Advertisement

Glycosyl Sulfoxides in Glycosylation Reactions

  • Jing Zeng
  • Yan Liu
  • Wei Chen
  • Xiang Zhao
  • Lingkui Meng
  • Qian WanEmail author
Review
Part of the following topical collections:
  1. Sulfur Chemistry

Abstract

Carbohydrate chemistry has benefited a lot from the intrinsic reactivity of sulfoxide since it was introduced in glycosylation reactions by Kahne in 1989. Since then, extensive studies have been explored by employing sulfoxide as glycosyl donors and activation reagents in construction of glycosidic bonds. As glycosyl donors, the sulfinyl groups could locate either directly or remotely at anomeric position. This chapter focuses on the establishment and development of sulfoxides as glycosyl donors in glycosylation reactions, with an emphasis on their applications and postulated mechanisms.

Keywords

Sulfoxide Carbohydrate Glycosylation 

Abbreviations

ADMB

4-allyl-1,2-dimethoxybenzene

CB

Carboxybenzyl

CIPs

Contact ion pairs

DDQ

2,3-dicyano-5,6-dichlorobenzoquinone

DIPEA

N,N-diisopropylethylamine

DMAP

4-dimethylaminopyridine

DMDO

Dimethyldioxirane

DTBMP

2,6-di-tert-butyl-4-methylpyridine

E

Electrophile

Fmoc

9-Fluorenylmethyl

IAD

Intramolecular aglycon delivery

LAH

Lithium aluminum hydride

mCPBA

3-chloroperbenzoic acid

MOM

Methoxymethyl

Nap

Naphthyl

NMP

N-methyl-2-pyrrolidone

Nu

Nucleophile

Piv

Pivaloyl

PMB

p-methoxybenzyl

PSB

2-[(propan-2-yl)sulfinyl]benzyl

PTB

2-[(propan-2-yl)thio]benzyl

SSIPs

Solven-separated ion pairs

TBDPS

tert-Butyldiphenylsilyl

TBS

t-butyldimethylsilyl

TCP

N-tetrachlorophthalimido

Tf2O

Trifluoromethanesulfonic anhydride

TFAP

3-trifluoroacetamidopropyl

TfOH

Trifluoromethanesulfonic acid

TMP

1,3,5-trimethoxybenzene

TMSE

2-(trimethylsilyl)ethyl

TMSOTf

Trimethylsilyl trifluoromethanesulfonate

TTBP

2,4,5-tri-tert-butylpyrimidine

β-hFSH

β-domain of human follicle-stimulating hormone

Notes

Acknowledgements

We thank the National Natural Science Foundation of China (21672077, 21772050, 21472054, 21702068), the State Key Laboratory of Bioorganic and Natural Products Chemistry (SKLBNPC13425), Natural Science Funds of Hubei Province for Distinguished Young Scholars (2015CFA035), Wuhan Creative Talent Development Fund, “Thousand Talents Program” Young Investigator Award, and Huazhong University of Science and Technology for support.

