Advertisement

Topics in Current Chemistry

, 376:35 | Cite as

Multidimensional Vibrational Coherence Spectroscopy

  • Tiago Buckup
  • Jérémie Léonard
Review
  • 128 Downloads
Part of the following topical collections:
  1. Multidimensional Time-Resolved Spectroscopy

Abstract

Multidimensional vibrational coherence spectroscopy has been part of laser spectroscopy since the 1990s and its role in several areas of science has continuously been increasing. In this contribution, after introducing the principals of vibrational coherence spectroscopy (VCS), we review the three most widespread experimental methods for multidimensional VCS (multi-VCS), namely femtosecond stimulated Raman spectroscopy, pump-impulsive vibrational spectroscopy, and pump-degenerate four wave-mixing. Focus is given to the generation and typical analysis of the respective signals in the time and spectral domains. Critical aspects of all multidimensional techniques are the challenges in the data interpretation due to the existence of several possible contributions to the observed signals or to optical interferences and how to overcome the corresponding difficulties by exploiting experimental parameters including higher-order nonlinear effects. We overview how multidimensional vibrational coherence spectroscopy can assist a chemist in understanding how molecular structural changes and eventually photochemical reactions take place. In order to illustrate the application of the techniques described in this chapter, two molecular systems are discussed in more detail in regard to the vibrational dynamics in the electronic excited states: (1) carotenoids as a non-reactive system and (2) stilbene derivatives as a reactive system.

Keywords

Ultrafast laser spectroscopy Multidimensional spectroscopy Raman Vibrational spectroscopy Coherence spectroscopy Excited states Vibronic coupling Photoisomerization 

References

  1. 1.
    Joo TH, Albrecht AC (1993) Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved 4-wave-mixing. Chem Phys 173(1):17–26CrossRefGoogle Scholar
  2. 2.
    Weiner AM, Desilvestri S, Ippen EP (1985) 3-Pulse scattering for femtosecond dephasing studies—theory and experiment. J Opt Soc Am B 2(4):654–662CrossRefGoogle Scholar
  3. 3.
    Hwang H, Rossky PJ (2004) Electronic decoherence induced by intramolecular vibrational motions in a betaine dye molecule. J Phys Chem B 108(21):6723–6732.  https://doi.org/10.1021/jp037031b CrossRefGoogle Scholar
  4. 4.
    Vos MH, Jones MR, Martin JL (1998) Vibrational coherence in bacterial reaction centers: spectroscopic characterisation of motions active during primary electron transfer. Chem Phys 233(2–3):179–190.  https://doi.org/10.1016/S0301-0104(97)00355-8 CrossRefGoogle Scholar
  5. 5.
    Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463(7281):U644–U669.  https://doi.org/10.1038/nature08811 CrossRefGoogle Scholar
  6. 6.
    Fuller FD, Pan J, Gelzinis A, Butkus V, Senlik SS, Wilcox DE, Yocum CF, Valkunas L, Abramavicius D, Ogilvie JP (2014) Vibronic coherence in oxygenic photosynthesis. Nat Chem 6(8):706–711.  https://doi.org/10.1038/nchem.2005 CrossRefPubMedGoogle Scholar
  7. 7.
    Huelga SF, Plenio MB (2013) Vibrations, quanta and biology. Contemp Phys 54(4):181–207.  https://doi.org/10.1080/00405000.2013.829687 CrossRefGoogle Scholar
  8. 8.
    Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, van Grondelle R (2014) Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat Phys 10(9):677–683.  https://doi.org/10.1038/nphys3017 CrossRefGoogle Scholar
  9. 9.
    Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3(10):763–774.  https://doi.org/10.1038/nchem.1145 CrossRefPubMedGoogle Scholar
  10. 10.
    Gueye M, Manathunga M, Agathangelou D, Orozco Y, Paolino M, Fusi S, Haacke S, Olivucci M, Leonard J (2018) Engineering the vibrational coherence of vision into a synthetic molecular device. Nat Commun 9:313.  https://doi.org/10.1038/s41467-017-02668-w CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Scholes GD, Fleming GR, Chen LX, Aspuru-Guzik A, Buchleitner A, Coker DF, Engel GS, van Grondelle R, Ishizaki A, Jonas DM, Lundeen JS, McCusker JK, Mukamel S, Ogilvie JP, Olaya-Castro A, Ratner MA, Spano FC, Whaley KB, Zhu XY (2017) Using coherence to enhance function in chemical and biophysical systems. Nature 543(7647):647–656.  https://doi.org/10.1038/nature21425 CrossRefPubMedGoogle Scholar
  12. 12.
    Rose TS, Rosker MJ, Zewail AH (1989) Femtosecond real-time probing of reactions. IV. The reactions of alkali halides. J Chem Phys 91(12):7415–7436CrossRefGoogle Scholar
  13. 13.
    Pollard WT, Fragnito HL, Bigot JY, Shank CV, Mathies RA (1990) Quantum-mechanical theory for 6 fs dynamic absorption spectroscopy and its application to Nile blue. Chem Phys Lett 168(3):239–245.  https://doi.org/10.1016/0009-2614(90)85603-A CrossRefGoogle Scholar
  14. 14.
    Fragnito HL, Bigot JY, Becker PC, Shank CV (1989) Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse. Chem Phys Lett 160(2):101–104.  https://doi.org/10.1016/0009-2614(89)87564-5 CrossRefGoogle Scholar
  15. 15.
    Dhar L, Rogers JA, Nelson KA (1994) Time-resolved vibrational spectroscopy in the impulsive limit. Chem Rev 94(1):157–193.  https://doi.org/10.1021/cr00025a006 CrossRefGoogle Scholar
  16. 16.
    Ruhman S, Kosloff R (1990) Application of chirped ultrashort pulses for generating large-amplitude ground-state vibrational coherence: a computer simulation. J Opt Soc Am B 7(8):1748–1752.  https://doi.org/10.1364/josab.7.001748 CrossRefGoogle Scholar
  17. 17.
    Bardeen CJ, Wang Q, Shank CV (1998) Femtosecond chirped pulse excitation of vibrational wave packets in LD690 and bacteriorhodopsin. J Phys Chem A 102(17):2759–2766.  https://doi.org/10.1021/jp980346k CrossRefGoogle Scholar
  18. 18.
    Malkmus S, Dürr R, Sobotta C, Pulvermacher H, Zinth W, Braun M (2005) Chirp dependence of wave packet motion in oxazine 1. J Phys Chem A 109(46):10488–10492.  https://doi.org/10.1021/jp054462g CrossRefPubMedGoogle Scholar
  19. 19.
