Quinodimethanes Incorporated in Non-Benzenoid Aromatic or Antiaromatic Frameworks

Review
  • 41 Downloads
Part of the following topical collections:
  1. Physical Organic Chemistry of Quinodimethanes

Abstract

Three isomers of quinodimethanes (QDMs) adopt different electronic configurations and geometries, generating their own characteristic physical properties. Incorporation of QDMs into non-benzenoid aromatic or antiaromatic frameworks not only planarizes the whole π system optimizing conjugation, but also changes the electronic properties inherent to QDMs, sometimes drastically, due to the topology of the π system, through interaction with the remaining part of the molecules. In non-benzenoid systems, molecular orbital levels and orbital distribution are uneven compared to benzenoid systems, thereby polarizing the ground state and leading to unique behavior in excited states. In antiaromatic systems, open-shell, diradical character, which is inherent to QDMs, may be enhanced due to small HOMO–LUMO energy gap. In this chapter, effects of incorporating QDMs into non-benzenoid aromatic or antiaromatic frameworks are discussed focusing on the open-shell, diradical character with respect to their molecular structures, antiaromaticity, and physical properties related to the open-shell character and molecular orbital levels and materials applications, as well as covering historical works to the current state-of-the-art achievements.

Keywords

Quinodimethanes Open-shell character Kekulé structure Aromaticity Antiaromaticity 

Notes

Acknowledgements

The author is grateful to for continued support by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology.

References

  1. 1.
    Platz M (1982) In: Borden WT (ed) Diradicals. Wiley, New York, p 195Google Scholar
  2. 2.
    Flynn CR, Michl J (1974) J Am Chem Soc 96:3280Google Scholar
  3. 3.
    Karafiloglou P (1989) J Chem Educ 66:816Google Scholar
  4. 4.
    Segura JL, Martín N (1999) Chem Rev 99:3199Google Scholar
  5. 5.
    Thiele J, Balhorn H (1904) Ber Dtsch Chem Ges 37:1463Google Scholar
  6. 6.
    Tschitschibabin AE (1907) Ber Dtsch Chem Ges 40:1810Google Scholar
  7. 7.
    Waring RK Jr, Sloan GJ (1964) J Chem Phys 40:772Google Scholar
  8. 8.
    Montgomery LK, Huffman JC, Jurczak EA, Grendze MP (1986) J Am Chem Soc 108:6004Google Scholar
  9. 9.
    Abe M (2013) Chem Rev 113:7011Google Scholar
  10. 10.
    Schmidt R, Brauer H-D (1971) Angew Chem Int Ed 10:506Google Scholar
  11. 11.
    Müller E, Pfanz H (1941) Ber Dtsch Chem Ges 74:1051Google Scholar
  12. 12.
    Schlenk W, Brauns M (1915) Ber Dtsch Chem Ges 48:716Google Scholar
  13. 13.
    Dowd P (1972) Acc Chem Res 5:242Google Scholar
  14. 14.
    Berson J (1982) In: Borden WT (ed) Diradicals. Wiley, New York, p 151Google Scholar
  15. 15.
    Iwamura H, Koga N (1993) Acc Chem Res 26:346Google Scholar
  16. 16.
    Rajca A (1994) Chem Rev 94:871Google Scholar
  17. 17.
    Rajca A (2005) Adv Phys Org Chem 40:153Google Scholar
  18. 18.
    Quinkert G, Wiersdorff WW, Finke M, Opitz K (1966) Tetrahedron Lett 7:2193Google Scholar
  19. 19.
    Quinkert G, Wiersdorf WW, Finke M, Opitz K, von der Haar F-G (1968) Chem Ber 101:2302Google Scholar
  20. 20.
    Iwashita S, Ohta E, Higuchi H, Kawai H, Fujiwara K, Ono K, Takenaka M, Suzuki T (2004) Chem Commun 10:2076Google Scholar
  21. 21.
    Suzuki T, Sakano Y, Iwai T, Iwashita S, Miura Y, Katoono R, Kawai H, Fujiwara K, Tsuji Y, Fukushima T (2013) Chem Eur J 19:117Google Scholar
  22. 22.
    Zeng Z, Shi X, Chi C, López Navarrete JT, Casado J, Wu J (2015) Chem Soc Rev 44:6578Google Scholar
  23. 23.