References

  1. 1.
    Willer R (2000) Sulfoxides, in Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, HobokenGoogle Scholar
  2. 2.
    Pummerer R (1909) Über phenyl-sulfoxyessigsäure. Ber Dtsch Chem Ges 42:2282–2291CrossRefGoogle Scholar
  3. 3.
    Smith LHS, Coote SC, Sneddon HF, Procter DJ (2010) Beyond the Pummerer reaction: recent developments in thionium ion chemistry. Angew Chem Int Ed 49:5832–5844CrossRefGoogle Scholar
  4. 4.
    Akai S, Kita Y (2006) Recent advances in Pummerer reactions. In: Schaumann E (ed) Sulfur-mediated rearrangements I. Top curr chem, vol 274. Springer, BerlinGoogle Scholar
  5. 5.
    Feldman KS (2006) Modern Pummerer-type reactions. Tetrahedron 62:5003–5034CrossRefGoogle Scholar
  6. 6.
    Bur SK, Padwa A (2004) The Pummerer reaction: methodology and strategy for the synthesis of heterocyclic compounds. Chem Rev 104:2401–2432CrossRefPubMedGoogle Scholar
  7. 7.
    Pfitzner KE, Moffatt JG (1963) A new and selective oxidation of alcohols. J Am Chem Soc 85:3027–3028Google Scholar
  8. 8.
    Omura K, Swern D (1978) Oxidation of alcohols by “activated” dimethyl sulfoxide. A preparative, steric and mechanistic study. Tetrahedron 34:1651–1660CrossRefGoogle Scholar
  9. 9.
    Evans DA, Andrews GC (1974) Allylic sulfoxides. Useful intermediates in organic synthesis. Acc Chem Res 7:147–155CrossRefGoogle Scholar
  10. 10.
    Carreno MC (1995) Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem Rev 95:1717–1760CrossRefGoogle Scholar
  11. 11.
    Kahne D, Walker S, Cheng Y, Van Engen D (1989) Glycosylation of unreactive substrates. J Am Chem Soc 111:6881–6882CrossRefGoogle Scholar
  12. 12.
    Aversa MC, Barattucci A, Bonaccorsi P (2008) Glycosulfoxides in carbohydrate chemistry. Tetrahedron 64:7659–7683CrossRefGoogle Scholar
  13. 13.
    Fascione MA, Brabham R, Turnbull WB (2016) Mechanistic investigations into the application of sulfoxides in carbohydrate synthesis. Chem Eur J 22:3916–3928CrossRefPubMedGoogle Scholar
  14. 14.
    Crich D, Bowers AA (2008) Sulfoxides, sulfimides and sulfones. In: Demchenko AV (ed) Handbook of chemical glycosylation. Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, pp 303–329Google Scholar
  15. 15.
    Micheel F, Schmitz H (1939) Das verhalten von sulfoxyden gegenüber sulfit. Ber Dtsch Chem Ges 72:992–994CrossRefGoogle Scholar
  16. 16.
    Khiar N, Alonso I, Rodriguez N, Fernandez-Mayoralas A, Jimenez-Barbero J, Nieto O, Cano F, Foces-Foces C, Martin-Lomas M (1997) Chemical and enzymatic diastereoselective cleavage of β-d-galactopyranosylsulfoxides. Tetrahedron Lett 38:8267–8270CrossRefGoogle Scholar
  17. 17.
    Ferrières V, Joutel J, Boulch R, Roussel M, Toupet LC, Plusquellec D (2000) Sulfur atom configuration of sulfinyl galactofuranosides determines different reactivities in glycosylation reactions. Tetrahedron Lett 41:5515–5519CrossRefGoogle Scholar
  18. 18.
    Karthaus O, Shoda S-I, Kobayashi S (1994) Diastereoselective cleavage of β-glucosylsulfoxides by β-glucosidase. Tetrahedron Asymmetry 5:2213–2216CrossRefGoogle Scholar
  19. 19.
    Moya-Lopez JF, Elhalem E, Recio R, Alvarez E, Fernandez I, Khiar N (2015) Studies on the diastereoselective oxidation of 1-thio-β-d-glucopyranosides: synthesis of the usually less favoured RS sulfoxide as a single diastereoisomer. Org Biomol Chem 13:1904–1914CrossRefPubMedGoogle Scholar
  20. 20.
    Raghavan S, Kahne D (1993) A one-step synthesis of the ciclamycin trisaccharide. J Am Chem Soc 115:1580–1581CrossRefGoogle Scholar
  21. 21.
    Gildersleeve J, Smith A, Sakurai K, Raghavan S, Kahne D (1999) Scavenging byproducts in the sulfoxide glycosylation reaction: application to the synthesis of ciclamycin 0. J Am Chem Soc 121:6176–6182CrossRefGoogle Scholar
  22. 22.
    Crich D, Sun S (1997) Are glycosyl triflates intermediates in the sulfoxide glycosylation method? A chemical and 1H, 13C, and 19F NMR spectroscopic investigation. J Am Chem Soc 119:11217–11223CrossRefGoogle Scholar