    Kahan A, Nahmias O, Friedman N, Sheves M, Ruhman S (2007) Following photoinduced dynamics in bacteriorhodopsin with 7-fs impulsive vibrational spectroscopy. J Am Chem Soc 129(3):537–546.  https://doi.org/10.1021/ja064910d CrossRefPubMedGoogle Scholar
  20. 20.
    Kraack JP, Motzkus M, Buckup T (2011) Selective nonlinear response preparation using femtosecond spectrally resolved four-wave-mixing. J Chem Phys 135(22):224505CrossRefGoogle Scholar
  21. 21.
    Wand A, Kallush S, Shoshanim O, Bismuth O, Kosloff R, Ruhman S (2010) Chirp effects on impulsive vibrational spectroscopy: a multimode perspective. Phys Chem Chem Phys 12(9):2149–2163CrossRefPubMedGoogle Scholar
  22. 22.
    Chesnoy J, Mokhtari A (1988) Resonant impulsive-stimulated Raman scattering on malachite green. Phys Rev A 38(7):3566–3576CrossRefGoogle Scholar
  23. 23.
    Pollard WT, Dexheimer SL, Wang Q, Peteanu LA, Shank CV, Mathies RA (1992) Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin. J Phys Chem 96(15):6147–6158.  https://doi.org/10.1021/j100194a013 CrossRefGoogle Scholar
  24. 24.
    Ruhman S, Joly AG, Nelson KA (1988) Coherent molecular vibrational motion observed in the time domain through impulsive stimulated Raman scattering. IEEE J Quantum Electron 24(2):460–469.  https://doi.org/10.1109/3.146 CrossRefGoogle Scholar
  25. 25.
    Mukamel S (1999) Principles of nonlinear optical spectroscopy, vol 6. Oxford University Press on Demand, OxfordGoogle Scholar
  26. 26.
    Pollard WT, Lee SY, Mathies RA (1990) Wave packet theory of dynamic absorption spectra in femtosecond pump–probe experiments. J Chem Phys 92(7):4012–4029.  https://doi.org/10.1063/1.457815 CrossRefGoogle Scholar
  27. 27.
    Johnson AE, Myers AB (1996) A comparison of time- and frequency-domain resonance Raman spectroscopy in triiodide. J Chem Phys 104(7):2497–2507.  https://doi.org/10.1063/1.470998 CrossRefGoogle Scholar
  28. 28.
    Liebel M, Schnedermann C, Wende T, Kukura P (2015) Principles and applications of broadband impulsive vibrational spectroscopy. J Phys Chem A 119(36):9506–9517.  https://doi.org/10.1021/acs.jpca.5b05948 CrossRefPubMedGoogle Scholar
  29. 29.
    Tanimura Y, Mukamel S (1993) Temperature-dependence and non-condon effects in pump-probe spectroscopy in the condensed-phase. J Opt Soc Am B 10(12):2263–2268.  https://doi.org/10.1364/josab.10.002263 CrossRefGoogle Scholar
  30. 30.
    Brazard J, Bizimana LA, Gellen T, Carbery WP, Turner DB (2016) Experimental detection of branching at a conical intersection in a highly fluorescent molecule. J Phys Chem Lett 7(1):14–19.  https://doi.org/10.1021/acs.jpclett.5b02476 CrossRefPubMedGoogle Scholar
  31. 31.
    Hamm P, Zanni MT (2011) Concepts and methods of 2d infrared spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. 32.
    Siebert T, Schmitt M, Gräfe S, Engel V (2006) Ground state vibrational wave-packet and recovery dynamics studied by time-resolved CARS and pump-CARS spectroscopy. J Raman Spectrosc 37(1–3):397–403.  https://doi.org/10.1002/jrs.1441 CrossRefGoogle Scholar
  33. 33.
    Motzkus M, Pedersen S, Zewail AH (1996) Femtosecond real-time probing of reactions. 19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions. J Phys Chem 100(14):5620–5633.  https://doi.org/10.1021/jp960265t CrossRefGoogle Scholar
  34. 34.
    Dobryakov AL, Quick M, Ioffe IN, Granovsky AA, Ernsting NP, Kovalenko SA (2014) Excited-state Raman spectroscopy with and without actinic excitation: S1 Raman spectra of trans-azobenzene. J Chem Phys 140(18):184310.  https://doi.org/10.1063/1.4874854 CrossRefPubMedGoogle Scholar
  35. 35.
    Sun Z, Lu J, Zhang DH, Lee S-Y (2008) Quantum theory of (femtosecond) time-resolved stimulated Raman scattering. J Chem Phys 128(14):144114.  https://doi.org/10.1063/1.2888551 CrossRefPubMedGoogle Scholar
  36. 36.
    Payne SA, Hochstrasser RM (1986) Picosecond coherent anti-stokes Raman scattering from the excited states of stilbene and benzophenone. J Phys Chem 90(10):2068–2074CrossRefGoogle Scholar
  37. 37.
    Takeuchi S, Ruhman S, Tsuneda T, Chiba M, Taketsugu T, Tahara T (2008) Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322(5904):1073–1077CrossRefPubMedGoogle Scholar
  38. 38.
    Motzkus M, Pedersen S, Zewail AH (1996) Femtosecond real-time probing of reactions.19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions. J Phys Chem Us 100(14):5620–5633CrossRefGoogle Scholar
  39. 39.
    Hauer J, Buckup T, Motzkus M (2007) Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection. J Phys Chem A 111(42):10517–10529CrossRefPubMedGoogle Scholar
  40. 40.
    McCamant DW, Kukura P, Mathies RA (2003) Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy. Appl Spectrosc 57(11):1317–1323CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mallick B, Lakhsmanna A, Umapathy S (2011) Ultrafast Raman loss spectroscopy (URLS): instrumentation and principle. J Raman Spectrosc 42(10):1883–1890.  https://doi.org/10.1002/jrs.2996 CrossRefGoogle Scholar
  42. 42.
    Roy K, Kayal S, Kumar VR, Beeby A, Ariese F, Umapathy S (2017) Understanding ultrafast dynamics of conformation specific photo-excitation: a femtosecond transient absorption and ultrafast Raman loss study. J Phys Chem A 121(35):6538–6546.  https://doi.org/10.1021/acs.jpca.7b03893 CrossRefPubMedGoogle Scholar
  43. 43.
