36 | Cite as

Catalytic Strategies Towards Lignin-Derived Chemicals

  • S. Van den Bosch
  • S.-F. Koelewijn
  • T. Renders
  • G. Van den Bossche
  • T. Vangeel
  • W. Schutyser
  • B. F. Sels
Review
  • 218 Downloads
Part of the following topical collections:
  1. Lignin Chemistry

Abstract

Lignin valorization represents a crucial, yet underexploited component in current lignocellulosic biorefineries. An alluring opportunity is the selective depolymerization of lignin towards chemicals. Although challenged by lignin’s recalcitrant nature, several successful (catalytic) strategies have emerged. This review provides an overview of different approaches to cope with detrimental lignin structural alterations at an early stage of the biorefinery process, thus enabling effective routes towards lignin-derived chemicals. A first general strategy is to isolate lignin with a better preserved native-like structure and therefore an increased amenability towards depolymerization in a subsequent step. Both mild process conditions as well as active stabilization methods will be discussed. An alternative is the simultaneous depolymerization-stabilization of native lignin towards stable lignin monomers. This approach requires a fast and efficient stabilization of reactive lignin intermediates in order to minimize lignin repolymerization and maximize the envisioned production of chemicals. Finally, the obtained lignin-derived compounds can serve as a platform towards a broad range of bio-based products. Their implementation will improve the sustainability of the chemical industry, but equally important will generate opportunities towards product innovations based on unique biobased chemical structures.

Keywords

Biorefinery Lignin Lignocellulose Catalysis Biobased chemicals 

Notes

Acknowledgements

This work was performed in the framework of SBO projects ARBOREF & BIOWOOD, EOS project BIOFACT, and Interreg project BIO-HArT. S.V.d.B., T.R., T.V., and W.S. acknowledge the Research Foundation—Flanders (FWO Vlaanderen) for a (post)doctoral fellowship. S.-F.K. acknowledges funding through IWT-SBO project ARBOREF. G.V.d.B acknowledges funding through FISCH-ICON project MAIA.

References

  1. 1.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484–489PubMedGoogle Scholar
  2. 2.
    Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Science 298:981–987PubMedGoogle Scholar
  3. 3.
    McCormick K, Kautto N (2013) Sustainability 5:2589Google Scholar
  4. 4.
    Dale BE, Kim S (2008) In Biorefineries-industrial processes and products. Wiley, 41–66Google Scholar
  5. 5.
    Kamm B, Gruber PR, Kamm M (eds) (2006) Biorefineries-industrial processes and products. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Wyman CE (ed) (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, ChichesterGoogle Scholar
  7. 7.
    Deneyer A, Renders T, Van Aelst J, Van den Bosch S, Gabriëls D, Sels BF (2015) Curr Opin Chem Biol 29:40–48PubMedGoogle Scholar
  8. 8.
    Chu S, Majumdar A (2012) Nature 488:294–303PubMedGoogle Scholar
  9. 9.
    Bozell JJ, Holladay JE, Johnson D, White JF (2007) Report PNNL 16983, vol 2, pp 1–79Google Scholar
  10. 10.
    Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Science 337:695–699PubMedGoogle Scholar
  11. 11.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Science 344:709Google Scholar
  12. 12.
    Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chem Soc Rev 47:852–908PubMedGoogle Scholar
  13. 13.
    Gosselink RJA, de Jong E, Guran B, Abacherli A (2004) Ind Crops Prod 20:121–129Google Scholar
  14. 14.
    Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Angew Chem Int Ed 55:8164–8215Google Scholar
  15. 15.
    Upton BM, Kasko AM (2016) Chem Rev 116:2275–2306PubMedGoogle Scholar
  16. 16.
    Esposito D, Antonietti M (2015) Chem Soc Rev 44:5821–5835PubMedGoogle Scholar
  17. 17.
    Sen S, Patil S, Argyropoulos DS (2015) Green Chem 17:4862–4887Google Scholar
  18. 18.
    Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, Garcia-Negron V, Motagamwala AH, Mellmer MA, Huang K, Houtman CJ, Labbé N, Harper DP, Maravelias C, Runge T, Dumesic JA (2017) Sci Adv 3:1–7Google Scholar
  19. 19.
    Huang Y, Duan Y, Qiu S, Wang M, Ju C, Cao H, Fang Y, Tan T (2017) Sustain Energy Fuels 2:637–647Google Scholar
  20. 20.
    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098PubMedGoogle Scholar
  21. 21.
    Bidlack JE, Dashek WV (2016) Plant cells and their organelles. Wiley, Chichester, pp 209–238Google Scholar
  22. 22.
    Clark JH, Deswarte FEI (2008) Introduction to chemicals from biomass. Wiley, Chichester, pp 1–20Google Scholar
  23. 23.
    Kudakasseril Kurian J, Raveendran Nair G, Hussain A, Vijaya Raghavan GS (2013) Renew Sustain Energy Rev 25:205–219Google Scholar
  24. 24.
    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Science 315:804–807PubMedGoogle Scholar
  25. 25.
    DeMartini JD, Pattathil S, Miller JS, Li H, Hahn MG, Wyman CE (2013) Energy Environ Sci 6:898–909Google Scholar
  26. 26.
    Davison BH, Parks J, Davis MF, Donohoe BS (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 23–38Google Scholar
  27. 27.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Ind Eng Chem Res 48:3713–3729Google Scholar
  28. 28.
    Saini JK, Saini R, Tewari L (2015) 3 Biotech 5:337–353PubMedGoogle Scholar
  29. 29.
    Zakzeski J, Jongerius AL, Bruijnincx PCA, Weckhuysen BM (2012) Chemsuschem 5:1602–1609PubMedGoogle Scholar
  30. 30.
    Klemm D, Heublein B, Fink H-P, Bohn A (2005) Angew Chem Int Ed 44:3358–3393Google Scholar
  31. 31.
    Heinze T (2016) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Rojas OJ (ed) Springer International Publishing, Cham, 2016, pp 1–52Google Scholar
  32. 32.