  23. 23.
    Crich D, Sun S (1998) Direct formation of β-mannopyranosides and other hindered glycosides from thioglycosides. J Am Chem Soc 120:435–436CrossRefGoogle Scholar
  24. 24.
    Martichonok V, Whitesides GM (1996) A practical method for the synthesis of sialyl α-glycosides. J Am Chem Soc 118:8187–8191CrossRefGoogle Scholar
  25. 25.
    Martichonok V, Whitesides GM (1997) Studies on α-sialylation using sialyl donors with an auxiliary 3-thiophenyl group. Carbohy Res 302:123–129CrossRefGoogle Scholar
  26. 26.
    Lian G, Zhang X, Yu B (2015) Thioglycosides in carbohydrate research. Carbohydr Res 403:13–22CrossRefPubMedGoogle Scholar
  27. 27.
    Shiao TC, Roy R (2010) “Active-latent” thioglycosyl donors and acceptors in oligosaccharide syntheses. In: Fraser-Reid B, Cristóbal LJ (eds) Reactivity tuning in oligosaccharide assembly. Top curr chem, 301st edn. Springer, Berlin, pp 69–108CrossRefGoogle Scholar
  28. 28.
    Gildersleeve J, Pascal RA, Kahne D (1998) Sulfenate intermediates in the sulfoxide glycosylation reaction. J Am Chem Soc 120:5961–5969CrossRefGoogle Scholar
  29. 29.
    Sliedregt LAJM, van der Marel GA, van Boom JH (1994) Trimethylsilyl triflate mediated chemoselective condensation of arylsulfenyl glycosides. Tetrahedron Lett 35:4015–4018CrossRefGoogle Scholar
  30. 30.
    Alonso I, Khiar N, Martín-Lomas M (1996) A new promoter system for the sulfoxide glycosylation reaction. Tetrahedron Lett 37:1477–1480CrossRefGoogle Scholar
  31. 31.
    Marsh SJ, Kartha KPR, Firld RA (2003) Observation on iodine-promoted & β-mannosylation. Syn Lett 2003:1376–1378Google Scholar
  32. 32.
    Wipf P, Reeves JT (2001) Glycosylation via Cp2ZrCl2/AgClO4-mediated activation of anomeric sulfoxides. J Org Chem 66:7910–7914CrossRefPubMedGoogle Scholar
  33. 33.
    Nagai H, Matsumura S, Toshima K (2000) A novel promoter, heteropoly acid, mediated chemo- and stereoselective sulfoxide glycosidation reactions. Tetrahedron Lett 41:10233–10237CrossRefGoogle Scholar
  34. 34.
    Nagai H, Kawahara K, Matsumura S, Toshima K (2001) Novel stereocontrolled α- and β-glycosidations of mannopyranosyl sulfoxides using environmentally benign heterogeneous solid acids. Tetrahedron Lett 42:4159–4162CrossRefGoogle Scholar
  35. 35.
    Palanivel A, Chennaiah A, Dubbu S, Mallick A, Vankar YD (2017) AuCl3–AgOTf promoted O-glycosylation using anomeric sulfoxides as glycosyl donors at room temperature. Carbohydr Res 437:43–49CrossRefPubMedGoogle Scholar
  36. 36.
    Stork G, Kim G (1992) Stereocontrolled synthesis of disaccharides via the temporary silicon connection. J Am Chem Soc 114:1087–1088CrossRefGoogle Scholar
  37. 37.
    Stork G, La Clair JJ (1996) Stereoselective synthesis of β-mannopyranosides via the temporary silicon connection method. J Am Chem Soc 118:247–248CrossRefGoogle Scholar
  38. 38.
    Chung SK, Park KH (2001) A novel approach to the stereoselective synthesis of β-d-mannopyranosides. Tetrahedron Lett 42:4005–4007CrossRefGoogle Scholar
  39. 39.
    Gu ZY, Zhang JX, Xing GW (2012) N-Acetyl-5-N,4-O-oxazolidinone-protected sialyl sulfoxide: an α-selective sialyl donor with Tf2O/(Tol)2SO in dichloromethane. Chem Asian J 7:1524–1528CrossRefPubMedGoogle Scholar
  40. 40.
    Gadikota RR, Callam CS, Lowary TL (2001) Stereocontrolled synthesis of 2,3-anhydro-β-d-lyxofuranosyl glycosides. Org Lett 3:607–610CrossRefPubMedGoogle Scholar
  41. 41.
    Gadikota RR, Callam CS, Wagner T, Del Fraino B, Lowary TL (2003) 2,3-Anhydro sugars in glycoside bond synthesis. Highly stereoselective syntheses of oligosaccharides containing α- and β-arabinofuranosyl linkages. J Am Chem Soc 125:4155–4165CrossRefPubMedGoogle Scholar
  42. 42.
    Callam CS, Gadikota RR, Krein DM, Lowary TL (2003) 2,3-Anhydrosugars in glycoside bond synthesis. NMR and computational investigations into the mechanism of glycosylations with 2,3-anhydrofuranosyl glycosyl sulfoxides. J Am Chem Soc 125:13112–13119CrossRefPubMedGoogle Scholar