    Kayal S, Roy K, Umapathy S (2018) Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: ultrafast transient absorption and ultrafast Raman loss spectroscopic studies. J Chem Phys 148(2):024301.  https://doi.org/10.1063/1.5008726 CrossRefPubMedGoogle Scholar
  44. 44.
    Tokmakoff A, Lang MJ, Larsen DS, Fleming GR, Chernyak V, Mukamel S (1997) Two-dimensional Raman spectroscopy of vibrational interactions in liquids. Phys Rev Lett 79(14):2702–2705.  https://doi.org/10.1103/PhysRevLett.79.2702 CrossRefGoogle Scholar
  45. 45.
    Yoshizawa M, Hattori Y, Kobayashi T (1994) Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene. Phys Rev B 49(18):13259–13262.  https://doi.org/10.1103/PhysRevB.49.13259 CrossRefGoogle Scholar
  46. 46.
    Kovalenko SA, Dobryakov AL, Ernsting NP (2011) An efficient setup for femtosecond stimulated Raman spectroscopy. Rev Sci Instrum 82(6):063102.  https://doi.org/10.1063/1.3596453 CrossRefPubMedGoogle Scholar
  47. 47.
    Rhinehart JM, Challa JR, McCamant DW (2012) Multimode charge-transfer dynamics of 4-(dimethylamino)benzonitrile probed with ultraviolet femtosecond stimulated Raman spectroscopy. J Phys Chem B 116(35):10522–10534.  https://doi.org/10.1021/jp3020645 CrossRefPubMedGoogle Scholar
  48. 48.
    Weigel A, Ernsting NP (2010) Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy. J Phys Chem B 114(23):7879–7893.  https://doi.org/10.1021/jp100181z CrossRefPubMedGoogle Scholar
  49. 49.
    McCamant DW, Kukura P, Yoon S, Mathies RA (2004) Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods. Rev Sci Instrum 75(11):4971–4980CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dietze DR, Mathies RA (2016) Femtosecond stimulated Raman spectroscopy. ChemPhysChem 17:1224–1251.  https://doi.org/10.1002/cphc.201600104 CrossRefPubMedGoogle Scholar
  51. 51.
    Quick M, Dobryakov AL, Kovalenko SA, Ernsting NP (2015) Resonance femtosecond-stimulated Raman spectroscopy without actinic excitation showing low-frequency vibrational activity in the S-2 state of all-trans beta-carotene. J Phys Chem Lett 6(7):1216–1220.  https://doi.org/10.1021/acs.jpclett.5b00243 CrossRefPubMedGoogle Scholar
  52. 52.
    Frobel S, Buschhaus L, Villnow T, Weingart O, Gilch P (2015) The photoformation of a phthalide: a ketene intermediate traced by FSRS. Phys Chem Chem Phys 17(1):376–386CrossRefPubMedGoogle Scholar
  53. 53.
    Laimgruber S, Schachenmayr H, Schmidt B, Zinth W, Gilch P (2006) A femtosecond stimulated Raman spectrograph for the near ultraviolet. Appl Phys B Lasers Opt 85(4):557–564CrossRefGoogle Scholar
  54. 54.
    Hall CR, Conyard J, Heisler IA, Jones G, Frost J, Browne WR, Feringa BL, Meech SR (2017) Ultrafast dynamics in light-driven molecular rotary motors probed by femtosecond stimulated Raman spectroscopy. J Am Chem Soc 139(21):7408–7414.  https://doi.org/10.1021/jacs.7b03599 CrossRefPubMedGoogle Scholar
  55. 55.
    Kloz M, van Grondelle R, Kennis JTM (2012) Correction for the time dependent inner filter effect caused by transient absorption in femtosecond stimulated Raman experiment. Chem Phys Lett 544:94–101.  https://doi.org/10.1016/j.cplett.2012.07.005 CrossRefGoogle Scholar
  56. 56.
    Kloz M, Weissenborn J, Polivka T, Frank HA, Kennis JTM (2016) Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S-star state. Phys Chem Chem Phys 18(21):14619–14628.  https://doi.org/10.1039/c6cp01464j CrossRefPubMedGoogle Scholar
  57. 57.
    Kuramochi H, Takeuchi S, Tahara T (2016) Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: apparatus and applications. Rev Sci Instrum 87(4):10.  https://doi.org/10.1063/1.4945259 CrossRefGoogle Scholar
  58. 58.
    Kraack JP, Wand A, Buckup T, Motzkus M, Ruhman S (2013) Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing. Phys Chem Chem Phys 15(34):14487–14501CrossRefPubMedGoogle Scholar
  59. 59.
    Cerullo G, De Silvestri S (2003) Ultrafast optical parametric amplifiers. Rev Sci Instrum 74(1):1–18.  https://doi.org/10.1063/1.1523642 CrossRefGoogle Scholar
  60. 60.
    Riedle E, Beutter M, Lochbrunner S, Piel J, Schenkl S, Sporlein S, Zinth W (2000) Generation of 10–50 fs pulses tunable through all of the visible and the NIR. Appl Phys B Lasers Opt 71(3):457–465.  https://doi.org/10.1007/s003400000351 CrossRefGoogle Scholar
  61. 61.
    Feng Y, Vinogradov I, Ge NH (2017) General noise suppression scheme with reference detection in heterodyne nonlinear spectroscopy. Opt Express 25(21):26262–26279CrossRefPubMedGoogle Scholar
  62. 62.
    Lanzani G, Cerullo G, Brabec C, Sariciftci NS (2003) Time domain investigation of the intrachain vibrational dynamics of a prototypical light-emitting conjugated polymer. Phys Rev Lett 90(4):047402CrossRefPubMedGoogle Scholar
  63. 63.
    Nagasawa Y, Yoneda Y, Nambu S, Muramatsu M, Takeuchi E, Tsumori H, Miyasaka H (2014) Femtosecond degenerate four-wave-mixing measurements of coherent intramolecular vibrations in an ultrafast electron transfer system. Vib Spectrosc 70:58–62.  https://doi.org/10.1016/j.vibspec.2013.11.006 CrossRefGoogle Scholar
  64. 64.
    Song Y, Hellmann C, Stingelin N, Scholes GD (2015) The separation of vibrational coherence from ground- and excited-electronic states in P3HT film. J Chem Phys 142(21):212410.  https://doi.org/10.1063/1.4916325 CrossRefPubMedGoogle Scholar
  65. 65.