    Schädel C, Blöchl A, Richter A, Hoch G (2010) Plant Physiol Biochem 48:1–8PubMedGoogle Scholar
  33. 33.
    Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Bioresour Technol 101:4775–4800PubMedGoogle Scholar
  34. 34.
    Huang F (2014) Materials for biofuels, World Scientific, pp 1–26Google Scholar
  35. 35.
    U.S Department of Energy Genome Programs image gallery, http://genomics.energy.gov (18/4/2017)
  36. 36.
    Schutyser W, Renders T, Van den Bossche G, Van den Bosch S, Koelewijn S-F, Ennaert T, Sels BF (2017) Nanotechnology in catalysis. Wiley, Chichester, pp 537–584Google Scholar
  37. 37.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552–3599PubMedGoogle Scholar
  38. 38.
    Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Ann Rev Chem Biomol Eng 2:121–145Google Scholar
  39. 39.
    Yuan T-Q, Sun S-N, Xu F, Sun R-C (2011) J Agric Food Chem 59:10604–10614PubMedGoogle Scholar
  40. 40.
    Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Phytochem Rev 3:29–60Google Scholar
  41. 41.
    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Plant Physiol 153:895–905PubMedPubMedCentralGoogle Scholar
  42. 42.
    Laskar DD, Yang B, Wang H, Lee J (2013) Biofuels. Bioprod Biorefining 7:602–626Google Scholar
  43. 43.
    Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Curr Opin Biotechnol 37:190–200PubMedGoogle Scholar
  44. 44.
    Liu E, Das L, Zhao B, Crocker M, Shi J (2017) BioEnergy ResGoogle Scholar
  45. 45.
    Brunow G (2008) Biorefineries-Industrial Processes and Products. Wiley, Chichester, pp 151–163Google Scholar
  46. 46.
    Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Energy Environ Sci 8:1748–1763Google Scholar
  47. 47.
    del Rio JC, Rencoret J, Prinsen P, Martinez AT, Ralph J, Gutierrez A (2012) J Agric Food Chem 60:5922–5935PubMedGoogle Scholar
  48. 48.
    Kamm B, Kamm M, Gruber PR, Kromus S (2008) Biorefineries-industrial processes and products. Wiley, Chichester, pp 1–40Google Scholar
  49. 49.
    Mikkola J-P, Sklavounos E, King AWT, Virtanen P (2016) Ionic liquids in the biorefinery concept: challenges and perspectives. The Royal Society of Chemistry, pp 1–37Google Scholar
  50. 50.
    Balat M, Balat H (2009) Appl Energy 86:2273–2282Google Scholar
  51. 51.
    Sánchez ÓJ, Cardona CA (2008) Biores Technol 99:5270–5295Google Scholar
  52. 52.
    Li M, Pu Y, Ragauskas AJ (2016) Front Chem 4:45PubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhao X, Zhang L, Liu D (2012) Biofuels. Bioprod Biorefining 6:465–482Google Scholar
  54. 54.
    Lora JH (2016) Quality living through chemurgy and green chemistry. Lau PCK, Springer, pp 221–261Google Scholar
  55. 55.
    Sjöström E (1993) Wood chemistry, 2nd edn. Academic Press, San Diego, pp 114–164Google Scholar
  56. 56.
    Gierer J (1985) Wood Sci Technol 19:289–312Google Scholar
  57. 57.
    Gierer J, Norén I, Wännström S (1987) Journal 41:79Google Scholar
  58. 58.
    Gellerstedt G (2009) Pulping chemistry and technology, pp 91–120Google Scholar
  59. 59.
    Chakar FS, Ragauskas AJ (2004) Ind Crops Prod 20:131–141Google Scholar
  60. 60.
    Gellerstedt G (2015) Ind Crops Prod 77:845–854Google Scholar
  61. 61.
    Ragnar M, Henriksson G, Lindström ME, Wimby M, Blechschmidt J, Heinemann S (2014) Ullmann’s encyclopedia of industrial chemistry. Wiley, ChichesterGoogle Scholar
  62. 62.
    Calvo-Flores FG, Dobado JA, Isac-García J, Martín-MartíNez FJ (2015) Lignin and lignans as renewable raw materials. Wiley, Chichester, pp 113–144Google Scholar
  63. 63.
    Azadi P, Inderwildi OR, Farnood R, King DA (2013) Renew Sustain Energy Rev 21:506–523Google Scholar
  64. 64.
    Sixta H (1998) Lenzinger Berichte, 18–27Google Scholar
  65. 65.
    Lora J (2008) Monomers, polymers and composites from renewable resources. Gandini MNB (ed) Elsevier, Amsterdam, pp 225–241Google Scholar
  66. 66.
    Aro T, Fatehi P (2017) Chemsuschem 10:1861–1877PubMedGoogle Scholar
  67. 67.
    Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Lukasik RM, Anastas P (2017) Green ChemGoogle Scholar
  68. 68.
    Anderson S, Dimmel D, Izsak P (2003) J Wood Chem Technol 23:141–159Google Scholar
  69. 69.
    Vishtal AG, Kraslawski A (2011) BioResources 6:3547–3568Google Scholar
  70. 70.
    Luterbacher JS, Martin Alonso D, Dumesic JA (2014) Green Chem 16:4816–4838Google Scholar
  71. 71.
    Katzen R, Schell DJ (2008) Biorefineries-industrial processes and products. Wiley, pp 129–138Google Scholar
  72. 72.
    Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Biotechnol Biofuels 6:15PubMedPubMedCentralGoogle Scholar
  73. 73.
    Pu Y, Hu F, Huang F, Ragauskas AJ (2015) BioEnergy Res 8:992–1003Google Scholar
  74. 74.
    Sturgeon MR, Kim S, Lawrence K, Paton RS, Chmely SC, Nimlos M, Foust TD, Beckham GT (2013) ACS Sustain Chem Eng 2:472–485Google Scholar
  75. 75.
    Adler E (1977) Wood Sci Technol 11:169–218Google Scholar
  76. 76.
    Deuss PJ, Scott M, Tran F, Westwood NJ, de Vries JG, Barta K (2015) J Am Chem Soc 137:7456–7467PubMedGoogle Scholar
  77. 77.