  43. 43.
    Bai Y, Lowary TL (2006) 2,3-Anhydrosugars in glycoside bond synthesis. Application to α-d-galactofuranosides. J Org Chem 71:9658–9671CrossRefPubMedGoogle Scholar
  44. 44.
    Amaya T, Takahashi D, Tanaka H, Takahashi T (2003) Synthesis of 2,3,6-trideoxysugar-containing disaccharides by cyclization and glycosidation through the sequential activation of sulfoxide and methylsulfanyl groups in a one-pot procedure. Angew Chem Ed 42:1833–1836CrossRefGoogle Scholar
  45. 45.
    Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154CrossRefGoogle Scholar
  46. 46.
    Yan L, Taylor CM, Goodnow R, Kahne D (1994) Glycosylation on the Merrifield resin using anomeric sulfoxides. J Am Chem Soc 116:6953–6954CrossRefGoogle Scholar
  47. 47.
    Liang R, Yan L, Loebach J, Ge M, Uozumi Y, Sekanina K, Horan N, Gildersleeve J, Thompson C, Smith A, Biswas K, Still WC, Kahne D (1996) Parallel Synthesis and screening of a solid phase carbohydrate library. Science 274:1520–1522CrossRefPubMedGoogle Scholar
  48. 48.
    Silva DJ, Wang H, Allanson NM, Jain RK, Sofia MJ (1999) Stereospecific solution- and solid-phase glycosylations. Synthesis of β-linked saccharides and construction of disaccharide libraries using phenylsulfenyl 2-deoxy-2-trifluoroacetamido glycopyranosides as glycosyl donors. J Org Chem 64:5926–5929CrossRefGoogle Scholar
  49. 49.
    Ikemoto N, Schreiber SL (1992) Total synthesis of (−)-hikizimycin employing the strategy of two-directional chain synthesis. J Am Chem Soc 114:2524–2536CrossRefGoogle Scholar
  50. 50.
    Ge M, Thompson C, Kahne D (1998) Reconstruction of vancomycin by chemical glycosylation of the pseudoaglycon. J Am Chem Soc 120:11014–11015CrossRefGoogle Scholar
  51. 51.
    Kim SH, Augeri D, Yang D, Kahne D (1994) Concise synthesis of the calicheamicin oligosaccharide using the sulfoxide glycosylation method. J Am Chem Soc 116:1766–1775CrossRefGoogle Scholar
  52. 52.
    Yan L, Kahne D (1996) Generalizing glycosylation: synthesis of the blood group antigens Lea, Leb, and Lex using a standard set of reaction conditions. J Am Chem Soc 118:9239–9248CrossRefGoogle Scholar
  53. 53.
    Yeung BKS, Hill DC, Janicka M, Petillo PA (2000) Synthesis of two hyaluronan trisaccharides. Org Lett 2:1279–1282CrossRefPubMedGoogle Scholar
  54. 54.
    Nicolaou KC, Li Y, Fylaktakidou KC, Mitchell HJ, Sugita K (2001) Total synthesis of apoptolidin: part 2. Coupling of key building blocks and completion of the synthesis. Angew Chem Ed 40:3854–3857CrossRefGoogle Scholar
  55. 55.
    Hederos M, Konradsson P (2005) Synthesis of the core tetrasaccharide of Trypanosoma cruzi glycoinositolphospholipids: Manp(α1 → 6)-Manp(α1 → 4)-6-(2-aminoethylphosphonic acid)-GlcNp(α1 → 6)-myo-Ins-1-PO4. J Org Chem 70:7196–7207CrossRefPubMedGoogle Scholar
  56. 56.
    Taylor JG, Li X, Oberthür M, Zhu W, Kahne D (2006) The total synthesis of moenomycin A. J Am Chem Soc 128:15084–15085CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang Y, Fechter EJ, Wang TSA, Barrett D, Walker S, Kahne DE (2007) Synthesis of heptaprenyl-lipid IV to analyze peptidoglycan glycosyltransferases. J Am Chem Soc 129:3080–3081CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nguyen MH, Imanishi M, Kurogi T, Smith AB (2016) Total synthesis of (−)-mandelalide A exploiting anion relay chemistry (ARC): identification of a type II ARC/CuCN cross-coupling protocol. J Am Chem Soc 138:3675–3678CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Nigudkar SS, Demchenko AV (2015) Stereocontrolled 1,2-cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem Sci 6:2687–2704CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhu X, Schmidt RR (2009) New principles for glycoside-bond formation. Angew Chem Int Ed 48:1900–1934CrossRefGoogle Scholar
  61. 61.
