Thermosetting Polymers from Lignin Model Compounds and Depolymerized Lignins

  • Elias FeghaliEmail author
  • Kirk M. TorrEmail author
  • Daniel J. van de Pas
  • Pablo Ortiz
  • Karolien Vanbroekhoven
  • Walter Eevers
  • Richard VendammeEmail author
Part of the following topical collections:
  1. Lignin Chemistry


Lignin is the most abundant source of renewable ready-made aromatic chemicals for making sustainable polymers. However, the structural heterogeneity, high polydispersity, limited chemical functionality and solubility of most technical lignins makes them challenging to use in developing new bio-based polymers. Recently, greater focus has been given to developing polymers from low molecular weight lignin-based building blocks such as lignin monomers or lignin-derived bio-oils that can be obtained by chemical depolymerization of lignins. Lignin monomers or bio-oils have additional hydroxyl functionality, are more homogeneous and can lead to higher levels of lignin substitution for non-renewables in polymer formulations. These potential polymer feed stocks, however, present their own challenges in terms of production (i.e., yields and separation), pre-polymerization reactions and processability. This review provides an overview of recent developments on polymeric materials produced from lignin-based model compounds and depolymerized lignin bio-oils with a focus on thermosetting materials. Particular emphasis is given to epoxy resins, polyurethanes and phenol-formaldehyde resins as this is where the research shows the greatest overlap between the model compounds and bio-oils. The common goal of the research is the development of new economically viable strategies for using lignin as a replacement for petroleum-derived chemicals in aromatic-based polymers.


Lignin Depolymerization Lignin model compounds Polymers Thermosets 



The review was supported by the New Zealand Ministry of Business, Innovation and Employment via Scion funding from the Strategic Science Investment Fund. VITO would like to acknowledge the province of Noord-Brabant (The Netherlands) for the financial support in the framework of the activities at the Shared Research Center Biorizon.


  1. 1.
    Delidovich I, Hausoul PJ, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599CrossRefPubMedGoogle Scholar
  2. 2.
    Llevot A, Grau E, Carlotti S, Grelier S, Cramail H (2016) From lignin-derived aromatic compounds to novel biobased polymers. Macromol Rapid Commun 37(1):9–28CrossRefPubMedGoogle Scholar
  3. 3.
    Lora JH (2016) Lignin: A platform for renewable aromatic polymeric materials. In: Lau PCK (ed) Quality living through chemurgy and green chemistry. Springer, Berlin, pp 221–260CrossRefGoogle Scholar
  4. 4.
    Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33(2):259–276CrossRefGoogle Scholar
  5. 5.
    Xu C, Ferdosian F (2017) Conversion of lignin into bio-based chemicals and materials. Green chemistry and sustainable technology. Springer, BerlinGoogle Scholar
  6. 6.
    Ma S, Li T, Liu X, Zhu J (2016) Research progress on bio-based thermosetting resins. Polym Int 65(2):164–173CrossRefGoogle Scholar
  7. 7.
    Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96CrossRefGoogle Scholar
  8. 8.
    Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290CrossRefGoogle Scholar
  9. 9.
    Koike T (2012) Progress in development of epoxy resin systems based on wood biomass in Japan. Polym Eng Sci 52(4):701–717CrossRefGoogle Scholar
  10. 10.
    Westwood NJ, Panovic I, Lancefield CS (2016) Chemical modification of lignin for renewable polymers and chemicals. In: Fang Z, Smith RLJ (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 183–216CrossRefGoogle Scholar
  11. 11.
    Xu C, Arancon RA, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43(22):7485–7500CrossRefPubMedGoogle Scholar
  12. 12.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599CrossRefGoogle Scholar
  13. 13.
    Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118(2):614–678.
  14. 14.
    Yan N, Zhao C, Dyson PJ, Wang C, Liu LT, Kou Y (2008) Selective degradation of wood lignin over noble-metal catalysts in a two-step process. Chemsuschem 1(7):626–629CrossRefPubMedGoogle Scholar
  15. 15.