    Kulka M, Fisher HE, Baker SB, Hibbert H (1944) J Am Chem Soc 66:39–41Google Scholar
  78. 78.
    Shuai L, Saha B (2017) Green Chem 19:3752–3758Google Scholar
  79. 79.
    Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS (2016) Science 354:329–333PubMedGoogle Scholar
  80. 80.
    Imai T, Yokoyama T, Matsumoto Y (2011) J Wood Sci 57:219–225Google Scholar
  81. 81.
    Saeman JF, Bubl JL, Harris EE (1945) Ind Eng Chem Anal Ed 17:35–37Google Scholar
  82. 82.
    Bergius F (1937) Ind Eng Chem 29:247–253Google Scholar
  83. 83.
    C. W. Dence, in Methods in Lignin Chemistry, eds. S. Lin and C. Dence, Springer Berlin Heidelberg, 1992, ch. 3, pp 33–61Google Scholar
  84. 84.
    Courtin CM, Van den Broeck H, Delcour JA (2000) J Chromatogr A 866:97–104PubMedGoogle Scholar
  85. 85.
    Zheng Y, Zhao J, Xu F, Li Y (2014) Prog Energy Combust Sci 42:35–53Google Scholar
  86. 86.
    Saeman JF (1945) Ind Eng Chem 37:43–52Google Scholar
  87. 87.
    Hu F, Ragauskas A (2014) RSC Adv 4:4317–4323Google Scholar
  88. 88.
    Hu F, Jung S (2012) Ragauskas, Bioresour Technol 117Google Scholar
  89. 89.
    van Zandvoort I, Koers EJ, Weingarth M, Bruijnincx PCA, Baldus M, Weckhuysen BM (2015) Green Chem 17:4383–4392Google Scholar
  90. 90.
    Nitsos CK, Matis KA, Triantafyllidis KS (2013) Chem Sus Chem 6:110–122Google Scholar
  91. 91.
    Nitsos CK, Choli-Papadopoulou T, Matis KA, Triantafyllidis KS (2016) ACS Sustain Chem Eng 4:4529–4544Google Scholar
  92. 92.
    Sannigrahi P, Ragauskas AJ (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, Wiley, pp 201–222Google Scholar
  93. 93.
    Zhao X, Cheng K, Liu D (2009) Appl Microbiol Biotechnol 82:815–827PubMedGoogle Scholar
  94. 94.
    Li M-F, Yang S, Sun R-C (2016) Biores Technol 200:971–980Google Scholar
  95. 95.
    Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM (2016) Green Chem 18:360–381Google Scholar
  96. 96.
    Huijgen WJJ, Telysheva G, Arshanitsa A, Gosselink RJA, de Wild PJ (2014) Ind Crops Prod 59:85–95Google Scholar
  97. 97.
    Wildschut J, Smit AT, Reith JH, Huijgen WJJ (2013) Biores Technol 135:58–66Google Scholar
  98. 98.
    Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Ind Eng Chem Res 24:2723–2732Google Scholar
  99. 99.
    Snelders J, Dornez E, Benjelloun-Mlayah B, Huijgen WJJ, de Wild PJ, Gosselink RJA, Gerritsma J, Courtin CM (2014) Biores Technol 156:275–282Google Scholar
  100. 100.
    Abdelkafi F, Ammar H, Rousseau B, Tessier M, El Gharbi R, Fradet A (2011) Biomacromol 12:3895–3902Google Scholar
  101. 101.
    Grande PM, Viell J, Theyssen N, Marquardt W, Dominguez de Maria P, Leitner W (2015) Green Chem 17:3533–3539Google Scholar
  102. 102.
    Quesada-Medina J, López-Cremades FJ, Olivares-Carrillo P (2010) Biores Technol 101:8252–8260Google Scholar
  103. 103.
    Alriols MG, Tejado A, Blanco M, Mondragon I, Labidi J (2009) Chem Eng J 148:106–114Google Scholar
  104. 104.
    Katahira R, Mittal A, McKinney K, Ciesielski PN, Donohoe BS, Black SK, Johnson DK, Biddy MJ, Beckham GT (2014) ACS Sustain Chem Eng 2:1364–1376Google Scholar
  105. 105.
    Huijgen WJJ, Reith JH, den Uil H (2010) Ind Eng Chem Res 49:10132–10140Google Scholar
  106. 106.
    Deuss PJ, Lancefield CS, Narani A, de Vries JG, Westwood NJ, Barta K (2017) Green Chem 19:2774–2782Google Scholar
  107. 107.
    Van den Bosch S, Renders T, Kennis S, Koelewijn SF, Van den Bossche G, Vangeel T, Deneyer A, Depuydt D, Courtin CM, Thevelein JM, Schutyser W, Sels BF (2017) Green Chem 19:3313–3326Google Scholar
  108. 108.
    Minami E, Saka S (2003) J Wood Sci 49:0073–0078Google Scholar
  109. 109.
    Minami E, Saka S (2005) J Wood Sci 51:395–400Google Scholar
  110. 110.
    Minami E, Kawamoto H, Saka S (2003) J Wood Sci 49:158–165Google Scholar
  111. 111.
    Bouxin FP, McVeigh A, Tran F, Westwood NJ, Jarvis MC, Jackson SD (2015) Green Chem 17:1235–1242Google Scholar
  112. 112.
    Lancefield CS, Rashid GMM, Bouxin F, Wasak A, Tu W-C, Hallett J, Zein S, Rodríguez J, Jackson SD, Westwood NJ, Bugg TDH (2016) ACS Sustain Chem Eng 4:6921–6930Google Scholar
  113. 113.
    Si X, Lu F, Chen J, Lu R, Huang Q, Jiang H, Taarning E, Xu J (2017) Green ChemGoogle Scholar
  114. 114.
    Ralph SR, Ralph J, Landucci LL. NMR database of lignin and cell wall model compounds. http://ars.usda.gov/Services/docs.htm?docid=10491
  115. 115.
    Ralph J, Landucci LL (2011) Lignin and lignans: advances in chemistry. Heitner C, Dimmel DR, Schmidt JA. CRC Press, pp 137–244Google Scholar
  116. 116.