    Sun Z, Ye Q, Chi C, Wu J (2012) Chem Soc Rev 41:7857Google Scholar
  24. 24.
    Sun Z, Zeng Z, Wu J (2013) Chem Asian J 8:2894Google Scholar
  25. 25.
    Sun Z, Wu J (2014) In: Siegel JS, Wu Y-T (eds) Top Curr Chem 349, Polyarenes I. Springer, Heidelberg, p 197Google Scholar
  26. 26.
    Kubo T (2015) Chem Lett 44:111Google Scholar
  27. 27.
    Shimizu A, Nobusue S, Miyoshi H, Tobe Y (2014) Pure Appl Chem 86:517Google Scholar
  28. 28.
    Borden WT (1982) In: Borden WT (ed) Diradicals. Wiley, New York, p 1Google Scholar
  29. 29.
    Lineberger WC, Borden WT (2011) Phys Chem Chem Phys 13:11792Google Scholar
  30. 30.
    Yamaguchi K (1975) Chem Phys Lett 33:330Google Scholar
  31. 31.
    Jung Y, Head-Gordon M (2003) ChemPhysChem 4:522Google Scholar
  32. 32.
    Snyder JP (ed) (1969) Nonbenzenoid aromatics I. Academic Press, New YorkGoogle Scholar
  33. 33.
    Snyder JP (ed) (1971) Nonbenzenoid aromatics II. Academic Press, New YorkGoogle Scholar
  34. 34.
    Fieser LF, Fieser M (1933) J Am Chem Soc 55:3010Google Scholar
  35. 35.
    Binsch G, Tamir I (1969) J Am Chem Soc 91:2450Google Scholar
  36. 36.
    Boekelheide V, Vick GK (1956) J Am Chem Soc 78:653Google Scholar
  37. 37.
    Boekelheide V, Langeland WE, Liu C-T (1951) J Am Chem Soc 73:2432Google Scholar
  38. 38.
    Cava MP, Schlessinger RH (1965) Tetrahedron 21:3051Google Scholar
  39. 39.
    Cava MP, Schlessinger RH (1965) Tetrahedron 21:3065Google Scholar
  40. 40.
    Cava MP, Schlessinger RH (1965) Tetrahedron 21:3073Google Scholar
  41. 41.
    Kolc J, Michl J (1973) J Am Chem Soc 95:7391Google Scholar
  42. 42.
    Kawai H, Takeda T, Fujiwara K, Wakeshima M, Hinatsu Y, Suzuki T (2008) Chem Eur J 14:5780Google Scholar
  43. 43.
    Kolc J, Michl J (1970) J Am Chem Soc 92:4147Google Scholar
  44. 44.
    Michl J, Kolc J (1970) J Am Chem Soc 92:4148Google Scholar
  45. 45.
    Downing J, Vdořák V, Kolc J, Manzara A, Michl J (1972) Chem Phys Lett 17:70Google Scholar
  46. 46.
    Kolc J, Downing JW, Manzara AP, Michl J (1976) J Am Chem Soc 98:930Google Scholar
  47. 47.
    Steiner RP, Michl J (1978) J Am Chem Soc 100:6413Google Scholar
  48. 48.
    Castellan A, Kolc J, Michl J (1978) J Am Chem Soc 100:6687Google Scholar
  49. 49.
    Kertesz M, Choi CH, Yang S (2005) Chem Rev 105:3448Google Scholar
  50. 50.
    Gellini C, Salvi PR (2010) Symmetry 2:1846Google Scholar
  51. 51.
    Hafner K, Häfner KH, König C, Kreuder M, Ploss G, Schluz G, Strum E, Vöpel KH (1963) Angew Chem Int Ed 2:123Google Scholar
  52. 52.
    Hafner K (1964) Angew Chem Int Ed 52:3165Google Scholar
  53. 53.
    Hafner K (1982) Pure Appl Chem 54:939Google Scholar
  54. 54.
    Hafner K, Krimmer H-P (1980) Angew Chem Int Ed 19:199Google Scholar
  55. 55.
    Hafner K, Stowasser B, Krimmer H-P, Fischer S, Böhm MC, Lindner HJ (1986) Angew Chem Int Ed 25:630Google Scholar
  56. 56.