    Ruhman S, Joly AG, Nelson KA (1987) Time-resolved observations of coherent molecular vibrational motion and the general occurrence of impulsive stimulated scattering. J Chem Phys 86(11):6563–6565CrossRefGoogle Scholar
  66. 66.
    Kumar ATN, Rosca F, Widom A, Champion PM (2001) Investigations of ultrafast nuclear response induced by resonant and nonresonant laser pulses. J Chem Phys 114(15):6795–6815CrossRefGoogle Scholar
  67. 67.
    Kumar ATN, Rosca F, Widom A, Champion PM (2001) Investigations of amplitude and phase excitation profiles in femtosecond coherence spectroscopy. J Chem Phys 114(2):701–724CrossRefGoogle Scholar
  68. 68.
    Cina JA, Kovac PA, Jumper CC, Dean JC, Scholes GD (2016) Ultrafast transient absorption revisited: phase-flips, spectral fingers, and other dynamical features. J Chem Phys 144(17):175102CrossRefPubMedGoogle Scholar
  69. 69.
    Kraack JP, Buckup T, Motzkus M (2013) Coherent high-frequency vibrational dynamics in the excited electronic state of all-trans retinal derivatives. J Phys Chem Lett 4(3):383–387CrossRefPubMedGoogle Scholar
  70. 70.
    Schnedermann C, Liebel M, Kukura P (2015) Mode-specificity of vibrationally coherent internal conversion in rhodopsin during the primary visual event. J Am Chem Soc 137(8):2886–2891.  https://doi.org/10.1021/ja508941k CrossRefPubMedGoogle Scholar
  71. 71.
    Kraack JP, Buckup T, Motzkus M (2011) Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases. Phys Chem Chem Phys 13(48):21402–21410CrossRefPubMedGoogle Scholar
  72. 72.
    Ohta K, Larsen DS, Yang M, Fleming GR (2001) Influence of intramolecular vibrations in third-order, time-domain resonant spectroscopies. II. Numerical calculations. J Chem Phys 114(18):8020–8039.  https://doi.org/10.1063/1.1359241 CrossRefGoogle Scholar
  73. 73.
    Erland J, Balslev I (1993) Theory of quantum beat and polarization interference in four-wave mixing. Phys Rev A 48(3):R1765–R1768CrossRefPubMedGoogle Scholar
  74. 74.
    Koch M, Feldmann J, von Plessen G, Göbel EO, Thomas P, Köhler K (1992) Quantum beats versus polarization interference: an experimental distinction. Phys Rev Lett 69(25):3631–3634CrossRefPubMedGoogle Scholar
  75. 75.
    Faeder J, Pinkas I, Knopp G, Prior Y, Tannor DJ (2001) Vibrational polarization beats in femtosecond coherent anti-stokes Raman spectroscopy: a signature of dissociative pump–dump–pump wave packet dynamics. J Chem Phys 115(18):8440–8454.  https://doi.org/10.1063/1.1412253 CrossRefGoogle Scholar
  76. 76.
    Weigel A, Sebesta A, Kukura P (2015) Shaped and feedback-controlled excitation of single molecules in the weak-field limit. J Phys Chem Lett 6(20):4032–4037CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Wende T, Liebel M, Schnedermann C, Pethick RJ, Kukura P (2014) Population-controlled impulsive vibrational spectroscopy: background- and baseline-free Raman spectroscopy of excited electronic states. J Phys Chem A 118(43):9976–9984CrossRefPubMedGoogle Scholar
  78. 78.
    Liebel M, Schnedermann C, Kukura P (2014) Vibrationally coherent crossing and coupling of electronic states during internal conversion in beta-carotene. Phys Rev Lett 112(19):198302CrossRefPubMedGoogle Scholar
  79. 79.
    Wohlleben W, Buckup T, Hashimoto H, Cogdell RJ, Herek JL, Motzkus M (2004) Pump-deplete-probe spectroscopy and the puzzle of carotenoid dark states. J Phys Chem B 108(10):3320–3325CrossRefGoogle Scholar
  80. 80.
    Buckup T, Savolainen J, Wohlleben W, Herek JL, Hashimoto H, Correia RRB, Motzkus M (2006) Pump-probe and pump-deplete-probe spectroscopies on carotenoids with N = 9–15 conjugated bonds. J Chem Phys 125(19):194505CrossRefPubMedGoogle Scholar
  81. 81.
    Larsen DS, Papagiannakis E, van Stokkum IHM, Vengris M, Kennis JTM, van Grondelle R (2003) Excited state dynamics of beta-carotene explored with dispersed multi-pulse transient absorption. Chem Phys Lett 381(5–6):733–742.  https://doi.org/10.1016/j.cplett.2003.10.016 CrossRefGoogle Scholar
  82. 82.
    Papagiannakis E, Vengris M, Larsen DS, van Stokkum IHM, Hiller RG, van Grondelle R (2006) Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution. J Phys Chem B 110(1):512–521.  https://doi.org/10.1021/jp053094d CrossRefPubMedGoogle Scholar
  83. 83.
    Thaller A, Laenen R, Laubereau A (2006) The precursors of the solvated electron in methanol studied by femtosecond pump-repump-probe spectroscopy. J Chem Phys 124(2):024515CrossRefPubMedGoogle Scholar
  84. 84.
    Draxler S, Brust T, Eicher J, Zinth W, Braun M (2010) Novel detection scheme for application in pump-repump-probe spectroscopy. Opt Commun 283(6):1050–1054CrossRefGoogle Scholar
  85. 85.
    van Wilderen LJGW, Clark IP, Towrie M, van Thor JJ (2009) Mid-infrared picosecond pump-dump-probe and pump-repump-probe experiments to resolve a ground-state intermediate in cyanobacterial phytochrome cph1. J Phys Chem B 113(51):16354–16364CrossRefPubMedGoogle Scholar
  86. 86.
    Bradler M, Werhahn JC, Hutzler D, Fuhrmann S, Heider R, Riedle E, Iglev H, Kienberger R (2013) A novel setup for femtosecond pump-repump-probe IR spectroscopy with few cycle CEP stable pulses. Opt Express 21(17):20145–20158CrossRefPubMedGoogle Scholar
  87. 87.
    Buckup T, Weigel A, Hauer J, Motzkus M (2010) Ultrafast multiphoton transient absorption of beta-carotene. Chem Phys 373(1–2):38–44CrossRefGoogle Scholar
  88. 88.