    Rolando C, Monties B, Lapierre C (1992) Methods in Lignin Chemistry. Lin SY, Dence CW (eds) Springer, Berlin, pp 334–349Google Scholar
  117. 117.
    Galkin M, Di Francesco D, Edlund U, Samec JSM (2017) Faraday discussionsGoogle Scholar
  118. 118.
    Lancefield CS, Panovic I, Deuss PJ, Barta K, Westwood NJ (2017) Green Chem 19:202–214Google Scholar
  119. 119.
    Zaheer M, Hermannsdörfer J, Kretschmer WP, Motz G, Kempe R (2014) Chemcatchem 6:91–95Google Scholar
  120. 120.
    Galkin MV, Sawadjoon S, Rohde V, Dawange M, Samec JSM (2014) ChemCatChem 6:179–184Google Scholar
  121. 121.
    Parsell TH, Owen BC, Klein I, Jarrell TM, Marcum CL, Haupert LJ, Amundson LM, Kenttamaa HI, Ribeiro F, Miller JT, Abu-Omar MM (2013) Chem Sci 4:806–813Google Scholar
  122. 122.
    Feghali E, Carrot G, Thuery P, Genre C, Cantat T (2015) Energy Environ Sci 8:2734–2743Google Scholar
  123. 123.
    Luterbacher JS, Azarpira A, Motagamwala AH, Lu F, Ralph J, Dumesic JA (2015) Energy Environ Sci 8:2657–2663Google Scholar
  124. 124.
    Kloekhorst A, Shen Y, Yie Y, Fang M, Heeres HJ (2015) Biomass Bioenerg 80:147–161Google Scholar
  125. 125.
    Kumar CR, Anand N, Kloekhorst A, Cannilla C, Bonura G, Frusteri F, Barta K, Heeres HJ (2015) Green Chem 17:4921–4930Google Scholar
  126. 126.
    Oasmaa A, Alén R, Meier D (1993) Biores Technol 45:189–194Google Scholar
  127. 127.
    Huang X, Korányi TI, Boot MD, Hensen EJM (2014) Chemsuschem 7:2276–2288PubMedGoogle Scholar
  128. 128.
    Huang X, Koranyi TI, Boot MD, Hensen EJM (2015) Green Chem 17:4941–4950Google Scholar
  129. 129.
    Torr KM, van de Pas DJ, Cazeils E, Suckling ID (2011) Biores Technol 102:7608–7611Google Scholar
  130. 130.
    Barta K, Warner GR, Beach ES, Anastas PT (2014) Green Chem 16:191–196Google Scholar
  131. 131.
    Molinari V, Clavel G, Graglia M, Antonietti M, Esposito D (2016) ACS Catal 6:1663–1670Google Scholar
  132. 132.
    Ratcliff MA, Johnson DK, Posey FL, Chum HL (1988) Appl Biochem Biotechnol 17:151–160Google Scholar
  133. 133.
    Kloekhorst A, Heeres HJ (2015) ACS Sustain Chem Eng 3:1905–1914Google Scholar
  134. 134.
    Kloekhorst A, Heeres HJ (2016) Catal Sci Technol 6:7053–7067Google Scholar
  135. 135.
    Kasakov S, Shi H, Camaioni DM, Zhao C, Barath E, Jentys A, Lercher JA (2015) Green Chem 17:5079–5090Google Scholar
  136. 136.
    Wang H, Ruan H, Feng M, Qin Y, Job H, Luo L, Wang C, Engelhard MH, Kuhn E, Chen X, Tucker MP, Yang B (2017) Chemsuschem 10:1846–1856PubMedGoogle Scholar
  137. 137.
    Zhang J, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N (2014) ACS Catal 4:1574–1583Google Scholar
  138. 138.
    Ma R, Hao W, Ma X, Tian Y, Li Y (2014) Angew Chem Int Ed 53:7310–7315Google Scholar
  139. 139.
    Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Chem Rev 115:11559–11624Google Scholar
  140. 140.
    Ma R, Xu Y, Zhang X (2015) Chemsuschem 8:24–51PubMedGoogle Scholar
  141. 141.
    Ma R, Guo M, Zhang X (2017) Catal TodayGoogle Scholar
  142. 142.
    Gierer J (1986) Wood Sci Technol 20:1–33Google Scholar
  143. 143.
    Demesa AG, Laari A, Turunen I, Sillanpää M (2015) Chem Eng Technol 38:2270–2278Google Scholar
  144. 144.
    Fache M, Boutevin B, Caillol S (2016) ACS Sustain Chem Eng 4:35–46Google Scholar
  145. 145.
    Rodrigues Pinto PC, Borges da Silva EA, Rodrigues AE (2012) Biomass conversion: the interface of biotechnology, chemistry and materials science. Baskar C, Baskar S, Dhillon RS (eds) Springer Berlin, pp 381–420Google Scholar
  146. 146.
    Kagawa S, Rokugawa M (1971) Jpn Tappi J 25:506–511Google Scholar
  147. 147.
    Partenheimer W (2009) Adv Synth Catal 351:456–466Google Scholar
  148. 148.
    Voitl T, Rudolf von Rohr P (2008) ChemSusChem 1:763–769PubMedGoogle Scholar
  149. 149.
    Voitl T, Rohr PRV (2010) Ind Eng Chem Res 49:520–525Google Scholar
  150. 150.
    Deng W, Zhang H, Wu X, Li R, Zhang Q, Wang Y (2015) Green Chem 17:5009–5018Google Scholar
  151. 151.
    Tarabanko VE, Hendogina YV, Petuhov DV, Pervishina EP (2000) React Kinet Catal Lett 69:361–368Google Scholar
  152. 152.
    Tarabanko VE, Petukhov DV (2003) Chem Sustain Dev 11:655–667Google Scholar
  153. 153.
    Lange H, Decina S, Crestini C (2013) Eur Polymer J 49:1151–1173Google Scholar
  154. 154.
    Das L, Kolar P, Sharma-Shivappa R (2012) Biofuels 3:155–166Google Scholar
  155. 155.