    Dunitz JD, Krüger C, Irngartinger H, Maverick EF, Wang Y, Nixdorf M (1988) Angew Chem Int Ed 27:387Google Scholar
  57. 57.
    Wang C-C, Tang T-H, Wu L-C, Wang Y (2004) Acta Cryst A60:488Google Scholar
  58. 58.
    Klann R, Bäuerle RJ, Laermer F, Elsaesser T, Niemeyer M, Lüttke W (1990) Chem Phys Lett 169:172Google Scholar
  59. 59.
    Gellini C, Salvi PR, Hafner K (1993) J Phys Chem 97:8152Google Scholar
  60. 60.
    Gellini C, Angeloni L, Salvi PR, Marconi G (1995) J Phys Chem 99:85Google Scholar
  61. 61.
    Beer M, Longuet-Higgins HC (1955) J Chem Phys 23:1390Google Scholar
  62. 62.
    Rentzepis PM (1969) Chem Phys Lett 3:717Google Scholar
  63. 63.
    Murata S, Iwanaga C, Toda T, Kokubun H (1972) Chem Phys Lett 15:152Google Scholar
  64. 64.
    Bearpark MJ, Celani P, Jolibois F, Olivucci M, Robb MA, Bernardi F (1999) Mol Phys 96:645Google Scholar
  65. 65.
    Arnold BR, Michl J (1990) In: Platz MS (ed) Kinetics and spectroscopy of carbenes and biradicals. Plenum Press, New York, p 1Google Scholar
  66. 66.
    Whitman DW, Carpenter BK (1980) J Am Chem Soc 102:4272Google Scholar
  67. 67.
    Whitman DW, Carpenter BK (1982) J Am Chem Soc 104:6473Google Scholar
  68. 68.
    Carpenter BK (1983) J Am Chem Soc 105:1700Google Scholar
  69. 69.
    Kozuch S (2014) RSC Adv 4:21650Google Scholar
  70. 70.
    Nakajima T, Saijo T, Yamaguchi H (1964) Tetrahedron 20:2119Google Scholar
  71. 71.
    Hafner K, Stowasser B, Krimmer H-P, Fischer S, Böhm MC, Lindner HJ (1963) Angew Chem Int Ed 2:123Google Scholar
  72. 72.
    Gellini C, Cardini G, Salvi PR, Marconi G, Hafner K (1993) J Phys Chem 97:1286Google Scholar
  73. 73.
    Heilbronner E, Yang Z-Z (1987) Angew Chem Int Ed 26:360Google Scholar
  74. 74.
    Hertwig RH, Holthausen MC, Koch W, Maksić ZB (1994) Angew Chem Int Ed 33:1192Google Scholar
  75. 75.
    Hertwig RH, Holthausen MC, Koch W, Maksić ZB (1995) Int J Quantum Chem 54:147Google Scholar
  76. 76.
    Nendel M, Goldfuss B, Houk KN, Hafner K (1999) J Mol Struct 461–462:23Google Scholar
  77. 77.
    Nendel M, Goldfuss B, Beno B, Houk KN, Hafner K, Lindner HJ (1999) Pure Appl Chem 71:221Google Scholar
  78. 78.
    Moroni L, Gellini C, Salvi PR (2004) J Mol Struct 667:1Google Scholar
  79. 79.
    Makino M, Aihara J (2008) Phys Chem Chem Phys 10:591Google Scholar
  80. 80.
    Julg A, François P (1967) Theo Chim Acta 8:249Google Scholar
  81. 81.
    Jartín RS, Ligabue A, Soncini A, Lazzeretti P (2002) J Phys Chem A 106:11806Google Scholar
  82. 82.
    Havenith RWA, Engelberts JJ, Fowler PW, Steiner E, van Lenthe JH, Lazzeretti P (2004) Phys Chem Phys Chem 6:289Google Scholar
  83. 83.
    Motomura S, Nakano M, Fukui H, Yoneda K, Kubo T, Carion R, Champagne B (2011) Phys Chem Chem Phys 13:20575Google Scholar
  84. 84.
    Prinzbach H, Knothe L (1986) Pure Appl Chem 58:25Google Scholar
  85. 85.
    Wiersum UE, Jenneskens LW (1993) Tetrahedron Lett 34:6615Google Scholar
  86. 86.
    Nakajima T (1971) Pure Appl Chem 28:219Google Scholar
  87. 87.
    Hess BA Jr, Shaad LJ (1971) J Org Chem 36:3418Google Scholar
  88. 88.
    Toyota A (1975) Bull Chem Soc Jpn 48:1152Google Scholar
  89. 89.
    Böhm MC, Schütt J (1992) J Phys Chem 96:3674Google Scholar
  90. 90.
    Randić M (2003) Chem Rev 103:3449Google Scholar
  91. 91.
    Tobe Y (2015) Chem Rec 15:86Google Scholar
  92. 92.
    Prinzbach H, Babsch H, Hunkler D (1978) Tetrahedron Lett 19:649Google Scholar
  93. 93.
    Prinzbach H, Bingmann H, Beck A, Hunkler D, Sauter H, Hädicke E (1981) Chem Ber 114:1697Google Scholar
  94. 94.
    Prinzbach H, Schneider H-W (1973) Angew Chem Int Ed 12:1007Google Scholar
  95. 95.
    Prinzbach H, Knothe L, Schneider H-W (1973) Angew Chem Int Ed 12:1009Google Scholar
  96. 96.
    Kuroda S, Asao T, Funamizu M, Kurihara H, Kitahara Y (1976) Tetrahedron Lett 17:251Google Scholar
  97. 97.
    Beck A, Bingmann H, Kagabu S, Knothe L, Hädicke E, Prinzbach H (1983) Chem Ber 116:1963Google Scholar
  98. 98.
    Kubo T (2015) Chem Rec 15:218Google Scholar
  99. 99.
    Motita Y, Nishida S (2010) In: Hicks R (ed) Stable radicals. Wiley, Chichester, p 81Google Scholar
  100. 100.
    Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang J (1999) J Am Chem Soc 121:1619Google Scholar
  101. 101.
    Kubo T, Shimizu A, Sakamoto M, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2005) Angew Chem Int Ed 44:6564Google Scholar
  102. 102.
    Kubo T, Shimizu A, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2007) Org Lett 9:81Google Scholar
  103. 103.
    Shimizu A, Hirao Y, Matsumoto K, Kurata H, Kubo T, Uruichi M, Yakushi K (2012) Chem Commun 48:5629Google Scholar
  104. 104.
    Shimizu A, Uruichi M, Yakushi K, Matsuzaki H, Okamoto H, Nakano M, Hirao Y, Matsumoto K, Kurata H, Kubo T (2009) Angew Chem Int Ed 48:5482Google Scholar
  105. 105.
    Shimizu A, Kubo T, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Hirao Y, Matsumoto K, Kurata H, Morita Y, Nakasuji K (2010) J Am Chem Soc 132:14421Google Scholar
  106. 106.
    Chikamatsu M, Mikami T, Chisaka J, Yoshida Y, Azumi R, Yase K, Shimizu A, Kubo T, Morita Y, Nakasuji K (2007) App Phys Lett 91:043506Google Scholar
  107. 107.
    Mou Z, Uchida K, Kubo T, Kertesz M (2014) J Am Chem Soc 136:18009Google Scholar
  108. 108.
    Uchida K, Mou Z, Kertesz M, Kubo T (2016) J Am Chem Soc 138:4665Google Scholar
  109. 109.
    Nakano M, Kishi R, Nitta T, Kubo T, Nakasuji K, Kamada K, Ohta K, Champagne B, Botek E, Yamaguchi K (2005) J Phys Chem A 109:885Google Scholar
  110. 110.
    Ohta S, Nakano M, Kubo T, Kamada K, Ohta K, Kishi R, Nakagawa N, Champagne B, Botek E, Umezaki S-Y, Takebe A, Takahashi H, Furukawa S-I, Morita Y, Nakasuji K, Yamaguchi K (2006) Chem Phys Lett 420:432Google Scholar
  111. 111.
    Nakano M, Kubo T, Kamada K, Ohta K, Kishi R, Ohta S, Nakagawa N, Takahashi H, Furukawa S-I, Morita Y, Nakasuji K, Yamaguchi K (2006) Chem Phys Lett 418:142Google Scholar
  112. 112.
    Kamada K, Ohta K, Kubo T, Shimizu A, Morita Y, Nakasuji K, Kishi R, Ohta S, Furukawa S-I, Takahashi H, Nakano M (2007) Angew Chem Int Ed 46:3544Google Scholar
  113. 113.
    Kamada K, Ohta K, Shimizu A, Kubo T, Kishi R, Takahashi H, Botek E, Champagne B, Nakano M (2010) J Phys Chem Lett 1:937Google Scholar
  114. 114.
    Frederickson CK, Rose BD, Haley MM (2017) Acc Chem Res 50:977Google Scholar
  115. 115.
    Fix AG, Chase DT, Haley MM (2014) In: Siegel JS, Wu Y-T (eds) Polyarenes I, Top Curr Chem 349:159Google Scholar
  116. 116.
    Haley MM (2015) Chem Rec 15:1140Google Scholar
  117. 117.
    Zhou Q, Carroll PJ, Swager TM (1994) J Org Chem 59:1294Google Scholar
  118. 118.
    Scherf U (1993) Macromol Rapid Commun 14:575Google Scholar
  119. 119.
    Chase DT, Rose BD, McClintock SP, Zakharov LN, Haley MM (2011) Angew Chem Int Ed 50:1127Google Scholar
  120. 120.
    Chase DT, Fix AG, Kang SJ, Rose BD, Weber CD, Zhong Y, Zakharov LN, Lonergan MC, Nuckolls C, Haley MM (2012) J Am Chem Soc 134:10349Google Scholar
  121. 121.
    Rose BD, Zakharov LN, Haley MM (2013) Acta Cryst E69:o890Google Scholar
  122. 122.
    Chase DT, Fix AG, Rose BD, Weber CD, Nobusue S, Stockwell CE, Zakharov LN, Lonergan MC, Haley MM (2011) Angew Chem Int Ed 50:11103Google Scholar
  123. 123.
    Fu X, Zhao D (2015) Org Lett 17:5694Google Scholar
  124. 124.
    Nishida J-I, Tsukaguchi S, Yamashita Y (2012) Chem Eur J 18:8964Google Scholar
  125. 125.
    Frederickson CK, Zakharov LN, Haley MM (2016) J Am Chem Soc 138:16827Google Scholar
  126. 126.
    Young BS, Chase DT, Marshall JL, Vonnegut CL, Zakharov LN, Haley MM (2014) Chem Sci 5:1008Google Scholar
  127. 127.
    Marshall JL, Uchida K, Frederickson CK, Schütt C, Zeidell AM, Goetz KP, Finn TW, Jarolimek K, Zakharov LN, Risko C, Heges R, Jurchescu OD, Haley MM (2016) Chem Sci 7:5547Google Scholar
  128. 128.
    Marshall JL, O’Neal NJ, Zakharov LN, Haley MM (2016) J Org Chem 81:3674Google Scholar
  129. 129.
    Ren L, Liu C, Wang Z, Zhu X (2016) J Mater Chem C 4:5202Google Scholar
  130. 130.
    Gershoni-Poranne R, Stanger A (2014) Chem Eur J 20:5673Google Scholar
  131. 131.
    Anthony JE, Brooks JS, Eaton DL, Parkin SR (2001) J Am Chem Soc 123:9482Google Scholar
  132. 132.
    Ryno SM, Risko C, Bredas J-L (2014) J Am Chem Soc 136:6421Google Scholar
  133. 133.
    Lim Y-F, Shu Y, Parkin SR, Anthony JE, Malliars GG (2009) J Mater Chem 19:3049Google Scholar
  134. 134.
    Rose BD, Summer NJ, Filatov AS, Peters SJ, Zakharov LN, Petrukhina MA, Haley MM (2014) J Am Chem Soc 136:9181Google Scholar
  135. 135.
    Barker JE, Frederickson CK, Jones MH, Zakharov LN, Haley MM (2017) Org Lett 19:5312Google Scholar
  136. 136.
    Rudebush GE, Zafra JL, Jorner K, Fukuda K, Marshall JL, Arrechea-Marcos I, Espejo GL, Ortiz RP, Gómes-García CJ, Zakharov LN, Nakano M, Ottosson H, Casado J, Haley MM (2016) Nat Chem 8:753Google Scholar
  137. 137.
    Rose BD, Vonnegut CL, Zakharov LN, Haley MM (2012) Org Lett 14:2426Google Scholar
  138. 138.
    Rudebush GE, Espejo GL, Zafra JL, Peña-Alvarez M, Spisak SN, Fukuda K, Wei Z, Nakano M, Petrukhina M, Casado J, Haley MM (2016) J Am Chem Soc 138:12648Google Scholar
  139. 139.
    Maekawa T, Ueno H, Segawa Y, Haley MM, Itami K (2016) Chem Sci 7:650Google Scholar
  140. 140.
    Hu P, Lee S, Herng TS, Aratani N, Gonçalves TP, Qi Q, Shi X, Yamada H, Huang K-W, Ding J, Kim D, Wu J (2016) J Am Chem Soc 138:1065Google Scholar
  141. 141.
    Yang X, Liu D, Miao Q (2014) Angew Chem Int Ed 53:6786Google Scholar
  142. 142.
    Yang X, Shi X, Aratani N, Gonçalves TP, Huang K-W, Yamada H, Chi C, Miao Q (2016) Chem Sci 7:6176Google Scholar
  143. 143.
    Hibi D, Kitabayashi K, Fujita K, Takeda T, Tobe Y (2016) J Org Chem 81:3735Google Scholar
  144. 144.
    Liu J, Ma J, Zhang K, Ravat P, Machata P, Avdoshenko S, Hennersdorf F, Komber H, Pisula W, Weigand JJ, Popov AA, Berger R, Müllen K, Feng X (2017) J Am Chem Soc 139:7513Google Scholar
  145. 145.
    Fix AG, Deal PE, Vonnegut CL, Rose BD, Zakharov LN, Haley MM (2013) Org Lett 15:1362Google Scholar
  146. 146.
    Sbargoud K, Mamada M, Marrot J, Tokito S, Yassar A, Frigoli M (2015) Chem Sci 6:3402Google Scholar
  147. 147.
    Étienne A, Le Berre A (1956) C R Hebd Seances Acad Sci 242:1493Google Scholar
  148. 148.
    Étienne A, Le Berre A (1956) C R Hebd Seances Acad Sci 242:1899Google Scholar
  149. 149.
    Le Berre A (1956) C R Hebd Seances Acad Sci 242:2365Google Scholar
  150. 150.
    Le Berre A (1957) Ann Chim 13:371Google Scholar
  151. 151.
    Chalvet O, Peltier J (1956) Bull Soc Chim Fr 1667Google Scholar
  152. 152.
    Shimizu A, Tobe Y (2011) Angew Chem Int Ed 50:6906Google Scholar
  153. 153.
    Fukuda K, Nagami T, Fujiyoshi JY, Nakano M (2015) J Phys Chem A 119:10620Google Scholar
  154. 154.
    Gisin M, Wirz J (1976) Helv Chim Acta 59:2273Google Scholar
  155. 155.
    Steiner RP, Miller RD, Dewey HL, Michl J (1979) J Am Chem Soc 101:1820Google Scholar
  156. 156.
    Cofino WP, Engelsma M, Kamminga DA, Hoornweg PG, Gooijer C, MacLean C, Velthost NH (1984) Spectrochim Acta 40A:269Google Scholar
  157. 157.
    Jones WD, Pomfret A, Eife RL (1983) J Chem Soc Perkin Trans 1459Google Scholar
  158. 158.
    Miyoshi H, Nobusue S, Shimizu A, Hisaki I, Miyata M, Tobe T (2014) Chem Sci 5:163Google Scholar
  159. 159.
    Nobusue S, Tobe Y (2016) Synlett 21:2140Google Scholar
  160. 160.
    Shimizu A, Kishi R, Nakano M, Shiomi D, Sato K, Takui T, Hisaki I, Miyata M, Tobe Y (2013) Angew Chem Int Ed 52:6076Google Scholar
  161. 161.
    Miyoshi H, Miki M, Hirano S, Shimizu A, Kishi R, Fukuda K, Shiomi D, Sato K, Takui T, Hisaki I, Nakano M, Tobe Y (2017) J Org Chem 82:1380Google Scholar
  162. 162.
    Dreeler JJ, Zhou Z, Marshall JL, Kishi R, Takamuku S, Wei Z, Spisak SN, Nakano M, Petrukhina MA, Haley MM (2017) Angew Chem Int Ed 56:15363Google Scholar
  163. 163.
    Baird NC (1972) J Am Chem Soc 94:4941Google Scholar
  164. 164.
    Hellwinkel D, Reiff G (1970) Angew Chem Int Ed 82:516Google Scholar
  165. 165.
    Nobusue S, Miyoshi H, Shimizu A, Hisaki I, Fukuda K, Nakano M, Tobe Y (2015) Angew Chem Int Ed 54:2090Google Scholar
  166. 166.
    Miyoshi H, Nobusue S, Shimizu A, Tobe Y (2015) Chem Soc Rev 44:6560Google Scholar
  167. 167.
    Aihara J (2016) Bull Chem Soc Jpn 89:1425Google Scholar
  168. 168.
    Baryshnikov GV, Valiev RR, Karaush NN, Sundholm D, Minaev BF (2016) Phys Chem Chem Phys 18:8980Google Scholar
  169. 169.
    Dickens TK, Mallion RB (2013) Phys Chem Chem Phys 15:8245Google Scholar
  170. 170.
    Miyoshi H, Nishinaga T, Hisaki I, Nakano M, Petrukhina M, Tobe Y unpublished resultsGoogle Scholar
  171. 171.
    Das S, Herng TS, Zafra JL, Burrezo PM, Kitano M, Ishida M, Gopalakrishna TY, Hu P, Osaka A, Casado J, Ding J, Casanova D, Wu J (2016) J Am Chem Soc 138:7782Google Scholar
  172. 172.
    Lu X, Lee S, Hong Y, Phan H, Gopalakrishna TY, Herng TS, Tanaka T, Sandoval-Salinas ME, Zeng W, Ding J, Casanova D, Osuka A, Kim D, Wu J (2017) J Am Chem Soc 139:13173Google Scholar
  173. 173.
    Lu X, Lee S, Kim JO, Gopalakrishna TY, Phan H, Herng TS, Lim Z, Zeng Z, Ding J, Kim D, Wu J (2016) J Am Chem Soc 138:13048Google Scholar
  174. 174.
    Trost BM, Kinson PL (1975) J Am Chem Soc 97:2438Google Scholar
  175. 175.
    Reid DH, Stafford WH, Ward JP (1955) J Chem Soc 1193Google Scholar
  176. 176.
    Zahradník R, Michl J, Pancíř J (1966) Tetrahedron 22:1355Google Scholar
  177. 177.
    Hess BA Jr, Schaad LJ (1971) J Org Chem 36:3418Google Scholar
  178. 178.
    DasGupta A, DasGupta NK (1974) Theoret Chim Acta 33:177Google Scholar
  179. 179.
    Baumgartner P, Weltin E, Wagnière G, Heilbronner E (1965) Helv Chim Acta 48:751Google Scholar
  180. 180.
    Nendel M, Goldfuss B, Houk KN, Hafner K, Grieser U (1999) Theor Chem Acta 102:397Google Scholar
  181. 181.
    Grieser U, Hafner K (1994) Chem Ber 127:2307Google Scholar
  182. 182.
    Das S, Wu J (2015) Org Lett 17:5854Google Scholar
  183. 183.
    Brand K (1912) Ber Dtsch Chem Ges 45:3071Google Scholar
  184. 184.
    Bergmann ED (1959) In: Ginsburg D (ed) Non-Benzenoid Aromatic Compounds. Interscience, New York, p 141Google Scholar
  185. 185.
    Parkhurst RR, Swager TM (2014) In: Siegel JS, Wu YT (eds) Polyarenes II. Springer, Heidelberg, p 141Google Scholar
  186. 186.
    Rudebusch GE, Haley MM (2016) In: Miao Q (ed) Polycyclic Arenes and Heteroarenes. Wiley, Weinheim, p 37Google Scholar
  187. 187.
    Konishi A, Okada Y, Nakano M, Sugisaki K, Sato K, Kakui T, Yasuda M (2017) J Am Chem Soc 139:15284Google Scholar
  188. 188.
    Wang Q, Gopalakrishna TY, Phan H, Herng TS, Dong S, Ding J, Chi C (2017) Angew Chem Int Ed 56:11415Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan

Personalised recommendations