    Torr KM, van de Pas DJ, Cazeils E, Suckling ID (2011) Mild hydrogenolysis of in situ and isolated pinus radiata lignins. Bioresour Technol 102(16):7608–7611CrossRefPubMedGoogle Scholar
  16. 16.
    Feghali E, Carrot G, Thuéry P, Genre C, Cantat T (2015) Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation. Energy Environ Sci 8(9):2734–2743CrossRefGoogle Scholar
  17. 17.
    Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8(6):1748–1763CrossRefGoogle Scholar
  18. 18.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefGoogle Scholar
  19. 19.
    Esposito D, Antonietti M (2015) Redefining biorefinery: the search for unconventional building blocks for materials. Chem Soc Rev 44(16):5821–5835CrossRefPubMedGoogle Scholar
  20. 20.
    Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevin B (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16(4):1987–1998CrossRefGoogle Scholar
  21. 21.
    Fache M, Boutevin B, Caillol S (2015) Vanillin, a key-intermediate of biobased polymers. Eur Polym J 68:488–502CrossRefGoogle Scholar
  22. 22.
    Jegers HE, Klein MT (1985) Primary and secondary lignin pyrolysis reaction pathways. Ind Eng Chem Process Des Dev 24(1):173–183CrossRefGoogle Scholar
  23. 23.
    Santos SG, Marques AP, Lima DLD, Evtuguin DV, Esteves VI (2011) Kinetics of eucalypt lignosulfonate oxidation to aromatic aldehydes by oxygen in alkaline medium. Ind Eng Chem Res 50(1):291–298CrossRefGoogle Scholar
  24. 24.
    Villar JC, Caperos A, García-Ochoa F (1997) Oxidation of hardwood kraft-lignin to phenolic derivatives. Nitrobenzene and copper oxide as oxidants. J Wood Chem Technol 17(3):259–285CrossRefGoogle Scholar
  25. 25.
    Rodrigues Pinto PC, Borges da Silva EA, Rodrigues AE (2011) Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Ind Eng Chem Res 50(2):741–748CrossRefGoogle Scholar
  26. 26.
    Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116(4):2275–2306CrossRefPubMedGoogle Scholar
  27. 27.
    Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559CrossRefGoogle Scholar
  28. 28.
    Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-a and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hernandez ED, Bassett AW, Sadler JM, La Scala JJ, Stanzione JF (2016) Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. ACS Sustain Chem Eng 4(8):4328–4339CrossRefGoogle Scholar
  30. 30.
    Mauck JR, Yadav SK, Sadler JM, La Scala JJ, Palmese GR, Schmalbach KM, Stanzione JF (2017) Preparation and characterization of highly bio-based epoxy amine thermosets derived from lignocellulosics. Macromol Chem Phys 218(14):1700013CrossRefGoogle Scholar
  31. 31.
    Auvergne R, Caillol S, David G, Boutevin B, Pascault JP (2014) Biobased thermosetting epoxy: present and future. Chem Rev 114(2):1082–1115CrossRefPubMedGoogle Scholar
  32. 32.
    Fache M, Auvergne R, Boutevin B, Caillol S (2015) New vanillin-derived diepoxy monomers for the synthesis of biobased thermosets. Eur Polym J 67:527–538CrossRefGoogle Scholar
  33. 33.
    Fache M, Viola A, Auvergne R, Boutevin B, Caillol S (2015) Biobased epoxy thermosets from vanillin-derived oligomers. Eur Polym J 68:526–535CrossRefGoogle Scholar
  34. 34.
    Fache M, Boutevin B, Caillol S (2016) Epoxy thermosets from model mixtures of the lignin-to-vanillin process. Green Chem 18(3):712–725CrossRefGoogle Scholar
  35. 35.
    Parsell T, Yohe S, Degenstein J, Jarrell T, Klein I, Gencer E, Hewetson B, Hurt M, Kim JI, Choudhari H, Saha B, Meilan R, Mosier N, Ribeiro F, Delgass WN, Chapple C, Kenttämaa HI, Agrawal R, Abu-Omar MM (2015) A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem 17(3):1492–1499CrossRefGoogle Scholar
  36. 36.