    Werhan H, Assmann N, Rudolf von Rohr P (2013) Chem Eng Process 73:29–37Google Scholar
  156. 156.
    Xiang Q, Lee YY (2000) Appl Biochem Biotechnol 84:153–162PubMedGoogle Scholar
  157. 157.
    Ma R, Guo M, Zhang X (2014) Chemsuschem 7:412–415PubMedGoogle Scholar
  158. 158.
    Hasegawa I, Inoue Y, Muranaka Y, Yasukawa T, Mae K (2011) Energy Fuels 25:791–796Google Scholar
  159. 159.
    Long J, Zhang Q, Wang T, Zhang X, Xu Y, Ma L (2014) Biores Technol 154:10–17Google Scholar
  160. 160.
    Güvenatam B, Heeres EHJ, Pidko EA, Hensen EJM (2016) Catal Today 259:460–466Google Scholar
  161. 161.
    Hepditch MM, Thring RW (2000) Can J Chem Eng 78:226–231Google Scholar
  162. 162.
    Katahira R, Mittal A, McKinney K, Chen X, Tucker MP, Johnson DK, Beckham GT (2016) ACS Sustain Chem Eng 4:1474–1486Google Scholar
  163. 163.
    Beauchet R, Monteil-Rivera F, Lavoie JM (2012) Biores Technol 121:328–334Google Scholar
  164. 164.
    Zhang X, Zhang Q, Long J, Xu Y, Wang T, Ma L, Li Y (2014) BioResources 9:3347–3360Google Scholar
  165. 165.
    Deepa AK, Dhepe PL (2014) RSC Adv 4:12625–12629Google Scholar
  166. 166.
    Lee H-S, Jae J, Ha J-M, Suh DJ (2016) Biores Technol 203:142–149Google Scholar
  167. 167.
    Ye Y, Zhang Y, Fan J, Chang J (2012) Ind Eng Chem Res 51:103–110Google Scholar
  168. 168.
    Ye Y, Fan J, Chang J (2012) J Anal Appl Pyrol 94:190–195Google Scholar
  169. 169.
    Onwudili JA, Williams PT (2014) Green Chem 16:4740–4748Google Scholar
  170. 170.
    Jiang Z, He T, Li J, Hu C (2014) Green Chem 16:4257–4265Google Scholar
  171. 171.
    Bridgwater AV (2012) Biomass Bioenerg 38:68–94Google Scholar
  172. 172.
    Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Chem Soc Rev 43:7594–7623PubMedGoogle Scholar
  173. 173.
    Mu W, Ben H, Ragauskas A, Deng Y (2013) BioEnergy Res 6:1183–1204Google Scholar
  174. 174.
    Yu Y, Li X, Su L, Zhang Y, Wang Y, Zhang H (2012) Appl Catal A 447:115–123Google Scholar
  175. 175.
    Mihalcik DJ, Mullen CA, Boateng AA (2011) J Anal Appl Pyrol 92:224–232Google Scholar
  176. 176.
    Ma Z, Troussard E, van Bokhoven JA (2012) Appl Catal A 423:130–136Google Scholar
  177. 177.
    Bond JQ, Upadhye AA, Olcay H, Tompsett GA, Jae J, Xing R, Alonso DM, Wang D, Zhang T, Kumar R, Foster A, Sen SM, Maravelias CT, Malina R, Barrett SRH, Lobo R, Wyman CE, Dumesic JA, Huber GW (2014) Energy Environ Sci 7:1500–1523Google Scholar
  178. 178.
    Zhou G, Jensen PA, Le DM, Knudsen NO, Jensen AD (2016) Green Chem 18:1965–1975Google Scholar
  179. 179.
    Thilakaratne R, Tessonnier J-P, Brown RC (2016) Green Chem 18:2231–2239Google Scholar
  180. 180.
    Lazaridis PA, Fotopoulos AP, Karakoulia SA, Triantafyllidis KS (2018) Front Chem 6:1–21Google Scholar
  181. 181.
    Zhao Y, Deng L, Liao B, Fu Y, Guo Q-X (2010) Energy Fuels 24:5735–5740Google Scholar
  182. 182.
    Jackson MA, Compton DL, Boateng AA (2009) J Anal Appl Pyrol 85:226–230Google Scholar
  183. 183.
    Ma Z, Custodis V, van Bokhoven JA (2014) Catal Sci Technol 4:766–772Google Scholar
  184. 184.
    Ennaert T, Van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels BF (2016) Chem Soc Rev 45:584–611PubMedGoogle Scholar
  185. 185.
    Zhang M, Resende FLP, Moutsoglou A (2014) Fuel 116:358–369Google Scholar
  186. 186.
    Renders T, Van den Bosch S, Koelewijn SF, Schutyser W, Sels BF (2017) Energy Environ Sci 10:1551–1557Google Scholar
  187. 187.
    Barry AJ, Peterson FC, King AJ (1936) J Am Chem Soc 58:333–337Google Scholar
  188. 188.
    Yan MM, Purves CB (1956) Can J Chem 34:1582–1590Google Scholar
  189. 189.
    Bouxin FP, David Jackson S, Jarvis MC (2014) Biores Technol 162:236–242Google Scholar
  190. 190.
    Singh S, Cheng G, Sathitsuksanoh N, Wu D, Varanasi P, George A, Balan V, Gao X, Kumar R, Dale BE, Wyman CE, Simmons BA (2015) Front Energy Res 2Google Scholar
  191. 191.
    da Costa Sousa L, Foston M, Bokade V, Azarpira A, Lu F, Ragauskas AJ, Ralph J, Dale B, Balan V (2016) Green Chem 18:4205–4215Google Scholar
  192. 192.
    Mittal A, Katahira R, Donohoe BS, Pattathil S, Kandemkavil S, Reed ML, Biddy MJ, Beckham GT (2017) ACS Sustain Chem Eng 5:2544–2561Google Scholar
  193. 193.
    Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009) Methods Mol Biol 581:61–77PubMedGoogle Scholar
  194. 194.
    Chundawat SPS, Donohoe BS, da Costa Sousa L, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE (2011) Energy Environ Sci 4:973–984Google Scholar
  195. 195.