    Ishiwata A, Lee YJ, Ito Y (2010) Recent advances in stereoselective glycosylation through intramolecular aglycon delivery. Org Biomol Chem 8:3596–3608CrossRefPubMedGoogle Scholar
  62. 62.
    Ishiwata A, Ito Y (2017) Intramolecular aglycon delivery toward 1,2-cis selective glycosylation. In: Bennett CS (ed) Selective glycosylations: synthetic methods and catalysts, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim, pp 79–96CrossRefGoogle Scholar
  63. 63.
    Jung KH, Müller M, Schmidt RR (2000) Intramolecular O-glycoside bond formation. Chem Rev 100:4423–4442CrossRefPubMedGoogle Scholar
  64. 64.
    Pistorio SG, Yasomanee JP, Demchenko AV (2014) Hydrogen-bond-mediated aglycone delivery: focus on β-mannosylation. Org Lett 16:716–719CrossRefPubMedGoogle Scholar
  65. 65.
    Liu QW, Bin HC, Yang JS (2013) β-Arabinofuranosylation using 5-O-(2-quinolinecarbonyl) substituted ethyl thioglycoside donors. Org Lett 15:3974–3977CrossRefPubMedGoogle Scholar
  66. 66.
    Zhu Y, Yu B (2015) Highly stereoselective β-mannopyranosylation via the 1-α-glycosyloxy-isochromenylium-4-gold(I) intermediates. Chem Eur J 21:8771–8780CrossRefPubMedGoogle Scholar
  67. 67.
    Sun P, Wang P, Zhang Y, Zhang X, Wang C, Liu S, Lu J, Li M (2015) Construction of β-mannosidic bonds via gold(I)-catalyzed glycosylations with mannopyranosyl ortho-hexynylbenzoates and its application in synthesis of acremomannolipin A. J Org Chem 80:4164–4175CrossRefPubMedGoogle Scholar
  68. 68.
    Elferink H, Mensink RA, White PB, Boltje TJ (2016) Angew Chem Int Ed 55:11217–11220CrossRefGoogle Scholar
  69. 69.
    Takahashi D, Tanaka M, Nishi N, Toshima K (2017) Novel 1,2-cis-stereoselective glycosylations utilizing organoboron reagents and their application to natural products and complex oligosaccharide synthesis. Carbohydr Res 452:64–77CrossRefPubMedGoogle Scholar
  70. 70.
    Crich D, Sun S (1996) Formation of β-mannopyranosides of primary alcohols using the sulfoxide method. J Org Chem 61:4506–4507CrossRefPubMedGoogle Scholar
  71. 71.
    Huang X, Huang L, Wang H, Ye XS (2004) Iterative one-pot synthesis of oligosaccharides. Angew Chem Int Ed 43:5221–5224CrossRefGoogle Scholar
  72. 72.
    Wu Y, Xiong DC, Chen SC, Wang YS, Ye XS (2017) Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nat Commun 8:14851CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Crich D, Sun S (1997) Direct synthesis of β-mannopyranosides by the sulfoxide method. J Org Chem 62:1198–1199CrossRefGoogle Scholar
  74. 74.
    Crich D, Li H (2000) Direct stereoselective synthesis of β-thiomannosides. J Org Chem 65:801–805CrossRefPubMedGoogle Scholar
  75. 75.
    Crich D, Dudkin V (2000) Efficient, diastereoselective chemical synthesis of a β-mannopyranosyl phosphoisoprenoid. Org Lett 2:3941–3943CrossRefPubMedGoogle Scholar
  76. 76.
    Crich D, Cai W (1999) Chemistry of 4,6-O-benzylidene-d-glycopyranosyl triflates: contrasting behavior between the gluco and manno series. J Org Chem 64:4926–4930CrossRefPubMedGoogle Scholar
  77. 77.
    Kim KS, Kim JH, Lee YJ, Lee YJ, Park J (2001) 2-(Hydroxycarbonyl)benzyl glycosides: a novel type of glycosyl donors for highly efficient β-mannopyranosylation and oligosaccharide synthesis by latent-active glycosylation. J Am Chem Soc 123:8477–8481CrossRefPubMedGoogle Scholar
  78. 78.
    Codée JDC, Kröck L, Castagner B, Seeberger PH (2008) Automated solid-phase synthesis of protected oligosaccharides containing β-mannosidic linkages. Chem Eur J 14:3987–3994CrossRefPubMedGoogle Scholar
  79. 79.
    Tsuda T, Arihara R, Sato S, Koshiba M, Nakamura S, Hashimoto S (2005) Direct and stereoselective synthesis of β-d-mannosides using 4,6-O-benzylidene-protected mannosyl diethyl phosphite as a donor. Tetrahedron 61:10719–10733CrossRefGoogle Scholar
  80. 80.
    Baek JY, Choi TJ, Jeon HB, Kim KS (2006) A highly reactive and stereoselective β-mannopyranosylation system: mannosyl 4-pentenoate/PhSeOTf. Angew Chem Int Ed 45:7436–7440CrossRefGoogle Scholar