    Zhao S, Abu-Omar MM (2015) Biobased epoxy nanocomposites derived from lignin-based monomers. Biomacromol 16(7):2025–2031CrossRefGoogle Scholar
  37. 37.
    Zhao S, Abu-Omar MM (2016) Renewable epoxy networks derived from lignin-based monomers: effect of cross-linking density. ACS Sustain Chem Eng 4(11):6082–6089CrossRefGoogle Scholar
  38. 38.
    François C, Pourchet S, Boni G, Fontaine S, Gaillard Y, Placet V, Galkin MV, Orebom A, Samec J, Plasseraud L (2016) Diglycidylether of iso-eugenol: a suitable lignin-derived synthon for epoxy thermoset applications. RSC Adv 6(73):68732–68738CrossRefGoogle Scholar
  39. 39.
    Rao VS, Samui AB (2008) Molecular engineering of photoactive liquid crystalline polyester epoxies containing benzylidene moiety. J Polym Sci Part A Polym Chem 46(23):7637–7655CrossRefGoogle Scholar
  40. 40.
    Wang S, Ma S, Xu C, Liu Y, Dai J, Wang Z, Liu X, Chen J, Shen X, Wei J, Zhu J (2017) Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules 50(5):1892–1901CrossRefGoogle Scholar
  41. 41.
    Oulame MZ, Pion F, Allauddin S, Raju KVSN, Ducrot P-H, Allais F (2015) Renewable alternating aliphatic-aromatic poly(ester-urethane)s prepared from ferulic acid and bio-based diols. Eur Polym J 63:186–193CrossRefGoogle Scholar
  42. 42.
    Kuhire SS, Nagane SS, Wadgaonkar PP (2017) Poly(ether urethane)s from aromatic diisocyanates based on lignin-derived phenolic acids. Polym Int 66(6):892–899CrossRefGoogle Scholar
  43. 43.
    Chen Q, Gao K, Peng C, Xie H, Zhao ZK, Bao M (2015) Preparation of lignin/glycerol-based bis(cyclic carbonate) for the synthesis of polyurethanes. Green Chem 17(9):4546–4551CrossRefGoogle Scholar
  44. 44.
    Gang H, Lee D, Choi K-Y, Kim H-N, Ryu H, Lee D-S, Kim B-G (2017) Development of high performance polyurethane elastomers using vanillin-based green polyol chain extender originating from lignocellulosic biomass. ACS Sustain Chem Eng 5(6):4582–4588CrossRefGoogle Scholar
  45. 45.
    Endo T, Sudo A (2009) Development and application of novel ring-opening polymerizations to functional networked polymers. J Polym Sci Part A Polym Chem 47(19):4847–4858CrossRefGoogle Scholar
  46. 46.
    Comí M, Lligadas G, Ronda JC, Galià M, Cádiz V (2013) Renewable benzoxazine monomers from “lignin-like” naturally occurring phenolic derivatives. J Polym Sci Part A Polym Chem 51(22):4894–4903CrossRefGoogle Scholar
  47. 47.
    Wang C, Sun J, Liu X, Sudo A, Endo T (2012) Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chem 14(10):2799–2806CrossRefGoogle Scholar
  48. 48.
    Phalak GA, Patil DM, Mhaske ST (2017) Synthesis and characterization of thermally curable guaiacol based poly(benzoxazine-urethane) coating for corrosion protection on mild steel. Eur Polym J 88:93–108CrossRefGoogle Scholar
  49. 49.
    Oliveira JR, Kotzebue LRV, Ribeiro FWM, Mota BC, Zampieri D, Mazzetto SE, Ishida H, Lomonaco D (2017) Microwave-assisted solvent-free synthesis of novel benzoxazines: a faster and environmentally friendly route to the development of bio-based thermosetting resins. J Polym Sci Part A Polym Chem 55(21):3534–3544CrossRefGoogle Scholar
  50. 50.
