Advertisement

The Construction and Application of C=S Bonds

  • Toshiaki Murai
Review
  • 106 Downloads
Part of the following topical collections:
  1. Sulfur Chemistry

Abstract

The current section presents an overview of the fundamental aspects of thiocarbonyl compounds, such as thioaldehydes and thioketones. Firstly, a theoretical approach and a physical-organic experimental approach disclose their properties. Secondly, their synthetic reactions are introduced. Finally, a focus is given to their synthetic applications, including nucleophilic and electrophilic reactions, as well as concerted reactions.

Keywords

Thiocarbonyl compounds Thioaldehydes Thioketones Thioenols Thionation Hetero-Diels–Alder reactions 

References

  1. 1.
    Collier SJ (2004) Sci Synth 27:177Google Scholar
  2. 2.
    Cooper NJ (2005) In: Katritzky AR, Taylor RJK (eds) Comprehensive organic functional group transformations II, vol 3. Elsevier, Oxford, p 355Google Scholar
  3. 3.
    Dabdoub MJ (2004) Sci Synth 27:215Google Scholar
  4. 4.
    Okazaki R, Ishii A, Fukuda N, Oyama H, Inamoto N (1982) J Chem Soc Chem Commun 1982:1187Google Scholar
  5. 5.
    Okazaki R, Ishii A, Inamoto N (1987) J Am Chem Soc 109:279Google Scholar
  6. 6.
    Takeda N, Tokitoh N, Okazaki R (1997) Chem Eur J 3:62Google Scholar
  7. 7.
    Ando W, Ohtani T, Suzuki T, Kabe Y (1991) J Am Chem Soc 113:7782Google Scholar
  8. 8.
    Dabrowski J, Kamienska-Trela K, Kozerski L (1975) Org Magn Res 6:499Google Scholar
  9. 9.
    MaKenzie S, Reid DH (1970) J Chem Soc (C) 1970:145Google Scholar
  10. 10.
    Reva I, Nowak MJ, Lapinski L, Fausto R (2015) Phys Chem Chem Phys 17:4888Google Scholar
  11. 11.
    Yamaguchi M, Shida T (2016) J Phys Chem A 120:3570Google Scholar
  12. 12.
    von Ochmann M, Ahnen I, Cordones AA, Hussain A, Lee JH, Hong K, Adamczyk K, Vendrell O, Kim TK, Schoenlein RW, Huse N (2017) J Am Chem Soc 139:4797Google Scholar
  13. 13.
    Kumar M, Francisco JS (2017) Chem Eur J 23:2522Google Scholar
  14. 14.
    Zhang Y, Zhang W, Zhang T, Tian W, Wang W (2012) Comp Theor Chem 994:65Google Scholar
  15. 15.
    Zhang T, Wang R, Zhou L, Wang Z, Xu Q, Min S, Wang W (2014) RSC Adv 4:62835Google Scholar
  16. 16.
    Krystkowiak E, Bachorz RA, Maciejewski A (2016) Phys Chem Chem Phys 18:49Google Scholar
  17. 17.
    Matczak P, Domagała M, Domagała S (2016) Struct Chem 27:855Google Scholar
  18. 18.
    Saad ZB, Chong SX, Wong ZX, Abdallah HH, Al-Saadi AA (2011) J Mol Struct 1006:655Google Scholar
  19. 19.
    He J-Y, Long Z-W, Zhang J-S (1057) J Struct Chem 2011:52Google Scholar
  20. 20.
    Elias RS, Saeed BA, Muslem DK (2012) J Appl Sci 9:152Google Scholar
  21. 21.
    Trung NT, Hue TT, Nguyen MT (2009) J Phys Chem A 113:3245Google Scholar
  22. 22.
    Trung NT, Hung NP, Hue TT, Nguyen MT (2011) Phys Chem Chem Phys 13:14033Google Scholar