    Fujisawa T, Kuramochi H, Hosoi H, Takeuchi S, Tahara T (2016) Role of coherent low-frequency motion in excited-state proton transfer of green fluorescent protein studied by time-resolved impulsive stimulated Raman spectroscopy. J Am Chem Soc 138(12):3942–3945.  https://doi.org/10.1021/jacs.5b11038 CrossRefPubMedGoogle Scholar
  89. 89.
    Hoffman DP, Mathies RA (2012) Photoexcited structural dynamics of an azobenzene analog 4-nitro-4[prime or minute]-dimethylamino-azobenzene from femtosecond stimulated Raman. Phys Chem Chem Phys 14:6298–6306.  https://doi.org/10.1039/C2CP23468H CrossRefPubMedGoogle Scholar
  90. 90.
    Gustafson TL, Roberts DM, Chernoff DA (1983) Picosecond transient Raman-spectroscopy—the photo-isomerization of trans-stilbene. J Chem Phys 79(4):1559–1564.  https://doi.org/10.1063/1.446027 CrossRefGoogle Scholar
  91. 91.
    Gustafson TL, Roberts DM, Chernoff DA (1984) The structure of electronic excited-states in trans-stilbene—picosecond transient stokes and anti-stokes Raman-spectra. J Chem Phys 81(8):3438.  https://doi.org/10.1063/1.448068 CrossRefGoogle Scholar
  92. 92.
    Hashimoto H, Koyama Y, Hirata Y, Mataga N (1991) S1 and T1 species of beta-carotene generated by direct photoexcitation from the all-trans, 9-cis, 13-cis, and 15-cis isomers as revealed by picosecond transient absorption and transient Raman spectroscopies. J Phys Chem Us 95(8):3072–3076.  https://doi.org/10.1021/j100161a022 CrossRefGoogle Scholar
  93. 93.
    Weaver WL, Huston LA, Iwata K, Gustafson TL (1992) Solvent solute interactions probed by picosecond transient Raman-spectroscopy—mode-specific vibrational dynamics in S1 trans-stilbene. J Phys Chem Us 96(22):8956–8961.  https://doi.org/10.1021/j100201a047 CrossRefGoogle Scholar
  94. 94.
    Laubereau A, Vonderli D, Kaiser W (1972) Direct measurement of vibrational lifetimes of molecules in liquids. Phys Rev Lett 28(18):1162.  https://doi.org/10.1103/physrevlett.28.1162 CrossRefGoogle Scholar
  95. 95.
    Valley DT, Hoffman DP, Mathies RA (2015) Reactive and unreactive pathways in a photochemical ring opening reaction from 2D femtosecond stimulated Raman. Phys Chem Chem Phys 17(14):9231–9240.  https://doi.org/10.1039/C4CP05323K CrossRefPubMedGoogle Scholar
  96. 96.
    Ferrante C, Pontecorvo E, Cerullo G, Vos M, Scopigno T (2016) Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin. Nat Chem 8:1137CrossRefPubMedGoogle Scholar
  97. 97.
    Weigel A, Dobryakov A, Klaumunzer B, Sajadi M, Saalfrank P, Ernsting N (2011) Femtosecond stimulated Raman spectroscopy of flavin after optical excitation. J Phys Chem B 115:3656–3680CrossRefPubMedGoogle Scholar
  98. 98.
    Iwata K, H-o Hamaguchi (1997) Microscopic mechanism of solute- solvent energy dissipation probed by picosecond time-resolved Raman spectroscopy. J Phys Chem A 101:632–637CrossRefGoogle Scholar
  99. 99.
    Kuramochi H, Takeuchi S, Yonezawa K, Kamikubo H, Kataoka M, Tahara T (2017) Probing the early stages of photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy. Nat Chem 9:660–666.  https://doi.org/10.1038/nchem.2717 CrossRefPubMedGoogle Scholar
  100. 100.
    Namboodiri V, Scaria A, Namboodiri M, Materny A (2009) Investigation of molecular dynamics in beta-carotene using femtosecond pump-FWM spectroscopy. Laser Phys 19(2):154–161.  https://doi.org/10.1134/s1054660x09020029 CrossRefGoogle Scholar
  101. 101.
    Buckup T, Hauer J, Mohring J, Motzkus M (2009) Multidimensional spectroscopy of beta-carotene: vibrational cooling in the excited state. Arch Biochem Biophys 483(2):219–223CrossRefPubMedGoogle Scholar
  102. 102.
    Marek MS, Buckup T, Motzkus M (2011) Direct observation of a dark state in lycopene using pump-DFWM. J Phys Chem B 115(25):8328–8337CrossRefPubMedGoogle Scholar
  103. 103.
    Liebel M, Kukura P (2013) Broad-band impulsive vibrational spectroscopy of excited electronic states in the time domain. J Phys Chem Lett 4(8):1358–1364CrossRefPubMedGoogle Scholar
  104. 104.
    Miki T, Buckup T, Krause MS, Southall J, Cogdell RJ, Motzkus M (2016) Vibronic coupling in the excited-states of carotenoids. Phys Chem Chem Phys 18(16):11443–11453.  https://doi.org/10.1039/c5cp07542d CrossRefPubMedGoogle Scholar
  105. 105.
    Takaya T, Anan M, Iwata K (2018) Vibrational relaxation dynamics of b-carotene and its derivatives with substituents on terminal rings in electronically excited states as studied by femtosecond time-resolved stimulated Raman spectroscopy in the near-IR region. Phys Chem Chem Phys 20(5):3320–3327CrossRefPubMedGoogle Scholar
  106. 106.
    Kraack JP, Buckup T, Hampp N, Motzkus M (2011) Ground- and excited-state vibrational coherence dynamics in bacteriorhodopsin probed with degenerate four-wave-mixing experiments. ChemPhysChem 12(10):1851–1859CrossRefPubMedGoogle Scholar
  107. 107.
    Kraack JP, Buckup T, Motzkus M (2012) Evidence for the two-state-two-mode model in retinal protonated schiff-bases from pump degenerate four-wave-mixing experiments. Phys Chem Chem Phys 14(40):13979–13988CrossRefPubMedGoogle Scholar
  108. 108.
    Liebel M, Schnedermann C, Bassolino G, Taylor G, Watts A, Kukura P (2014) Direct observation of the coherent nuclear response after the absorption of a photon. Phys Rev Lett 112(23):4.  https://doi.org/10.1103/PhysRevLett.112.238301 CrossRefGoogle Scholar
  109. 109.
    Hoffman DP, Mathies RA (2016) Femtosecond stimulated Raman exposes the role of vibrational coherence in condensed-phase photoreactivity. Acc Chem Res 49:616–625.  https://doi.org/10.1021/acs.accounts.5b00508 CrossRefPubMedGoogle Scholar
  110. 110.