    Sini NK, Bijwe J, Varma IK (2014) Renewable benzoxazine monomer from vanillin: synthesis, characterization, and studies on curing behavior. J Polym Sci Part A Polym Chem 52(1):7–11CrossRefGoogle Scholar
  51. 51.
    Van A, Chiou K, Ishida H (2014) Use of renewable resource vanillin for the preparation of benzoxazine resin and reactive monomeric surfactant containing oxazine ring. Polymer 55(6):1443–1451CrossRefGoogle Scholar
  52. 52.
    Stanzione JF, Sadler JM, La Scala JJ, Reno KH, Wool RP (2012) Vanillin-based resin for use in composite applications. Green Chem 14(8):2346–2352CrossRefGoogle Scholar
  53. 53.
    Stanzione JF, Giangiulio PA, Sadler JM, La Scala JJ, Wool RP (2013) Lignin-based bio-oil mimic as biobased resin for composite applications. ACS Sustain Chem Eng 1(4):419–426CrossRefGoogle Scholar
  54. 54.
    Meylemans HA, Harvey BG, Reams JT, Guenthner AJ, Cambrea LR, Groshens TJ, Baldwin LC, Garrison MD, Mabry JM (2013) Synthesis, characterization, and cure chemistry of renewable bis(cyanate) esters derived from 2-methoxy-4-methylphenol. Biomacromolecules 14(3):771–780CrossRefPubMedGoogle Scholar
  55. 55.
    Holmberg AL, Karavolias MG, Epps TH (2015) Raft polymerization and associated reactivity ratios of methacrylate-functionalized mixed bio-oil constituents. Polym Chem 6(31):5728–5739CrossRefGoogle Scholar
  56. 56.
    Ferdosian F, Yuan Z, Anderson M, Xu C (2015) Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: curing kinetics and thermal properties. Thermochim Acta 618:48–55CrossRefGoogle Scholar
  57. 57.
    Ferdosian F, Yuan Z, Anderson M, Xu C (2016) Synthesis and characterization of hydrolysis lignin-based epoxy resins. Ind Crops Prod 91:295–301CrossRefGoogle Scholar
  58. 58.
    Ferdosian F, Zhang Y, Yuan Z, Anderson M, Xu C (2016) Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins. Eur Polym J 82:153–165CrossRefGoogle Scholar
  59. 59.
    van de Pas DJ, Torr KM (2017) Biobased epoxy resins from deconstructed native softwood lignin. Biomacromol 18(8):2640–2648CrossRefGoogle Scholar
  60. 60.
    Kaiho A, Mazzarella D, Satake M, Kogo M, Sakai R, Watanabe T (2016) Construction of the di(trimethylolpropane) cross linkage and the phenylnaphthalene structure coupled with selective β-O-4 bond cleavage for synthesizing lignin-based epoxy resins with a controlled glass transition temperature. Green Chem 18(24):6526–6535CrossRefGoogle Scholar
  61. 61.
    Qin J, Woloctt M, Zhang J (2014) Use of polycarboxylic acid derived from partially depolymerized lignin as a curing agent for epoxy application. ACS Sustain Chem Eng 2(2):188–193CrossRefGoogle Scholar
  62. 62.
    Mahmood N, Yuan Z, Schmidt J, Xu C (2016) Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sustain Energy Rev 60:317–329CrossRefGoogle Scholar
  63. 63.
    Li Y, Ragauskas AJ (2012) Kraft lignin-based rigid polyurethane foam. J Wood Chem Technol 32(3):210–224CrossRefGoogle Scholar
  64. 64.
    Mahmood N, Yuan Z, Schmidt J, Xu C (2015) Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized kraft lignin via direct replacement or oxypropylation. Eur Polym J 68:1–9CrossRefGoogle Scholar
  65. 65.
    Mahmood N, Yuan Z, Schmidt J, Xu C (2013) Valorization of hydrolysis lignin for polyols and rigid polyurethane foam. J Sci Technol For Prod Processes 3(5):26–31Google Scholar
  66. 66.
    Wyosocka K, Szymona K, McDonald AG, Maminski M (2016) Characterisation of thermal and mechanical properties of ligninsulfonate- and hydrolysed lignosulfonate-based polyurethane foams. BioResources 11(3):7355–7364Google Scholar
  67. 67.
    Xue B-L, Huang P-L, Sun Y-C, Li X-P, Sun R-C (2017) Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis. RSC Adv 7(10):6123–6130CrossRefGoogle Scholar
  68. 68.
    Vanderlaan MN, Thring RW (1998) Polyurethanes from alcell® lignin fractions obtained by sequential solvent extraction. Biomass Bioenergy 14(5–6):525–531CrossRefGoogle Scholar
  69. 69.
    Yoshida H, Mörck R, Kringstad KP, Hatakeyama H (1990) Kraft lignin in polyurethanes. Ii. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft lignin–polyether triol–polymeric mdi system. J Appl Polym Sci 40(11–12):1819–1832CrossRefGoogle Scholar
  70. 70.
    Cinelli P, Anguillesi I, Lazzeri A (2013) Green synthesis of flexible polyurethane foams from liquefied lignin. Eur Polym J 49(6):1174–1184CrossRefGoogle Scholar
  71. 71.
    Bernardini J, Anguillesi I, Coltelli M-B, Cinelli P, Lazzeri A (2015) Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents. Polym Int 64(9):1235–1244CrossRefGoogle Scholar
  72. 72.
    Wei Y, Cheng F, Li H, Yu J (2004) Synthesis and properties of polyurethane resins based on liquefied wood. J Appl Polym Sci 92(1):351–356CrossRefGoogle Scholar
  73. 73.
    Li H, Mahmood N, Ma Z, Zhu M, Wang J, Zheng J, Yuan Z, Wei Q, Xu C (2017) Preparation and characterization of bio-polyol and bio-based flexible polyurethane foams from fast pyrolysis of wheat straw. Ind Crops Prod 103:64–72CrossRefGoogle Scholar
  74. 74.
    Cheng S, Yuan Z, Leitch M, Anderson M, Xu C (2013) Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio. Ind Crops Prod 44:315–322CrossRefGoogle Scholar
  75. 75.
    Li B, Wang Y, Mahmood N, Yuan Z, Schmidt J, Xu C (2017) Preparation of bio-based phenol formaldehyde foams using depolymerized hydrolysis lignin. Ind Crops Prod 97:409–416CrossRefGoogle Scholar
  76. 76.
    Vithanage AE, Chowdhury E, Alejo LD, Pomeroy PC, DeSisto WJ, Frederick BG, Gramlich WM (2017) Renewably sourced phenolic resins from lignin bio-oil. J Appl Polym Sci 134(19):44827CrossRefGoogle Scholar
  77. 77.
    Wang M, Leitch M, Xu CC (2009) Synthesis of phenolic resol resins using cornstalk-derived bio-oil produced by direct liquefaction in hot-compressed phenol–water. J Ind Eng Chem 15(6):870–875CrossRefGoogle Scholar
  78. 78.
    Cheng S, D’Cruz I, Yuan Z, Wang M, Anderson M, Leitch M, Xu C (2011) Use of biocrude derived from woody biomass to substitute phenol at a high-substitution level for the production of biobased phenolic resol resins. J Appl Polym Sci 121(5):2743–2751CrossRefGoogle Scholar
  79. 79.
    Yan L, Cui Y, Gou G, Wang Q, Jiang M, Zhang S, Hui D, Gou J, Zhou Z (2017) Liquefaction of lignin in hot-compressed water to phenolic feedstock for the synthesis of phenol-formaldehyde resins. Compos B Eng 112:8–14CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Chemical Engineering ProgramNotre Dame University-LouaizeZouk MosbehLebanon
  2. 2.ScionRotoruaNew Zealand
  3. 3.Flemish Institute for Technological Research (VITO)MolBelgium
  4. 4.Department of ChemistryUniversity of AntwerpAntwerpBelgium

Personalised recommendations