  23. 23.
    Raissi H, Nadim ES, Yoosefian M, Farzad F, Ghiamati E, Nowroozi AR, Fazli M, Amoozadeh A (2010) J Mol Struct 960:1Google Scholar
  24. 24.
    Nowroozi A, Roohi H, Hajiabadi H, Raissi H, Khalilinia E, Birgan MN (2011) Comp Theor Chem 963:517Google Scholar
  25. 25.
    Nowroozi A, Roohi H, Poorsargol M, Jahani PM, Hajiabadi H, Raissi H (2011) Int J Quantum Chem 111:3008Google Scholar
  26. 26.
    Shakerzadeh E, Tahmasebi E (2014) Comp Theor Chem 1039:21Google Scholar
  27. 27.
    Pietrzak M, Dobkowski J, Gorski A, Gawinkowski S, Kijak M, Luboradzki R, Hansen PE, Waluk J (2014) Phys Chem Chem Phys 16:9128Google Scholar
  28. 28.
    Nowroozi A, Sarhadinia S, Masumian E, Nakhaei E (2014) Struct Chem 25:1359Google Scholar
  29. 29.
    Pandiyan BV, Deepa P, Kolandaivel P (2015) Phys Chem Chem Phys 17:27496Google Scholar
  30. 30.
    Si MK, Ganguly B (2016) New J Chem 40:9132Google Scholar
  31. 31.
    Nowroozi A, Masumian E (2017) Struct Chem 28:587Google Scholar
  32. 32.
    Rad OR, Nowroozi A (2017) Struct Chem 28:1141Google Scholar
  33. 33.
    Sklenak S, Apeloig Y, Rappoport Z (2000) J Chem Soc Perkin Trans 2:2269Google Scholar
  34. 34.
    Ruiz DL, Schiavoni M, Laurella SL, Giussi JM, Furlong JJP (2011) Spectrochim Acta Part A 78:1397Google Scholar
  35. 35.
    Chuang C-H, Lien M-H (2004) J Phys Chem A 108:1790Google Scholar
  36. 36.
    Guillemin JC, Riague EH, Gal JF, Maria PC, Mó O, Yanez M (2005) Chem Eur J 11:2145Google Scholar
  37. 37.
    Saeed BA, Elias RS, Musad EA (2011) Am J Appl Sci 8:762Google Scholar
  38. 38.
    Zborowski KK (2012) Chem Phys Lett 545:144Google Scholar
  39. 39.
    Karton A, O’Reilly RJ, Radom L (2012) J Phys Chem A 116:4211Google Scholar
  40. 40.
    Cortes-Santiago A, Navarrete-Lopez AM, Vargas R, Garza J (2017) J Phys Org Chem 30:e3624Google Scholar
  41. 41.
    Ozturk T, Ertas E, Mert O (2010) Chem Rev 110:3419Google Scholar
  42. 42.
    Jesberger M, Davis TP, Barner L (2003) Synthesis 2003:1929Google Scholar
  43. 43.
    Rodrigo R, de Moreira M (2008) Synlett 2008:463Google Scholar
  44. 44.
    Kayukova LA, Praliyev KD, Gut’yar VG, Baitursynova GP (2015) Russ J Org Chem 51:148Google Scholar
  45. 45.
    Kutsumura N, Ohshita R, Horiuchi J, Tateno K, Yamamoto N, Saitoh T, Nagumo Y, Kawai H, Nagase H (2017) Tetrahedron 73:5214Google Scholar
  46. 46.
    Berman J, Pettersson B, Hasimbegovic V, Svensson PH (2011) J Org Chem 76:1546Google Scholar
  47. 47.
    Cho D, Ahn J, De Castro KA, Ahn H, Rhee H (2010) Tetrahedron 66:5583Google Scholar
  48. 48.
    Varma RS, Kumar D (1999) Org Lett 1:697Google Scholar
  49. 49.
    Zhang X, Jiang X, Zhang K, Mao L, Luo J, Chi C, Chan HSO, Wu J (2010) J Org Chem 75:8069Google Scholar
  50. 50.
    Ostrowska K, Piegza E, Rapala-Kozik M, Stadnicka K (2012) Eur J Org Chem 2012:3636Google Scholar
  51. 51.
    Liu RL, Lu H-Y, Li M, Hu S-Z, Chen C-F (2012) RSC Adv 2:4415Google Scholar
  52. 52.
    Wielopolski M, Marszalek M, Brunetti FG, Joly D, Calbo J, Arago J, Moser JE, Humphry-Baker R, Zakeeruddin SM, Delgado JL, Gratzel M, Orti E, Martin NJ (2016) Mater Chem C 4:3798Google Scholar
  53. 53.
    Li W, Li X, Liu M, Wang Q (2017) Arch Pharm Chem Life Sci 350:e1700044Google Scholar
  54. 54.
    Mughal EU, Sadiq A, Murtaza S, Rafique H, Zafar MN, Riaz T, Khan BA, Hameed A, Khan KM (2017) Bioorg Med Chem 25:100Google Scholar
  55. 55.
    Legnani L, Toma L, Caramella P, Chiacchio MA, Giofre S, Delso I, Tejero T, Merino P (2016) J Org Chem 81:7733Google Scholar
  56. 56.
    Nair V, Abhilash KG, Suresh E (2006) Tetrahedron Lett 47:9329Google Scholar
  57. 57.
    Bernardes GJL, Gamblin DP, Davis BG (2006) Angew Chem Int Ed 45:4007Google Scholar
  58. 58.
    Tokunaga H, Akiba K, Inamoto N (1972) Bull Chem Soc Jpn 45:506Google Scholar
  59. 59.
    Zhou X, Zeng Y, Liyan C, Wu X, Yoon J (2016) Angew Chem Int Ed 55:4729Google Scholar
  60. 60.
    Okazaki R, Inoue K, Inamoto N (1981) Bull Chem Soc Jpn 54:3541Google Scholar
  61. 61.
    Nakayama J, Takahashi K, Watanabe T, Sugihara Y, Ishii A (2000) Tetrahedron Lett 41:8349Google Scholar
  62. 62.
    Kajjout M, Hebting Y, Albrecht P, Adam P (2012) Chem Biodivers 9:714Google Scholar
  63. 63.
    Mishiro K, Hu F, Paley WP, Min W, Lambert TH (2016) Eur J Org Chem 2016:1655Google Scholar
  64. 64.
    Civcir PU, Kurtay G, Sarıkavak K (2017) Struct Chem 28:773Google Scholar
  65. 65.
    Capperucci A, Degl’Innocenti A, Ricci A, Mordini A, Reginato G (1991) J Org Chem 56:7323Google Scholar
  66. 66.
    Li GM, Niu S, Segi M, Tanaka K, Nakajima T, Zingaro RA, Reibenspies JH, Hall MB (2000) J Org Chem 65:6601Google Scholar
  67. 67.
    Umasekhar B, Ganapathi E, Chatterjee T, Ravikanth M (2015) Dalton Trans 44:16516Google Scholar
  68. 68.
    Kumar SV, Yadav SK, Raghava B, Saraiah B, Ila H, Rangappa KS, Hazra A (2013) J Org Chem 78:4960Google Scholar
  69. 69.
    Matsuo T, Tamao K (2015) Bull Chem Soc Jpn 88:1201Google Scholar
  70. 70.
    Pickl M, Swoboda A, Romero E, Winkler CK, Binda C, Mattevi A, Faber K, Fraaije MW (2018) Angew Chem Int Ed 57:2864Google Scholar
  71. 71.
    Vinayaka AC, Sadashiva MP, Wu X, Biryukov SS, Stoute JA, Rangappa SS, Gowda DC (2014) Org Biomol Chem 12:8555Google Scholar
  72. 72.
    Yugandar S, Konda S, Parameshwarappa G, Ila H (2016) J Org Chem 81:5606Google Scholar
  73. 73.
    Goszczycki P, Stadnicka K, Brela M, Grolik J, Ostrowska K (2017) J Mol Struct 1146:337Google Scholar
  74. 74.
    Raghava B, Parameshwarappa G, Acharya A, Swaroop TR, Rangappa KS, Ila H (2014) Eur J Org Chem 2014:1882Google Scholar
  75. 75.
    Rombola M, Sumaria CS, Montgomery TD, Rawal VH (2017) J Am Chem Soc 139:5297Google Scholar
  76. 76.
    Rombola M, Rawal VH (2018) Org Lett 20:514Google Scholar