  81. 81.
    Tanaka SI, Takashina M, Tokimoto H, Fujimoto Y, Tanaka K, Fukase K (2005) Highly β-selective mannosylation towards Manβ1-4GlcNAc synthesis: tMSB(C6H5)4 as Lewis acid/cation trap catalyst. Synlett 2005:2325–2328Google Scholar
  82. 82.
    Heuckendorff M, Bols PS, Barry CB, Frihed TG, Pedersen CM, Bols M (2015) β-Mannosylation with 4,6-benzylidene protected mannosyl donors without preactivation. Chem Commun 51:13283–13285CrossRefGoogle Scholar
  83. 83.
    Crich D, Dai Z (1998) Direct synthesis of β-d-Xyl-(1 → 2)-β-d-Man-(1 → 4)-α-d-Glc-OME: a trisaccharide component of the Hyriopsis schlegelii glycosphingolipid. Tetrahedron Lett 39:1681–1684CrossRefGoogle Scholar
  84. 84.
    Crich D, Li H, Yao Q, Wink DJ, Sommer RD, Rheingold AL (2001) Direct synthesis of β-mannans. A hexameric [→ 3)-β-d-man-(1 → 4)-β-d-man-(1]3 subunit of the antigenic polysaccharides from Leptospira biflexa and the octameric (1 → 2)-linked β-d-mannan of the Candida albicans phospholipomannan. X-ray crystal structure of a protected tetramer. J Am Chem Soc 123:5826–5828CrossRefPubMedGoogle Scholar
  85. 85.
    Karelin AA, Tsvetkov YE, Paulovičová E, Paulovičová L, Nifantiev NE (2016) A blockwise approach to the synthesis of (1 → 2)-linked oligosacchrides corresponding to fragments of the acid-stable β-mannan from the Candida albicans cell wall. Eur J Org Chem 2016:1173–1181CrossRefGoogle Scholar
  86. 86.
    Nagorny P, Fasching B, Li X, Chen G, Aussedat B, Danishefsky SJ (2009) Toward fully synthetic homogeneous β-human follicle-stimulating hormone (β-hFSH) with a biantennary N-linked dodecasaccharide. Synthesis of β-hFSH with chitobiose units at the natural linkage sites. J Am Chem Soc 131:5792–5799CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kim JH, Yang H, Park J, Boons GJ (2005) A general strategy for stereoselective glycosylations. J Am Chem Soc 127:12090–12097CrossRefPubMedGoogle Scholar
  88. 88.
    Boltje TJ, Kim JH, Park J, Boons GJ (2011) Stereoelectronic effects determine oxacarbenium vs β-sulfonium ion mediated glycosylations. Org Lett 13:284–287CrossRefPubMedGoogle Scholar
  89. 89.
    Fang T, Gu Y, Huang W, Boons GJ (2016) Mechanism of glycosylation of anomeric sulfonium ions. J Am Chem Soc 138:3002–3011CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Fascione MA, Adshead SJ, Stalford SA, Kilner CA, Leach AG, Turnbull WB (2009) Stereoselective glycosylation using oxathiane glycosyl donors. Chem Commun 2009:5841–5843CrossRefGoogle Scholar
  91. 91.
    Fascione MA, Kilner CA, Leach AG, Turnbull WB (2012) Do glycosyl sulfonium ions engage in neighbouring-group participation? A study of oxathiane glycosyl donors and the basis for their stereoselectivity. Chem Eur J 18:321–333CrossRefPubMedGoogle Scholar
  92. 92.
    Fascione MA, Turnbull WB (2010) Benzyne arylation of oxathiane glycosyl donors. Beilstein J Org Chem 6:19CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Fascione MA, Webb NJ, Kilner CA, Warriner SL, Turnbull WB (2012) Stereoselective glycosylations using oxathiane spiroketal glycosyl donors. Carbohydr Res 348:6–13CrossRefPubMedGoogle Scholar
  94. 94.
    Fang T, Mo KF, Boons GJ (2012) Stereoselective assembly of complex oligosaccharides using anomeric sulfonium ions as glycosyl donors. J Am Chem Soc 134:7545–7552CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Huang W, Gao Q, Boons GJ (2015) Assembly of a complex branched oligosaccharide by combining fluorous-supported synthesis and stereoselective glycosylations using anomeric sulfonium ions. Chem Eur J 21:12920–12926CrossRefPubMedGoogle Scholar
  96. 96.
    Crich D (2010) Mechanism of a chemical glycosylation reaction. Acc Chem Res 43:1144–1153CrossRefPubMedGoogle Scholar
  97. 97.
    Bohé L, Crich D (2017) Glycosylation with glycosyl sulfonates. In: Bennett CS (ed) Selective Glycosylations: Synthetic Methods and Catalysts. Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim, pp 115–133CrossRefGoogle Scholar