    Barclay MS, Quincy TJ, Williams-Young DB, Caricato M, Elles CG (2017) Accurate assignments of excited-state resonance Raman spectra: a benchmark study combining experiment and theory. J Phys Chem A 121(41):7937–7946.  https://doi.org/10.1021/acs.jpca.7b09467 CrossRefPubMedGoogle Scholar
  111. 111.
    Quick M, Dobryakov AL, Ioffe IN, Granovsky AA, Kovalenko SA, Ernsting NP (2016) Perpendicular state of an electronically excited stilbene: observation by femtosecond-stimulated Raman spectroscopy. J Phys Chem Lett 7(20):4047–4052.  https://doi.org/10.1021/acs.jpclett.6b01923 CrossRefPubMedGoogle Scholar
  112. 112.
    Han FY, Liu WM, Zhu LD, Wang YL, Fang C (2016) Initial hydrogen-bonding dynamics of photoexcited coumarin in solution with femtosecond stimulated Raman spectroscopy. J Mater Chem C 4(14):2954–2963.  https://doi.org/10.1039/c5tc03598h CrossRefGoogle Scholar
  113. 113.
    Musser AJ, Liebel M, Schnedermann C, Wende T, Kehoe TB, Rao A, Kukura P (2015) Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat Phys 11(4):352–357.  https://doi.org/10.1038/nphys3241 CrossRefGoogle Scholar
  114. 114.
    Kuramochi H, Fujisawa T, Takeuchi S, Tahara T (2017) Broadband stimulated Raman spectroscopy in the deep ultraviolet region. Chem Phys Lett 683:543–546.  https://doi.org/10.1016/j.cplett.2017.02.015 CrossRefGoogle Scholar
  115. 115.
    Harris MA, Mishra AK, Young RM, Brown KE, Wasielewski MR, Lewis FD (2016) Direct observation of the hole carriers in DNA photoinduced charge transport. J Am Chem Soc 138:5491–5494CrossRefPubMedGoogle Scholar
  116. 116.
    Oscar BG, Liu WM, Zhao YX, Tang LT, Wang YL, Campbell RE, Fang C (2014) Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging. Proc Natl Acad Sci USA 111(28):10191–10196.  https://doi.org/10.1073/pnas.1403712111 CrossRefPubMedGoogle Scholar
  117. 117.
    Creelman M, Kumauchi M, Hoff WD, Mathies RA (2014) Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy. J Phys Chem B 118(3):659–667.  https://doi.org/10.1021/jp408584v CrossRefPubMedGoogle Scholar
  118. 118.
    Roy K, Kayal S, Ariese F, Beeby A, Umapathy S (2017) Mode specific excited state dynamics study of bis(phenylethynyl) benzene from ultrafast Raman loss spectroscopy. J Chem Phys 146(6):064303.  https://doi.org/10.1063/1.4975174 CrossRefPubMedGoogle Scholar
  119. 119.
    Hall CR, Heisler IA, Jones GA, Frost JE, Gil AA, Tonge PJ, Meech SR (2017) Femtosecond stimulated Raman study of the photoactive flavoprotein AppA(BLUF). Chem Phys Lett 683:365–369.  https://doi.org/10.1016/j.cplett.2017.03.030 CrossRefGoogle Scholar
  120. 120.
    Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA (2005) Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310(5750):1006–1009CrossRefPubMedGoogle Scholar
  121. 121.
    Polli D, Altoe P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies RA, Garavelli M, Cerullo G (2010) Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467(7314):U440–U488CrossRefGoogle Scholar
  122. 122.
    Frank HA (1999) The photochemistry of carotenoids, vol 8. Advances in photosynthesis. Kluwer Academic, DordrechtGoogle Scholar
  123. 123.
    Polivka T, Sundstrom V (2004) Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem Rev 104(4):2021–2071.  https://doi.org/10.1021/cr020674n CrossRefPubMedGoogle Scholar
  124. 124.
    Buckup T, Savolainen J, Wohlleben W, Herek JL, Hashimoto H, Correia RRB, Motzkus M (2006) Pump-probe and pump-deplete-probe spectroscopies on carotenoids with N = 9–15 conjugated bonds. J Chem Phys 125(19):194505.  https://doi.org/10.1063/1.2388274 CrossRefPubMedGoogle Scholar
  125. 125.
    Jailaubekov AE, Song SH, Vengris M, Cogdell RJ, Larsen DS (2010) Using narrowband excitation to confirm that the S* state in carotenoids is not a vibrationally-excited ground state species. Chem Phys Lett 487(1–3):101–107.  https://doi.org/10.1016/j.cplett.2010.01.014 CrossRefGoogle Scholar
  126. 126.
    Hauer J, Maiuri M, Viola D, Lukes V, Henry S, Carey AM, Cogdell RJ, Cerullo G, Polli D (2013) Explaining the temperature dependence of spirilloxanthin’s S* signal by an inhomogeneous ground state model. J Phys Chem A 117(29):6303–6310.  https://doi.org/10.1021/jp4011372 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Ehlers F, Scholz M, Schimpfhauser J, Bienert J, Oum K, Lenzer T (2015) Collisional relaxation of apocarotenals: identifying the S* state with vibrationally excited molecules in the ground electronic state S-0*. Phys Chem Chem Phys 17(16):10478–10488.  https://doi.org/10.1039/c4cp05600k CrossRefPubMedGoogle Scholar
  128. 128.
    Balevicius V, Abramavicius D, Polivka T, Pour AG, Hauer J (2016) A unified picture of S* in carotenoids. J Phys Chem Lett 7(17):3347–3352.  https://doi.org/10.1021/acs.jpclett.6b01455 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Tavan P, Schulten K (1987) Electronic excitations in finite and infinite polyenes. Phys Rev B 36(8):4337–4358.  https://doi.org/10.1103/PhysRevB.36.4337 CrossRefGoogle Scholar
  130. 130.
    Orlandi G, Zerbetto F (1986) Vibronic coupling in polyenes—the frequency increase of the active C=C Ag stretching mode in the absorption-spectra. Chem Phys 108(2):187–195.  https://doi.org/10.1016/0301-0104(86)85040-6 CrossRefGoogle Scholar
  131. 131.
    Nagae H, Kakitani Y, Koyama Y (2009) Theoretical description of diabatic mixing and coherent excitation in singlet-excited states of carotenoids. Chem Phys Lett 474(4–6):342–351.  https://doi.org/10.1016/j.cplett.2009.04.039 CrossRefGoogle Scholar
  132. 132.
    Yoshizawa M, Aoki H, Hashimoto H (2001) Vibrational relaxation of the 2A(g)(−) excited state in all-trans-beta-carotene obtained by femtosecond time-resolved Raman spectroscopy. Phys Rev B 63(18):180301.  https://doi.org/10.1103/PhysRevB.63.180301 CrossRefGoogle Scholar
  133. 133.
    McCamant DW, Kukura P, Mathies RA (2003) Femtosecond time-resolved stimulated Raman spectroscopy: application to the ultrafast internal conversion in beta-carotene. J Phys Chem A 107(40):8208–8214CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Yoshizawa M, Nakamura R, Yoshimatsu O, Abe K, Sakai S, Nakagawa K, Fujii R, Nango M, Hashimoto H (2012) Femtosecond stimulated Raman spectroscopy of the dark S-1 excited state of carotenoid in photosynthetic light harvesting complex. Acta Biochim Pol 59(1):49–52PubMedGoogle Scholar
  135. 135.
    Quick M, Kasper MA, Richter C, Mahrwald R, Dobryakov AL, Kovalenko SA, Ernsting NP (2015) Beta-carotene revisited by transient absorption and stimulated Raman spectroscopy. ChemPhysChem 16(18):3824–3835.  https://doi.org/10.1002/cphc.201500586 CrossRefPubMedGoogle Scholar
  136. 136.
    Kukura P, McCamant DW, Mathies RA (2004) Femtosecond time-resolved stimulated Raman spectroscopy of the S-2 (1B(u)(+)) excited state of beta-carotene. J Phys Chem A 108(28):5921–5925CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Kardas TM, Ratajska-Gadomska B, Lapini A, Ragnoni E, Righini R, Di Donato M, Foggi P, Gadomski W (2014) Dynamics of the time-resolved stimulated Raman scattering spectrum in presence of transient vibronic inversion of population on the example of optically excited trans-beta-apo-8′-carotenal. J Chem Phys.  https://doi.org/10.1063/1.4879060 CrossRefPubMedGoogle Scholar
  138. 138.
    Shim S, Mathies RA (2008) Development of a tunable femtosecond stimulated Raman apparatus and its application to beta-carotene. J Phys Chem B 112(15):4826–4832CrossRefPubMedGoogle Scholar
  139. 139.
    Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:152CrossRefPubMedGoogle Scholar
  140. 140.
    van Leeuwen T, Lubbe AS, Štacko P, Wezenberg SJ, Feringa BL (2017) Dynamic control of function by light-driven molecular motors. Nat Rev Chem 1:0096CrossRefGoogle Scholar
  141. 141.
    Saltiel J (1967) Perdeuteriostilbene. The role of phantom states in the cis-trans photoisomerization of stilbenes. J Am Chem Soc 89:1036–1037CrossRefGoogle Scholar
  142. 142.
    Sension RJ, Repinec ST, Szarka AZ, Hochstrasser RM (1993) Femtosecond laser studies of the cis–stilbene photoisomerization reactions. J Chem Phys 98:6291–6315.  https://doi.org/10.1063/1.464824 CrossRefGoogle Scholar
  143. 143.
    Kovalenko SA, Dobryakov AL, Ioffe I, Ernsting NP (2010) Evidence for the phantom state in photoinduced cis–trans isomerization of stilbene. Chem Phys Lett 493:255–258.  https://doi.org/10.1016/j.cplett.2010.05.022 CrossRefGoogle Scholar
  144. 144.
    Quenneville J, Martínez TJ (2003) Ab initio study of cis–trans photoisomerization in stilbene and ethylene. J Phys Chem A 107:829–837.  https://doi.org/10.1021/jp021210w CrossRefGoogle Scholar
  145. 145.
    Minezawa N, Gordon MS (2011) Photoisomerization of stilbene: a spin-flip density functional theory approach. J Phys Chem A 115:7901–7911.  https://doi.org/10.1021/jp203803a CrossRefPubMedGoogle Scholar
  146. 146.
    Harabuchi Y, Keipert K, Zahariev F, Taketsugu T, Gordon MS (2014) Dynamics simulations with spin-flip time-dependent density functional theory: photoisomerization and photocyclization mechanisms of cis-stilbene in ππ* states. J Phys Chem A 118:11987–11998.  https://doi.org/10.1021/jp5072428 CrossRefPubMedGoogle Scholar
  147. 147.
    Iwata K, H-o Hamaguchi (1992) Picosecond structural relaxation of S1 trans-stilbene in solution as revealed by time-resolved Raman spectroscopy. Chem Phys Lett 196:462–468.  https://doi.org/10.1016/0009-2614(92)85721-L CrossRefGoogle Scholar
  148. 148.
    Kwok WM, Ma C, Phillips D, Beeby A, Marder TB, Thomas RL, Tschuschke C, Baranović G, Matousek P, Towrie M, Parker AW (2003) Time-resolved resonance Raman study of S1cis-stilbene and its deuterated isotopomers. J Raman Spectrosc 34:886–891.  https://doi.org/10.1002/jrs.1070 CrossRefGoogle Scholar
  149. 149.
    Dobryakov AL, Ioffe I, Granovsky AA, Ernsting NP, Kovalenko SA (2012) Femtosecond Raman spectra of cis-stilbene and trans-stilbene with isotopomers in solution. J Chem Phys 137:244505.  https://doi.org/10.1063/1.4769971 CrossRefPubMedGoogle Scholar
  150. 150.
    Sakamoto A, Tanaka F, Tasumi M, Torii H, Kawato K, Furuya K (2006) Comparison of the Raman spectrum of trans-stilbene in the S1 state calculated by the CIS method and the spectra observed under resonant and off-resonant conditions. A collection of papers presented at the 3rd international conference on advanced vibrational spectroscopy (ICAVS-3), Delavan, WI, USA, 14–19 August 2005—Part 1 42:176–182.  https://doi.org/10.1016/j.vibspec.2006.04.001 CrossRefGoogle Scholar
  151. 151.
    Tsumura K, Furuya K, Sakamoto A, Tasumi M (2008) Vibrational analysis of trans-stilbene in the excited singlet state by time-dependent density functional theory: calculations of the Raman, infrared, and fluorescence excitation spectra. J Raman Spectrosc 39:1584–1591.  https://doi.org/10.1002/jrs.2095 CrossRefGoogle Scholar
  152. 152.
    Angeli C, Improta R, Santoro F (2009) On the controversial nature of the 1 B1u and 2 B1u states of trans-stilbene: the n-electron valence state perturbation theory approach. J Chem Phys 130:174307.  https://doi.org/10.1063/1.3131263 CrossRefPubMedGoogle Scholar
  153. 153.
    Ioffe IN, Granovsky AA (2013) Photoisomerization of stilbene: the detailed XMCQDPT2 treatment. J Chem Theory Comput 9:4973–4990.  https://doi.org/10.1021/ct400647w CrossRefPubMedGoogle Scholar
  154. 154.
    Orlandi G, Garavelli M, Zerbetto F (2017) Analysis of the vibronic structure of the trans-stilbene fluorescence and excitation spectra: the S 0 and S 1 PES along the C e [double bond, length as m-dash] C e and C e–C ph torsions. Phys Chem Chem Phys 19:25095–25104CrossRefPubMedGoogle Scholar
  155. 155.
    Meić Z, Güsten H (1978) Vibrational studies of trans-stilbenes—I. Infrared and Raman spectra of trans-stilbene and deuterated trans-stilbenes. Spectrochim Acta Part A 34(1):101–111.  https://doi.org/10.1016/0584-8539(78)80193-7 CrossRefGoogle Scholar
  156. 156.
    Ishii K, Takeuchi S, Tahara T (2004) A 40-fs time-resolved absorption study on cis-stilbene in solution: observation of wavepacket motion on the reactive excited state. Chem Phys Lett 398:400–406.  https://doi.org/10.1016/j.cplett.2004.09.075 CrossRefGoogle Scholar
  157. 157.
    Berndt F, Dobryakov AL, Quick M, Mahrwald R, Ernsting NP, Lenoir D, Kovalenko SA (2012) Long-lived perpendicular conformation in the photoisomerization path of 1,1′-dimethylstilbene and 1,1′-diethylstilbene. Chem Phys Lett 544:39–42.  https://doi.org/10.1016/j.cplett.2012.07.007 CrossRefGoogle Scholar
  158. 158.
    Dobryakov AL, Quick M, Lenoir D, Detert H, Ernsting NP, Kovalenko SA (2016) Time-resolved photoisomerization of 1,1′-di-tert-butylstilbene and 1,1′-dicyanostilbene. Chem Phys Lett 652:225–229.  https://doi.org/10.1016/j.cplett.2016.04.060 CrossRefGoogle Scholar
  159. 159.
    Dobryakov AL, Quick M, Richter C, Knie C, Ioffe IN, Granovsky AA, Mahrwald R, Ernsting NP, Kovalenko SA (2017) Photoisomerization pathways and Raman activity of 1,1′-difluorostilbene. J Chem Phys 146:044501.  https://doi.org/10.1063/1.4974357 CrossRefPubMedGoogle Scholar
  160. 160.
    Pollard MM, Meetsma A, Feringa BL (2008) A redesign of light-driven rotary molecular motors. Org Biomol Chem 6:507–512.  https://doi.org/10.1039/B715652A CrossRefPubMedGoogle Scholar
  161. 161.
    Quick M, Berndt F, Dobryakov AL, Ioffe IN, Granovsky AA, Knie C, Mahrwald R, Lenoir D, Ernsting NP, Kovalenko SA (2014) Photoisomerization dynamics of stiff-stilbene in solution. J Phys Chem B 118:1389–1402.  https://doi.org/10.1021/jp411656x CrossRefPubMedGoogle Scholar
  162. 162.
    Conyard J, Addison K, Heisler IA, Cnossen A, Browne WR, Feringa BL, Meech SR (2012) Ultrafast dynamics in the power stroke of a molecular rotary motor. Nat Chem 4:547–551.  https://doi.org/10.1038/nchem.1343 CrossRefPubMedGoogle Scholar
  163. 163.
    Kazaryan A, Kistemaker JCM, Schäfer LV, Browne WR, Feringa BL, Filatov M (2010) Understanding the dynamics behind the photoisomerization of a light-driven fluorene molecular rotary motor. J Phys Chem A 114:5058–5067.  https://doi.org/10.1021/jp100609m CrossRefPubMedGoogle Scholar
  164. 164.
    Mazzucato U, Momicchioli F (1991) Rotational isomerism in trans-1,2-diarylethylenes. Chem Rev 91:1679–1719.  https://doi.org/10.1021/cr00008a002 CrossRefGoogle Scholar
  165. 165.
    Quick M, Dobryakov AL, Ioffe IN, Berndt F, Mahrwald R, Ernsting NP, Kovalenko SA (2018) Rotamer-specific photoisomerization of difluorostilbenes from transient absorption and transient Raman spectroscopy. J Phys Chem B.  https://doi.org/10.1021/acs.jpcb.7b09283 CrossRefPubMedGoogle Scholar
  166. 166.
    Ploetz E, Laimgruber S, Berner S, Zinth W, Gilch P (2007) Femtosecond stimulated Raman microscopy. Appl Phys B 87(3):389–393.  https://doi.org/10.1007/s00340-007-2630-x CrossRefGoogle Scholar
  167. 167.
    Schnedermann C, Lim JM, Wende T, Duarte AS, Ni L, Gu Q, Sadhanala A, Rao A, Kukura P (2016) Sub-10 fs time-resolved vibronic optical microscopy. J Phys Chem Lett 7(23):4854–4859.  https://doi.org/10.1021/acs.jpclett.6b02387 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Czerwinski L, Nixdorf J, Florio GD, Gilch P (2016) Broadband stimulated Raman microscopy with 0.1 ms pixel acquisition time. Opt Lett 41(13):3021–3024.  https://doi.org/10.1364/OL.41.003021 CrossRefPubMedGoogle Scholar
  169. 169.
    Silva WR, Graefe CT, Frontiera RR (2016) Toward label-free super-resolution microscopy. ACS Photonics 3(1):79–86.  https://doi.org/10.1021/acsphotonics.5b00467 CrossRefGoogle Scholar
  170. 170.
    Buckup T, Motzkus M (2014) Multidimensional time-resolved spectroscopy of vibrational coherence in biopolyenes. In: Johnson MA, Martinez TJ (eds) Annual review of physical chemistry, vol 65., pp 39–57.  https://doi.org/10.1146/annurev-physchem-040513-103619 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Physikalisch-Chemisches InstitutUniversität HeidelbergHeidelbergGermany
  2. 2.Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, and Labex NIEStrasbourgFrance

Personalised recommendations