  77. 77.
    Ishii A, Ishida T, Kumon N, Fukuda N, Oyama H, Inamoto N, Iwasaki F, Okazaki R (1996) Bull Chem Soc Jpn 69:709Google Scholar
  78. 78.
    Beak P, Worley JW (1972) J Am Chem Soc 94:597Google Scholar
  79. 79.
    Dagonneau M, Vialle J (1974) Tetrahedron 30:415Google Scholar
  80. 80.
    Gosselin P, Masson S, Thuillier A (1978) Tetrahedron Lett 1978:2717Google Scholar
  81. 81.
    Lin C-E, Richardson SK, Wang W, Wang T, Garvey D (2006) Tetrahedron 62:8410Google Scholar
  82. 82.
    Bailey WF, Bartelson AL, Wiberg KB (2012) J Am Chem Soc 134:3199Google Scholar
  83. 83.
    Murai T, Ohashi T, Shibahara F (2011) Chem Lett 40:70Google Scholar
  84. 84.
    Murai T, Morikawa K, Maruyama T (2013) Chem Eur J 19:13112Google Scholar
  85. 85.
    Yang Y, Perry IB, Lu G, Liu P, Buchwald SL (2016) Science 353:144Google Scholar
  86. 86.
    Stocker V, Ghinet A, Leman M, Rigo B, Millet R, Farce A, Desravines D, Dubois J, Waterlot C, Gautret P (2013) RSC Adv 3:3683Google Scholar
  87. 87.
    Nitti A, Villafiorita-Monteleone F, Pacini A, Botta C, Virgili T, Forni A, Cariati E, Boiocchi M, Pasini D (2017) Faraday Discuss 196:143Google Scholar
  88. 88.
    van Dijken DJ, Chen J, Stuart MCA, Hou L, Feringa BL (2016) J Am Chem Soc 138:660Google Scholar
  89. 89.
    Pizzolato SF, Collins BSL, van Leeuwen T, Feringa BL (2017) Chem Eur J 23:6174Google Scholar
  90. 90.
    Chen C-T, Tsai CC, Tsou P-K, Huang G-T, Yu C-H (2017) Chem Sci 8:524Google Scholar
  91. 91.
    Cheung KY, Yang S, Miao Q (2017) Org Chem Front 4:699Google Scholar
  92. 92.
    van Leeuwen T, Pol J, Roke D, Wezenberg SJ, Feringa BL (2017) Org Lett 19:1402Google Scholar
  93. 93.
    Huang F, Liu Z, Wang Q, Lou J, Yu Z (2017) Org Lett 19:3660Google Scholar
  94. 94.
    Augustin AU, Busse M, Jones PG, Werz DB (2018) Org Lett 20:820Google Scholar
  95. 95.
    Yugandar S, Konda S, Ila H (2017) Org Lett 19:1512Google Scholar
  96. 96.
    Jin R, Liu S, Lan Y (2015) RSC Adv 5:61426Google Scholar
  97. 97.
    Emamian S (2015) RSC Adv 5:72959Google Scholar
  98. 98.
    Burkhardta SE, Petrovb VA, Manzoa SM (2016) J Fluorine Chem 191:103Google Scholar
  99. 99.
    Mlostońa G, Kowalskia MK, Obijalskaa E, Heimgartnerb H (2017) J Fluorine Chem 199:92Google Scholar
  100. 100.
    Mlostoń G, Pipiak P, Heimgartner H (2016) Beilstein J Org Chem 12:716Google Scholar
  101. 101.
    Mlostoń G, Grzelak P, Linden A, Heimgartner H (2017) Chem Heterocyclic Compds. 53:518Google Scholar
  102. 102.
    Petrova VA, Marchionea AA, Dooleya R, Marshall W (2017) J Fluorine Chem 196:7Google Scholar
  103. 103.
    Hejmanowska J, Jasiński M, Mlostoń G, Albrecht L (2017) Eur J Org Chem 2017:950Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Biomolecular Science, Faculty of EngineeringGifu UniversityGifuJapan

Personalised recommendations