  98. 98.
    Martin A, Arda A, Désiré J, Martin-Mingot A, Probst N, Sinaÿ P, Jiménez-Barbero J, Thibaudeau S, Blériot Y (2015) Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid. Nature Chem 8:186–191CrossRefGoogle Scholar
  99. 99.
    Bohé L, Crich D (2015) A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art. Carbohydr Res 403:48–59CrossRefPubMedGoogle Scholar
  100. 100.
    Walvoort MTC, Dinkelaar J, van den Bos LJ, Lodder G, Overkleeft HS, Codée JDC, van der Marel GA (2010) The impact of oxacarbenium ion conformers on the stereochemical outcome of glycosylations. Carbohydr Res 345:1252–1263CrossRefPubMedGoogle Scholar
  101. 101.
    Smith DM, Woerpel KA (2006) Electrostatic interactions in cations and their importance in biology and chemistry. Org Biomol Chem 4:1195–1201CrossRefPubMedGoogle Scholar
  102. 102.
    Cumpstey I (2012) On a so-called “kinetic anomeric effect” in chemical glycosylation. Organic & Org Biomol Chem 10:2503–2508CrossRefGoogle Scholar
  103. 103.
    Kim KS, Fulse DB, Baek JY, Lee BY, Jeon HB (2008) Stereoselective direct glycosylation with anomeric hydroxy sugars by activation with phthalic anhydride and trifluoromethanesulfonic anhydride involving glycosyl phthalate intermediates. J Am Chem Soc 130:8537–8547CrossRefPubMedGoogle Scholar
  104. 104.
    Walvoort MTC, van den Elst H, Plante OJ, Kröck L, Seeberger PH, Overkleeft HS, van der Marel GA, Codée JDC (2012) Automated solid-phase synthesis of β-mannuronic acid alginates. Angew Chem Int Ed 51:4393–4396CrossRefGoogle Scholar
  105. 105.
    Rencurosi A, Lay L, Russo G, Caneva E, Poletti L (2006) NMR evidence for the participation of triflated ionic liquids in glycosylation reaction mechanisms. Carbohydr Res 341:903–908CrossRefPubMedGoogle Scholar
  106. 106.
    Zeng Y, Wang Z, Whitfield D, Huang X (2008) Installation of electron-donating protective groups, a strategy for glycosylating unreactive thioglycosyl acceptors using the preactivation-based glycosylation method. J Org Chem 73:7952–7962CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Frihed TG, Bols M, Pedersen CM (2015) Mechanisms of glycosylation reactions studied by low-temperature nuclear magnetic resonance. Chem Rev 115:4963–5013CrossRefPubMedGoogle Scholar
  108. 108.
    Crich D, Chandrasekera NS (2004) Mechanism of 4,6-O-benzylidene-directed β-mannosylation as determined by α-deuterium kinetic isotope effects. Angew Chem Int Ed 43:5386–5389CrossRefGoogle Scholar
  109. 109.
    Huang M, Garrett GE, Birlirakis N, Bohé L, Pratt DA, Crich D (2012) Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects. Nature Chem 4:663–667CrossRefGoogle Scholar
  110. 110.
    Huang M, Furukawa T, Retailleau P, Crich D, Bohé L (2016) Further studies on cation clock reactions in glycosylation: observation of a configuration specific intramolecular sulfenyl transfer and isolation and characterization of a tricyclic acetal. Carbohydr Res 427:21–28CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Huang M, Retailleau P, Bohé L, Crich D (2012) Cation clock permits distinction between the mechanisms of α- and β-O- and β-C-glycosylation in the mannopyranose series: evidence for the existence of a mannopyranosyl oxocarbenium ion. J Am Chem Soc 134:14746–14749CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Adero PO, Furukawa T, Huang M, Mukherjee D, Retailleau P, Bohé L, Crich D (2015) Cation clock reactions for the determination of relative reaction kinetics in glycosylation reactions: applications to gluco- and mannopyranosyl sulfoxide and trichloroacetimidate type donors. J Am Chem Soc 137:10336–10345CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Shu P, Xiao X, Zhao Y, Xu Y, Yao W, Tao J, Wang H, Yao G, Lu Z, Zeng J, Wan Q (2015) Interrupted Pummerer reaction in latent-active glycosylation: glycosyl donors with a recyclable and regenerative leaving group. Angew Chem Int Ed 54:14432–14436CrossRefGoogle Scholar