    Kim JS, Lee YY, Kim TH (2016) Bioresour Technol 199:42–48PubMedGoogle Scholar
  196. 196.
    Chundawat SPS, Bals B, Campbell T, Sousa L, Gao D, Jin M, Eranki P, Garlock R, Teymouri F, Balan V, Dale BE (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 169–200Google Scholar
  197. 197.
    da Costa Sousa L, Jin M, Chundawat SPS, Bokade V, Tang X, Azarpira A, Lu F, Avci U, Humpula J, Uppugundla N, Gunawan C, Pattathil S, Cheh AM, Kothari N, Kumar R, Ralph J, Hahn MG, Wyman CE, Singh S, Simmons BA, Dale BE, Balan V (2016) Energy Environ Sci 9:1215–1223Google Scholar
  198. 198.
    Chundawat SPS, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011) J Am Chem Soc 133:11163–11174PubMedGoogle Scholar
  199. 199.
    Kim TH, Lee YY (2005) Biores Technol 96:2007–2013Google Scholar
  200. 200.
    Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Biores Technol 90:39–47Google Scholar
  201. 201.
    Yang B, Wyman CE (2008) Biofuels Bioprod Biorefining-Biofpr 2:26–40Google Scholar
  202. 202.
    Yoon HH, Wu ZW, Lee YY (1995) Appl Biochem Biotechnol 51:5–19Google Scholar
  203. 203.
    Brandt A, Grasvik J, Hallett JP, Welton T (2013) Green Chem 15:550–583Google Scholar
  204. 204.
    George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM (2011) Green Chem 13:3375–3385Google Scholar
  205. 205.
    Badgujar KC, Bhanage BM (2015) Biores Technol 178:2–18Google Scholar
  206. 206.
    Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) Green Chem 19:3078–3102Google Scholar
  207. 207.
    Weigand L, Mostame S, Brandt-Talbot A, Welton T, Hallett JP (2017) Faraday Discuss 18Google Scholar
  208. 208.
    Zhang Q, De Oliveira Vigier K, Royer S, Jerome F (2012) Chem Soc Rev 41:7108–7146PubMedGoogle Scholar
  209. 209.
    Petkovic M, Seddon KR, Rebelo LPN, Silva C (2011) Pereira. Chem Soc Rev 40:1383–1403PubMedGoogle Scholar
  210. 210.
    Yan L, Zhang L, Yang B (2014) Biotechnol Biofuels 7:76PubMedPubMedCentralGoogle Scholar
  211. 211.
    Wang H, Ben H, Ruan H, Zhang L, Pu Y, Feng M, Ragauskas AJ, Yang B (2017) ACS Sustain Chem Eng 5:1824–1830Google Scholar
  212. 212.
    Liu C, Wyman CE (2003) Ind Eng Chem Res 42:5409–5416Google Scholar
  213. 213.
    Bhagia S, Li H, Gao X, Kumar R, Wyman CE (2016) Biotechnol Biofuels 9:245PubMedPubMedCentralGoogle Scholar
  214. 214.
    Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014) Science 343:277–280PubMedGoogle Scholar
  215. 215.
    Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA (2013) Energy Environ Sci 6:76–80Google Scholar
  216. 216.
    Mellmer MA, Sener C, Gallo JMR, Luterbacher JS, Alonso DM, Dumesic JA (2014) Angew Chem Int Ed 53:11872–11875Google Scholar
  217. 217.
    Shuai L, Luterbacher J (2016) Chemsuschem 9:133–155PubMedGoogle Scholar
  218. 218.
    Shuai L, Questell-Santiago YM, Luterbacher JS (2016) Green Chem 18:937–943Google Scholar
  219. 219.
    Barakat A, Mayer-Laigle C, Solhy A, Arancon RAD, de Vries H, Luque R (2014) RSC Advances 4:48109–48127Google Scholar
  220. 220.
    Rencoret J, Marques G, Gutiérrez A, Nieto L, Jiménez-Barbero J, Martínez ÁT, del Río JC (2009) Ind Crops Prod 30:137–143Google Scholar
  221. 221.
    El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Polym Degrad Stab 94:1632–1638Google Scholar
  222. 222.
    Guerra A, Mendonça R, Ferraz A, Lu F, Ralph J (2004) Appl Environ Microbiol 70:4073–4078PubMedPubMedCentralGoogle Scholar
  223. 223.
    Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ (2014) Biofuels Bioprod Biorefining 8:836–856Google Scholar
  224. 224.
    Hu Z, Yeh T-F, Chang HM, Matsumoto Y, Kadla John F (2006) Journal 60:389Google Scholar
  225. 225.
    Chang HM, Cowling Ellis B, Brown W (1975) Journal 29:153Google Scholar
  226. 226.
    Guerra A, Filpponen I, Lucia LA, Argyropoulos DS (2006) J Agric Food Chem 54:9696–9705PubMedGoogle Scholar
  227. 227.
    Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos DS (2006) J Agric Food Chem 54:5939–5947PubMedGoogle Scholar
  228. 228.
    van der Klashorst GH (1989) Lignin. American Chemical Society, vol. 397, ch. 26, pp 346–360Google Scholar
  229. 229.
    Wu L, Talebi AM (2018) Angewandte Chemie International Edition 57:1356–1360PubMedGoogle Scholar
  230. 230.
    Bower JR, Cooke LM, Hibbert H (1943) J Am Chem Soc 65:1192–1195Google Scholar
  231. 231.
    Brewer CP, Cooke LM, Hibbert H (1948) J Am Chem Soc 70:57–59PubMedGoogle Scholar
  232. 232.
    Pepper JM, Brounstein CJ, Shearer DA (1951) J Am Chem Soc 73:3316–3319Google Scholar
  233. 233.
    Pepper JM, Supathna P (1978) Can J Chem 56:899–902Google Scholar
  234. 234.
    Song Q, Wang F, Cai JY, Wang YH, Zhang JJ, Yu WQ, Xu J (2013) Energy Environ Sci 6:994–1007Google Scholar
  235. 235.
    Anderson EM, Stone ML, Katahira R, Reed M, Beckham GT, Román-Leshkov Y (2017) Joule 1:613–622Google Scholar
  236. 236.
    Kumaniaev I, Subbotina E, Savmarker J, Larhed M, Galkin MV, Samec JSM (2017) Green Chem 19:5767–5771Google Scholar
  237. 237.
    Anderson EM, Katahira R, Reed M, Resch MG, Karp EM, Beckham GT, Román-Leshkov Y (2016) ACS Sustain Chem EngGoogle Scholar
  238. 238.
    Renders T, Schutyser W, Van den Bosch S, Koelewijn S-F, Vangeel T, Courtin CM, Sels BF (2016) Acs Catal 6:2055–2066Google Scholar
  239. 239.
    Ferrini P, Rezende CA, Rinaldi R (2016) Chemsuschem 9:3171–3180PubMedGoogle Scholar
  240. 240.
    Yan N, Zhao C, Dyson PJ, Wang C, Liu LT, Kou Y (2008) Chemsuschem 1:626–629PubMedGoogle Scholar
  241. 241.
    Galkin MV, Samec JSM (2016) Chemsuschem 9:1544–1558PubMedGoogle Scholar
  242. 242.
    Galkin MV, Samec JSM (2014) Chemsuschem 7:2154–2158PubMedGoogle Scholar
  243. 243.
    Parsell T, Yohe S, Degenstein J, Jarrell T, Klein I, Gencer E, Hewetson B, Hurt M, Kim JI, Choudhari H, Saha B, Meilan R, Mosier N, Ribeiro F, Delgass WN, Chapple C, Kenttamaa HI, Agrawal R, Abu-Omar MM (2015) Green Chem 17:1492–1499Google Scholar
  244. 244.
    Ferrini P, Rinaldi R (2014) Angewandte Chemie-International Edition 53:8634–8639PubMedGoogle Scholar
  245. 245.
    Luo H, Klein IM, Jiang Y, Zhu H, Liu B, Kenttämaa HI, Abu-Omar MM (2016) ACS Sustain Chem Eng 4:2316–2322Google Scholar
  246. 246.
    Schutyser W, Van den Bosch S, Renders T, De Boe T, Koelewijn SF, Dewaele A, Ennaert T, Verkinderen O, Goderis B, Courtin CM, Sels BF (2015) Green Chem 17:5035–5045Google Scholar
  247. 247.
    Renders T, Van den Bosch S, Vangeel T, Ennaert T, Koelewijn S-F, Van den Bossche G, Courtin CM, Schutyser W, Sels BF (2016) ACS Sustain Chem Eng 4:6894–6904Google Scholar
  248. 248.
    Huang X, Morales Gonzalez OM, Zhu J, Koranyi TI, Boot MD, Hensen EJM (2017) Green Chem 19:175–187Google Scholar
  249. 249.
    Huang X, Zhu J, Korányi TI, Boot MD, Hensen EJM (2016) ChemsuschemGoogle Scholar
  250. 250.
    Galkin MV, Smit AT, Subbotina E, Artemenko KA, Bergquist J, Huijgen WJJ, Samec JSM (2016) Chemsuschem 9:3280–3287PubMedGoogle Scholar
  251. 251.
    Anderson EM, Stone ML, Hülsey MJ, Beckham GT, Román-Leshkov Y (2018) ACS Sustain Chem Eng 6:7951–7959Google Scholar
  252. 252.
    Van den Bosch S, Schutyser W, Koelewijn S-F, Renders T, Courtin CM, Sels BF (2015) Chem CommunGoogle Scholar
  253. 253.
    Pepper JM, Lee YW (1969) Can J Chem 47:723–727Google Scholar
  254. 254.
    Li C, Zheng M, Wang A, Zhang T (2012) Energy Environ Sci 5:6383–6390Google Scholar
  255. 255.
    Matson TD, Barta K, Iretskii AV, Ford PC (2011) J Am Chem Soc 133:14090–14097PubMedGoogle Scholar
  256. 256.
    Barta K, Ford PC (2014) Acc Chem Res 47:1503–1512PubMedGoogle Scholar
  257. 257.
    Op de Beeck B, Dusselier M, Geboers J, Holsbeek J, Morre E, Oswald S, Giebeler L, Sels BF (2015) Energy Environ Sci 8:230–240Google Scholar
  258. 258.
    Deneyer A, Ennaert T, Cavents G, Dijkmans J, Vanneste J, Courtin CM, Dusselier M, Sels BF (2016) Green Chem 18:5594–5606Google Scholar
  259. 259.
    Xia Q, Chen Z, Shao Y, Gong X, Wang H, Liu X, Parker SF, Han X, Yang S, Wang Y (2016) 7:11162Google Scholar
  260. 260.
    Chen C-L (1992) Methods in lignin chemistry. Lin SY, Dence CW (eds) Springer, Berlin, pp 301–321Google Scholar
  261. 261.
    Pepper JM, Casselman BW, Karapally JC (1967) Can J Chem 45:3009–3012Google Scholar
  262. 262.
    Koropachinskaya N, Tarabanko V, Chernyak M (2003) Chem Plant Raw Mater (Russia), 9–14Google Scholar
  263. 263.
    Kuznetsov BN, Kuznetsova SA, Danilov VG, Tarabanko VE (2005) Chem Sustain Dev 13:531–539Google Scholar
  264. 264.
    Behling R, Valange S, Chatel G (2016) Green Chem 18:1839–1854Google Scholar
  265. 265.
    Evans RJ, Milne TA, Soltys MN (1986) J Anal Appl Pyrol 9:207–236Google Scholar
  266. 266.
    Kuroda K-I, Inoue Y, Sakai K (1990) J Anal Appl Pyrol 18:59–69Google Scholar
  267. 267.
    Kotake T, Kawamoto H, Saka S (2015) J Anal Appl Pyrol 113:57–64Google Scholar
  268. 268.
    Karp EM, Nimlos CT, Deutch S, Salvachua D, Cywar RM, Beckham GT (2016) Green Chem 18:4750–4760Google Scholar
  269. 269.
    Karp EM, Resch MG, Donohoe BS, Ciesielski PN, O’Brien MH, Nill JE, Mittal A, Biddy MJ, Beckham GT (2015) ACS Sustain Chem Eng 3:1479–1491Google Scholar
  270. 270.
    Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT (2014) Proc Natl Acad Sci 111:12013–12018PubMedGoogle Scholar
  271. 271.
    Kaiho A, Kogo M, Sakai R, Saito K, Watanabe T (2015) Green Chem 17:2780–2783Google Scholar
  272. 272.
    Jastrzebski R, Constant S, Lancefield CS, Westwood NJ, Weckhuysen BM, Bruijnincx PCA (2016) Chemsuschem 9:2074–2079PubMedPubMedCentralGoogle Scholar
  273. 273.
    Koelewijn S-F, Van den Bosch S, Renders T, Schutyser W, Lagrain B, Smet M, Thomas J, Dehaen W, Van Puyvelde P, Witters H, Sels BF (2017) Green Chem 19:2561–2570Google Scholar
  274. 274.
    Koelewijn SF, Cooreman C, Renders T, Andecochea Saiz C, Van den Bosch S, Schutyser W, De Leger W, Smet M, Van Puyvelde P, Witters H, Van der Bruggen B, Sels BF (2018) Green Chem 20:1050–1058Google Scholar
  275. 275.
    Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Angewandte Chemie-International Edition 48:3987–3990PubMedGoogle Scholar
  276. 276.
    Yan N, Yuan Y, Dykeman R, Kou Y, Dyson PJ (2010) Angew Chem Int Ed 49:5549–5553Google Scholar
  277. 277.
    Zhang W, Chen J, Liu R, Wang S, Chen L, Li K (2014) ACS Sustain Chem Eng 2:683–691Google Scholar
  278. 278.
    Luska KL, Migowski P, El-Sayed S, Leitner W (2015) Angew Chem Int Ed 54:15750–15755Google Scholar
  279. 279.
    Wang H, Wang H, Kuhn E, Tucker MP, Yang B (2017) ChemSusChemGoogle Scholar
  280. 280.
    Yohe SL, Choudhari HJ, Mehta DD, Dietrich PJ, Detwiler MD, Akatay CM, Stach EA, Miller JT, Delgass WN, Agrawal R, Ribeiro FH (2016) J Catal 344:535–552Google Scholar
  281. 281.
    Prasomsri T, Shetty M, Murugappan K, Roman-Leshkov Y (2014) Energy Environ Sci 7:2660–2669Google Scholar
  282. 282.
    Wang H, Male J, Wang Y (2013) ACS Catal 3:1047–1070Google Scholar
  283. 283.
    Sun J, Karim AM, Zhang H, Kovarik L, Li XS, Hensley AJ, McEwen J-S, Wang Y (2013) J Catal 306:47–57Google Scholar
  284. 284.
    Cao Z, Engelhardt J, Dierks M, Clough MT, Wang G-H, Heracleous E, Lappas A, Rinaldi R, Schüth F (2017) Angew Chem Int Ed 56:2334–2339Google Scholar
  285. 285.
    Joshi N, Lawal A (2013) Ind Eng Chem Res 52:4049–4058Google Scholar
  286. 286.
    Verboekend D, Liao Y, Schutyser W, Sels BF (2016) Green Chem 18:297–306Google Scholar
  287. 287.
    Bai Z, Phuan WC, Ding J, Heng TH, Luo J, Zhu Y (2016) ACS Catal 6:6141–6145Google Scholar
  288. 288.
    Schutyser W, Van den Bossche G, Raaffels A, Van den Bosch S, Koelewijn S-F, Renders T, Sels BF (2016) ACS Sustain Chem Eng 4:5336–5346Google Scholar
  289. 289.
    Schutyser W, Van den Bosch S, Dijkmans J, Turner S, Meledina M, Van Tendeloo G, Debecker DP, Sels BF (2015) Chemsuschem 8:1805–1818PubMedGoogle Scholar
  290. 290.
    Wang XY, Rinaldi R (2012) Energy Environ Sci 5:8244–8260Google Scholar
  291. 291.
    Nakagawa Y, Ishikawa M, Tamura M, Tomishige K (2014) Green Chem 16:2197–2203Google Scholar
  292. 292.
    Ishikawa M, Tamura M, Nakagawa Y, Tomishige K (2016) Appl Catal B 182:193–203Google Scholar
  293. 293.
    Dijkmans J, Schutyser W, Dusselier M, Sels BF (2016) Chem Commun 52:6712–6715Google Scholar
  294. 294.
    Jiménez JI, Miñambres B, García JL, Díaz E (2002) Environ Microbiol 4:824–841PubMedGoogle Scholar
  295. 295.
    Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissenbach J, Marliere P, Cohen GN, Medigue C (2004) Nucleic Acids Res 32:5766–5779PubMedPubMedCentralGoogle Scholar
  296. 296.
    Masai E, Kamimura N, Kasai D, Oguchi A, Ankai A, Fukui S, Takahashi M, Yashiro I, Sasaki H, Harada T, Nakamura S, Katano Y, Narita-Yamada S, Nakazawa H, Hara H, Katayama Y, Fukuda M, Yamazaki S, Fujita N (2012) J Bacteriol 194:534–535PubMedPubMedCentralGoogle Scholar
  297. 297.
    Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Nat Prod Rep 28:1883–1896PubMedGoogle Scholar
  298. 298.
    Masai E, Katayama Y, Fukuda M (2007) Biosci Biotechnol Biochem 71:1–15PubMedGoogle Scholar
  299. 299.
    Chen GQ (2009) Chem Soc Rev 38:2434–2446PubMedGoogle Scholar
  300. 300.
    Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Energy Environ Sci 8:617–628Google Scholar
  301. 301.
    Xie N-Z, Liang H, Huang R-B, Xu P (2014) Biotechnol Adv 32:615–622PubMedGoogle Scholar
  302. 302.
    Kosa M, Ragauskas AJ (2013) Green Chem 15:2070–2074Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Surface Chemistry and CatalysisKU LeuvenHeverleeBelgium

Personalised recommendations