  114. 114.
    Xiao X, Zhao Y, Shu P, Zhao X, Liu Y, Sun J, Zhang Q, Zeng J, Wan Q (2016) Remote activation of disarmed thioglycosides in latent-active glycosylation via interrupted Pummerer reaction. J Am Chem Soc 138:13402–13407CrossRefPubMedGoogle Scholar
  115. 115.
    Shu P, Yao W, Xiao X, Sun J, Zhao X, Zhao Y, Xu Y, Tao J, Yao G, Zeng J, Wan Q (2016) Glycosylation via remote activation of anomeric leaving groups: development of 2-(2-propylsulfinyl)benzyl glycosides as novel glycosyl donors. Org Chem Front 3:177–183CrossRefGoogle Scholar
  116. 116.
    Meng L, Zeng J, Wan Q (2017) Interrupted Pummerer reaction in lacent/active glycosylation. Synlett 2017.  https://doi.org/10.1055/s-0036-1588582
  117. 117.
    Bates DK, Winters RT, Picard JA (1992) Intramolecular capture of Pummerer rearrangement intermediates. Interrupted Pummerer rearrangement: capture of tricoordinate sulfur species generated under Pummerer rearrangement conditions. J Org Chem 57:3094–3097CrossRefGoogle Scholar
  118. 118.
    Bates DK, Xia M (1998) A sulfoxide-based ring annelation approach to fused, many-membered ring N,S-heterocycles. J Org Chem 63:9190–9196CrossRefGoogle Scholar
  119. 119.
    Bates DK, Sell BA, Picard JA (1987) An interrupted Pummerer reaction induced by Vilsmeier reagent (POCl3/DMF). Tetrahedron Lett 28:3535–3538CrossRefGoogle Scholar
  120. 120.
    Zeng J, Sun G, Yao W, Zhu Y, Wang R, Cai L, Liu K, Zhang Q, Liu XW, Wan Q (2017) 3-Aminodeoxypyranoses in glycosylation: diversity-oriented synthesis and assembly in oligosaccharides. Angew Chem Int Ed 56:5227–5231CrossRefGoogle Scholar
  121. 121.
    Xu Y, Zhang Q, Xiao Y, Wu P, Chen W, Song Z, Xiao X, Meng L, Zeng J, Wan Q (2017) Practical synthesis of latent disarmed S-2-(2-propylthio)benzyl glycosides for interrupted Pummerer reaction mediated glycosylation. Tetrahedron Lett 58:2381–2384CrossRefGoogle Scholar
  122. 122.
    Chen W, Zeng J, Wang H, Xiao X, Meng L, Wan Q (2017) Tracking the leaving group in the remote activation of O-2-[(propan-2-yl)sulfinyl]benzyl (OPSB) glycoside. Carbohydr Res 452:1–5CrossRefPubMedGoogle Scholar
  123. 123.
    Kristensen SK, Salamone S, Rasmussen MR, Marqvorsen MHS, Jensen HH (2016) Glycosyl ortho-methoxybenzoates: catalytically activated glycosyl donors with an easily removable and recyclable leaving group. Eur J Org Chem 2016:5365–5376CrossRefGoogle Scholar
  124. 124.
    Nigudkar SS, Stine KJ, Demchenko AV (2014) Regenerative glycosylation under nucleophilic catalysis. J Am Chem Soc 136:921–923CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Garcia BA, Poole JL, Gin DY (1997) Direct glycosylations with 1-hydroxy glycosyl donors using trifluoromethanesulfonic anhydride and diphenyl sulfoxide. J Am Chem Soc 119:7597–7598CrossRefGoogle Scholar
  126. 126.
    Codée JDC, Hossain LH, Seeberger PH (2005) Efficient installation of β-mannosides using a dehydrative coupling strategy. Org Lett 7:3251–3254CrossRefPubMedGoogle Scholar
  127. 127.
    Boebel TA, Gin DY (2005) Probing the mechanism of sulfoxide-catalyzed hemiacetal activation in dehydrative glycosylation. J Org Chem 70:5818–5826CrossRefPubMedGoogle Scholar
  128. 128.
    Di Bussolo V, Kim YJ, Gin DY (1998) Direct oxidative glycosylations with glycal gonors. J Am Chem Soc 120:13515–13516CrossRefGoogle Scholar
  129. 129.
    Honda E, Gin DY (2002) C2-Hydroxyglycosylation with glycal gonors. probing the mechanism of sulfonium-mediated oxygen transfer to glycal enol ethers. J Am Chem Soc 124:7343–7352CrossRefPubMedGoogle Scholar
  130. 130.
    Crich D (2002) Chemistry of glycosyl triflates: synthesis of & β-mannopyranosides. J Carbohydr Chem 21:667–690CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PharmacyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Institute of Brain ResearchHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations