Advertisement

Topics in Current Chemistry

, 376:4 | Cite as

Single-Walled Carbon Nanotubes in Solar Cells

  • Il Jeon
  • Yutaka Matsuo
  • Shigeo Maruyama
Review
Part of the following topical collections:
  1. Single-Walled Carbon Nanotubes: Preparation, Property and Application

Abstract

Photovoltaics, more generally known as solar cells, are made from semiconducting materials that convert light into electricity. Solar cells have received much attention in recent years due to their promise as clean and efficient light-harvesting devices. Single-walled carbon nanotubes (SWNTs) could play a crucial role in these devices and have been the subject of much research, which continues to this day. SWNTs are known to outperform multi-walled carbon nanotubes (MWNTs) at low densities, because of the difference in their optical transmittance for the same current density, which is the most important parameter in comparing SWNTs and MWNTs. SWNT films show semiconducting features, which make SWNTs function as active or charge-transporting materials. This chapter, consisting of two sections, focuses on the use of SWNTs in solar cells. In the first section, we discuss SWNTs as a light harvester and charge transporter in the photoactive layer, which are reviewed chronologically to show the history of the research progress. In the second section, we discuss SWNTs as a transparent conductive layer outside of the photoactive layer, which is relatively more actively researched. This section introduces SWNT applications in silicon solar cells, organic solar cells, and perovskite solar cells each, from their prototypes to recent results. As we go along, the science and prospects of the application of solar cells will be discussed.

Keywords

Carbon nanotube Silicon solar cells Organic solar cells Perovskite solar cells 

References

  1. 1.
    Avouris P, Freitag M, Perebeinos V (2008) Carbon–nanotube photonics and optoelectronics. Nat Photon 2(6):341–350CrossRefGoogle Scholar
  2. 2.
    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596CrossRefGoogle Scholar
  3. 3.
    Lebedkin S, Hennrich F, Kiowski O, Kappes MM (2008) Photophysics of carbon nanotubes in organic polymer–toluene dispersions: emission and excitation satellites and relaxation pathways. Phys Rev B 77(16):165429CrossRefGoogle Scholar
  4. 4.
    Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103(1–3):2555–2558CrossRefGoogle Scholar
  5. 5.
    Berson S, de Bettignies R, Bailly S, Guillerez S, Jousselme B (2007) Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv Funct Mater 17(16):3363–3370CrossRefGoogle Scholar
  6. 6.
    Chaudhary S, Lu H, Müller AM, Bardeen CJ, Ozkan M (2007) Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer–fullerene solar cells. Nano Lett 7(7):1973–1979CrossRefGoogle Scholar
  7. 7.
    Ma BH, Yip H, Huang F, Jen AK-Y, Ma H, Yip H, Huang F, Jen AK-Y (2010) Interface engineering for organic electronics. Adv Funct Mater 20(9):1371–1388CrossRefGoogle Scholar
  8. 8.
    Steim R, Kogler FR, Brabec CJ (2010) Interface materials for organic solar cells. J Mater Chem 20(13):2499–2512CrossRefGoogle Scholar
  9. 9.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRefGoogle Scholar
  10. 10.
    Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon 3(5):297–302CrossRefGoogle Scholar
  11. 11.
    Huynh WU (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427CrossRefGoogle Scholar
  12. 12.
    Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87(7):073101CrossRefGoogle Scholar
  13. 13.
    Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photon 2(6):341–350CrossRefGoogle Scholar
  14. 14.
    Fuhrer MS (2000) Crossed nanotube junctions. Science 288(5465):494–497CrossRefGoogle Scholar
  15. 15.
    Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang JQ, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(7506):522–524CrossRefGoogle Scholar
  16. 16.
    Yuan Y, Karahan HE, Yıldırım C, Wei L, Birer Ö, Zhai S, Laua R, Chen Y (2016) “Smart poisoning” of Co/SiO2 catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes. Nanoscale 8:17705–17713CrossRefGoogle Scholar
  17. 17.
    Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5(4):713–718CrossRefGoogle Scholar
  18. 18.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65CrossRefGoogle Scholar
  19. 19.
    Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309CrossRefGoogle Scholar
  20. 20.
    Fagan JA, Khripin CY, Silvera Batista CA, Simpson JR, Hároz EH, Hight Walker AR, Zheng M (2014) Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv Mater 26(18):2800–2804CrossRefGoogle Scholar
  21. 21.
    Kymakis E, Alexandrou I, Amaratunga GAJ (2003) High open-circuit voltage photovoltaic devices from carbon–nanotube–polymer composites. J Appl Phys 93(3):1764CrossRefGoogle Scholar
  22. 22.
    Landi BJ, Raffaelle RP, Castro SL, Bailey SG (2005) Single-wall carbon nanotube-polymer solar cells. Prog Photovolt Res Appl 13(2):165–172CrossRefGoogle Scholar
  23. 23.
    Kazaoui S, Minami N, Nalini B, Kim Y, Hara K (2005) Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J Appl Phys 98(8):084314CrossRefGoogle Scholar
  24. 24.
    Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11(15):1281–1285CrossRefGoogle Scholar
  25. 25.
    Kymakis E, Amaratunga GAJ (2002) Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett 80(1):112CrossRefGoogle Scholar
  26. 26.
    Pradhan B, Batabyal SK, Pal AJ (2006) Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl Phys Lett 88(9):093106CrossRefGoogle Scholar
  27. 27.
    Li C, Chen Y, Wang Y, Iqbal Z, Chhowalla M, Mitra S (2007) A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction Photovoltaic cells. J Mater Chem 17(23):2406–2411CrossRefGoogle Scholar
  28. 28.
    Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15(9):1317–1323CrossRefGoogle Scholar
  29. 29.
    Ren S, Bernardi M, Lunt RR, Bulovic V, Grossman JC, Gradečak S (2011) Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties. Nano Lett 11(12):5316–5321CrossRefGoogle Scholar
  30. 30.
    Bindl DJ, Safron NS, Arnold MS (2010) Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces. ACS Nano 4(10):5657–5664CrossRefGoogle Scholar
  31. 31.
    Arnold MS, Zimmerman JD, Renshaw CK, Xu X, Lunt RR, Austin CM, Forrest SR (2009) Broad spectral response using carbon nanotube/organic semiconductor/c 60 photodetectors. Nano Lett 9(9):3354–3358CrossRefGoogle Scholar
  32. 32.
    Bindl DJ, Wu MY, Prehn FC, Arnold MS (2011) Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett 11(2):455–460CrossRefGoogle Scholar
  33. 33.
    Bindl DJ, Brewer AS, Arnold MS (2011) Semiconducting carbon nanotube/fullerene blended heterojunctions for photovoltaic near-infrared photon harvesting. Nano Res. 4(11):1174–1179CrossRefGoogle Scholar
  34. 34.
    Jain RM, Howden R, Tvrdy K, Shimizu S, Hilmer AJ, McNicholas TP, Gleason KK, Strano MS (2012) Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers. Adv Mater 24(32):4436–4439CrossRefGoogle Scholar
  35. 35.
    Raj R, Maroo SC, Wang EN (2013) Wettability of graphene. Nano Lett 13(4):1509–1515CrossRefGoogle Scholar
  36. 36.
    Rafiee J, Mi X, Gullapalli H, Thomas AV, Yavari F, Shi Y, Ajayan PM, Koratkar NA (2012) Wetting transparency of graphene. Nat Mater 11(3):217–222CrossRefGoogle Scholar
  37. 37.
    Wang SR, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25(18):11078–11081CrossRefGoogle Scholar
  38. 38.
    Kim BH, Kim JY, Jeong SJ, Hwang JO, Lee DH, Shin DO, Choi SY, Kim SO (2010) Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography. ACS Nano 4(9):5464–5470CrossRefGoogle Scholar
  39. 39.
    Shin YJ, Wang Y, Huang H, Kalon G, Wee ATS, Shen Z, Bhatia CS, Yang H (2010) Surface-energy engineering of graphene. Langmuir 26(6):3798–3802CrossRefGoogle Scholar
  40. 40.
    Tung VC, Huang J-HJ, Kim J, Smith AJ, Chu C-W, Huang J-HJ (2012) Towards solution processed all-carbon solar cells: a perspective. Energy Environ Sci 5(7):7810CrossRefGoogle Scholar
  41. 41.
    Tung VC, Huang JH, Tevis I, Kim F, Kim J, Chu CW, Stupp SI, Huang J (2011) Surfactant-free water-processable photoconductive all-carbon composite. J Am Chem Soc 133(13):4940–4947CrossRefGoogle Scholar
  42. 42.
    Bernardi M, Lohrman J, Kumar PV, Kirkeminde A, Ferralis N, Grossman JC, Ren S (2012) Nanocarbon-based photovoltaics. ACS Nano 6(10):8896–8903CrossRefGoogle Scholar
  43. 43.
    Ramuz MP, Vosgueritchian M, Wei P, Wang C, Gao Y, Wu Y, Chen Y, Bao Z (2012) Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells. ACS Nano 6(11):10384–10395CrossRefGoogle Scholar
  44. 44.
    Wang H, Koleilat GI, Liu P, Jiménez-Osés G, Lai Y-C, Vosgueritchian M, Fang Y, Park S, Houk KN, Bao Z (2014) High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors. ACS Nano 8(3):2609–2617CrossRefGoogle Scholar
  45. 45.
    Gong M, Shastry TA, Xie Y, Bernardi M, Jasion D, Luck KA, Marks TJ, Grossman JC, Ren S, Hersam MC (2014) Polychiral semiconducting carbon nanotube-fullerene solar cells. Nano Lett 14(9):5308–5314CrossRefGoogle Scholar
  46. 46.
    Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater 23(5):629–633CrossRefGoogle Scholar
  47. 47.
    Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions. Adv Mater 17(20):2458–2463CrossRefGoogle Scholar
  48. 48.
    Barazzouk S, Hotchandani S, Vinodgopal K, Kamat PV (2004) Single-wall carbon nanotube films for photocurrent generation. A prompt response to visible-light irradiation. J Phys Chem B 108(44):17015–17018CrossRefGoogle Scholar
  49. 49.
    Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87(1–4):733–746CrossRefGoogle Scholar
  50. 50.
    Lee JM, Kwon B-HH, Park H, Kim H, Kim MG, Park JS, Kim ES, Yoo S, Jeon DY, Kim SO (2013) Exciton dissociation and charge-transport enhancement in organic solar cells with quantum-dot/N-doped CNT hybrid nanomaterials. Adv Mater 25(14):2011–2017CrossRefGoogle Scholar
  51. 51.
    Lu L, Xu T, Chen W, Lee JM, Luo Z, Jung IH, Park H, Kim SO, Yu L (2013) The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. Nano Lett 13(6):2365–2369CrossRefGoogle Scholar
  52. 52.
    Jeon I, Kutsuzawa D, Hashimoto Y, Yanase T, Nagahama T, Shimada T, Matsuo Y (2015) Multilayered MoS2 nanoflakes bound to carbon nanotubes as electron acceptors in bulk heterojunction inverted organic solar cells. Org Electron 17:275–280CrossRefGoogle Scholar
  53. 53.
    Thompson BC, Fréchet JMJ (2008) Polymer–fullerene composite solar cells. Angew Chemie Int Ed 47(1):58–77CrossRefGoogle Scholar
  54. 54.
    Nelson J (2011) Polymer:fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470CrossRefGoogle Scholar
  55. 55.
    Dennler G, Scharber MC, Brabec CJ (2009) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338CrossRefGoogle Scholar
  56. 56.
    Zilberberg K, Gasse F, Pagui R, Polywka A, Behrendt A, Trost S, Heiderhoff R, Görrn P, Riedl T (2014) Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Adv Funct Mater 24(12):1671–1678CrossRefGoogle Scholar
  57. 57.
    Inganäs O (2011) Organic photovoltaics: avoiding indium. Nat Photon 5(4):201–202CrossRefGoogle Scholar
  58. 58.
    Yang M, Kim D, Jha H, Lee K, Paul J, Schmuki P (2011) Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem Commun 47(7):2032–2034CrossRefGoogle Scholar
  59. 59.
    Delacou C, Jeon I, Seo S, Nakagawa T, Kauppinen EI, Maruyama S, Matsuo Y (2017) Indium tin oxide-free small molecule organic solar cells using single-walled carbon nanotube electrodes. ECS J. Solid State Sci. Technol. 6(6):M3181–M3184CrossRefGoogle Scholar
  60. 60.
    Sakaguchi T, Jeon I, Chiba T, Shawky A, Xiang R, Chiashi S, Kauppinen EI, Park N-G, Matsuo Y, Maruyama S (2017) Single-walled carbon nanotube-based metal-free perovskite solar cells with improved stability and efficiency. J Mater Chem A (Submitted)Google Scholar
  61. 61.
    Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube Films. Science 305(5688):1273–1276CrossRefGoogle Scholar
  62. 62.
    Lee YH, Kim SG, Tománek D (1997) Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys Rev Lett 78(12):2393–2396CrossRefGoogle Scholar
  63. 63.
    Nasibulin AG, Kaskela A, Mustonen K, Anisimov AS, Ruiz V, Kivistö S, Rackauskas S, Timmermans MY, Pudas M, Aitchison B, Kauppinen M, Brown DP, Okhotnikov OG, Kauppinen EI (2011) Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 5(4):3214–3221CrossRefGoogle Scholar
  64. 64.
    van de Lagemaat J, Barnes TM, Rumbles G, Shaheen SE, Coutts TJ, Weeks C, Levitsky I, Peltola J, Glatkowski P (2006) Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode. Appl Phys Lett 88(23):233503CrossRefGoogle Scholar
  65. 65.
    Ahn N, Jeon I, Yoon J, Kauppinen EI, Yutaka M, Maruyama S, Choi M (2018) Carbon-sandwiched perovskite solar cell. J Mater Chem A.  https://doi.org/10.1039/C7TA09174E Google Scholar
  66. 66.
    Schneider J, Rohner P, Thureja D, Schmid M, Galliker P, Poulikakos D (2016) Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes. Adv Funct Mater 26:833–840CrossRefGoogle Scholar
  67. 67.
    Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato JP (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):452001CrossRefGoogle Scholar
  68. 68.
    Cao W, Li J, Chen H, Xue J (2014) Transparent electrodes for organic optoelectronic devices: a review. J Photonics Energy 4:040990CrossRefGoogle Scholar
  69. 69.
    Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRefGoogle Scholar
  70. 70.
    Hou PX, Yu B, Su Y, Shi C, Zhang LL, Liu C, Li SS, Du JH, Cheng HM (2014) Double-wall carbon nanotube transparent conductive films with excellent performance. J Mater Chem A 2:1159–1164CrossRefGoogle Scholar
  71. 71.
    Hecht DS, Heintz AM, Lee R, Hu L, Moore B, Cucksey C, Risser S (2011) High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 22:075201CrossRefGoogle Scholar
  72. 72.
    Tune DD, Flavel BS, Krupke R, Shapter JG (2012) Carbon nanotube-silicon solar cells. Adv Energy Mater 2(9):1043–1055CrossRefGoogle Scholar
  73. 73.
    Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett 13(1):95–99CrossRefGoogle Scholar
  74. 74.
    Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D, Zhang G, Wang Z, Luo J, Cao A, Wu D (2007) Double-walled carbon nanotube solar cells. Nano Lett 7(8):2317–2321CrossRefGoogle Scholar
  75. 75.
    Wenham SR, Green MA (1996) Silicon solar cells. Prog Photovolt Res Appl 4(1):3–33CrossRefGoogle Scholar
  76. 76.
    Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H, Kong J (2015) Role of interfacial oxide in high-efficiency graphene-silicon schottky barrier solar cells. Nano Lett 15(3):2104–2110CrossRefGoogle Scholar
  77. 77.
    Shi E, Zhang L, Li Z, Li P, Shang Y, Jia Y, Wei J, Wang K, Zhu H, Wu D, Zhang S, Cao A (2012) TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep 2:884CrossRefGoogle Scholar
  78. 78.
    Anderson WA (1974) An 8% efficient layered Schottky-barrier solar cell. J Appl Phys 45(9):3913CrossRefGoogle Scholar
  79. 79.
    Tung RT (2001) Recent advances in Schottky barrier concepts. Mater Sci Eng R Rep 35(1–3):1–138CrossRefGoogle Scholar
  80. 80.
    Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L, Liu W, Wang Z, Luo J, Wu D (2008) Nanotube-silicon heterojunction solar cells. Adv Mater 20(23):4594CrossRefGoogle Scholar
  81. 81.
    Li Z, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS (2008) SOCl2 enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions. Appl Phys Lett 93(24):243117CrossRefGoogle Scholar
  82. 82.
    Li Z, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS (2009) Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano 3(6):1407–1414CrossRefGoogle Scholar
  83. 83.
    Li Z, Jia Y, Wei J, Wang K, Shu Q, Gui X, Zhu H, Cao A, Wu D (2010) Large area, highly transparent carbon nanotube spiderwebs for energy harvesting. J Mater Chem 20(34):7236CrossRefGoogle Scholar
  84. 84.
    Blackburn JL, Barnes TM, Beard MC, Kim Y-H, Tenent RC, McDonald TJ, To B, Coutts TJ, Heben MJ (2008) Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano 2(6):1266–1274CrossRefGoogle Scholar
  85. 85.
    Ong P-L, Euler WB, Levitsky IA (2010) Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21(10):105203CrossRefGoogle Scholar
  86. 86.
    Wadhwa P, Liu B, McCarthy MA, Wu Z, Rinzler AG (2010) Electronic junction control in a nanotube-semiconductor Schottky junction solar cell. Nano Lett 10(12):5001–5005CrossRefGoogle Scholar
  87. 87.
    Jia Y, Cao A, Bai X, Li Z, Zhang L, Guo N, Wei J, Wang K, Zhu H, Wu D, Ajayan PM (2011) Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett 11(5):1901–1905CrossRefGoogle Scholar
  88. 88.
    Jia Y, Li P, Gui X, Wei J, Wang K, Zhu H, Wu D, Zhang L, Cao A, Xu Y (2011) Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency. Appl Phys Lett 98(13):133115CrossRefGoogle Scholar
  89. 89.
    Wadhwa P, Seol G, Petterson MK, Guo J, Rinzler AG (2011) Electrolyte-induced inversion layer Schottky junction solar cells. Nano Lett 11(6):2419–2423CrossRefGoogle Scholar
  90. 90.
    Chen W, Seol G, Rinzler AG, Guo J (2012) Carrier dynamics and design optimization of electrolyte-induced inversion layer carbon nanotube-silicon Schottky junction solar cell. Appl Phys Lett 100(10):103503CrossRefGoogle Scholar
  91. 91.
    Kozawa D, Hiraoka K, Miyauchi Y, Mouri S, Matsuda K (2012) Analysis of the photovoltaic properties of single-walled carbon nanotube/silicon heterojunction solar cells. Appl Phys Express 5(4):042304CrossRefGoogle Scholar
  92. 92.
    Li X, Jung Y, Sakimoto K, Goh TH, Reed MA, Taylor AD (2013) Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci 6(3):879–887CrossRefGoogle Scholar
  93. 93.
    Cui K, Chiba T, Omiya S, Thurakitseree T, Zhao P, Fujii S, Kataura H, Einarsson E, Chiashi S, Maruyama S (2013) Self-Assembled microhoneycomb network of single-walled carbon nanotubes for solar cells. J Phys Chem Lett 4(15):2571–2576CrossRefGoogle Scholar
  94. 94.
    Xu W, Deng B, Shi E, Wu S, Zou M, Yang L, Wei J, Peng H, Cao A (2015) Comparison of nanocarbon-silicon solar cells with nanotube–Si or graphene–Si contact. ACS Appl Mater Interfaces 7(31):17088–17094CrossRefGoogle Scholar
  95. 95.
    Cui K, Anisimov AS, Chiba T, Fujii S, Kataura H, Nasibulin AG, Chiashi S, Kauppinen EI, Maruyama S (2014) Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J Mater Chem A 2(29):11311–11318CrossRefGoogle Scholar
  96. 96.
    Li Z, Saini V, Dervishi E, Kunets VP, Zhang J, Xu Y, Biris AR, Salamo GJ, Biris AS (2010) Polymer functionalized n-type single wall carbon nanotube photovoltaic devices. Appl Phys Lett 96(3):033110CrossRefGoogle Scholar
  97. 97.
    Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015) Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Commun 6:6305CrossRefGoogle Scholar
  98. 98.
    Dou L, You J, Yang J, Chen C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y (2012) Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photon 6(3):180–185CrossRefGoogle Scholar
  99. 99.
    Angmo D, Krebs FC (2013) Flexible ITO-free polymer solar cells. J Appl Polym Sci 129(1):1–14CrossRefGoogle Scholar
  100. 100.
    Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860CrossRefGoogle Scholar
  101. 101.
    Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, You J, Yang Y, Chen Y (2011) Spin-coated small molecules for high performance solar cells. Adv Energy Mater 1(5):771–775CrossRefGoogle Scholar
  102. 102.
    Li S-S, Chen C-W (2013) Polymer–metal-oxide hybrid solar cells. J Mater Chem A 1(36):10574CrossRefGoogle Scholar
  103. 103.
    Rowell MW, Topinka MA, McGehee MD, Prall H-J, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88(23):233506CrossRefGoogle Scholar
  104. 104.
    De Gomez Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873CrossRefGoogle Scholar
  105. 105.
    Unalan HE, Hiralal P, Kuo D, Parekh B, Amaratunga G, Chhowalla M (2008) Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films. J Mater Chem 18(48):5909CrossRefGoogle Scholar
  106. 106.
    Kymakis E, Klapsis G, Koudoumas E, Stratakis E, Kornilios N, Vidakis N, Franghiadakis Y (2006) Carbon nanotube/PEDOT:PSS electrodes for organic photovoltaics. Eur Phys J Appl Phys 36(3):257–259CrossRefGoogle Scholar
  107. 107.
    Kim S, Yim J, Wang X, Bradley DDC, Lee S, DeMello JC (2010) Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv Funct Mater 20(14):2310–2316CrossRefGoogle Scholar
  108. 108.
    Tyler TP, Brock RE, Karmel HJ, Marks TJ, Hersam MC (2011) Electronically monodisperse single-walled carbon nanotube thin films as transparent conducting anodes in organic photovoltaic devices. Adv Energy Mater 1(5):785–791CrossRefGoogle Scholar
  109. 109.
    Salvatierra RV, Cava CE, Roman LS, Zarbin AJG (2013) ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films. Adv Funct Mater 23(12):1490–1499CrossRefGoogle Scholar
  110. 110.
    Jeon I, Cui K, Chiba T, Anisimov A, Nasibulin AG, Kauppinen EI, Maruyama S, Matsuo Y (2015) Direct and dry deposited single-walled carbon nanotube films doped with MoOx as electron-blocking transparent electrodes for flexible organic solar cells. J Am Chem Soc 137(25):7982–7985CrossRefGoogle Scholar
  111. 111.
    Hellstrom SL, Vosgueritchian M, Stoltenberg RM, Irfan I, Hammock M, Wang YB, Jia C, Guo X, Gao Y, Bao Z (2012) Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett 12(7):3574–3580CrossRefGoogle Scholar
  112. 112.
    Shin D-W, Lee JH, Kim Y-H, Yu SM, Park S-Y, Yoo J-B (2009) A role of HNO3 on transparent conducting film with single-walled carbon nanotubes. Nanotechnology 20(47):475703CrossRefGoogle Scholar
  113. 113.
    Deb SK (1966) Optical properties and color-center formation in thin films of molybdenum trioxide. J Appl Phys 37(13):4818CrossRefGoogle Scholar
  114. 114.
    Jeon I, Delacou C, Kaskela A, Kauppinen IE, Maruyama S, Matsuo Y (2016) Metal-electrode-free window-like organic solar cells with p-doped carbon nanotube thin-film electrodes. Sci Rep 6:31348CrossRefGoogle Scholar
  115. 115.
    Chappel S, Chen S-G, Zaban A (2002) TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells. Langmuir 18(8):3336–3342CrossRefGoogle Scholar
  116. 116.
    Suzuki K, Yamaguchi M, Kumagai M, Yanagida S (2003) Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem Lett 32(1):28–29CrossRefGoogle Scholar
  117. 117.
    Kay A, Grätzel M (1996) Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol Energy Mater Sol Cells 44(1):99–117CrossRefGoogle Scholar
  118. 118.
    Jang S-R, Vittal R, Kim K-J (2004) Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells. Langmuir 20(22):9807–9810CrossRefGoogle Scholar
  119. 119.
    Kongkanand A, Martínez Domínguez R, Kamat PV (2007) Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. capture and transport of photogenerated electrons. Nano Lett 7(3):676–680CrossRefGoogle Scholar
  120. 120.
    Lee TY, Alegaonkar PS, Yoo J-B (2007) Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films 515(12):5131–5135CrossRefGoogle Scholar
  121. 121.
    Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630CrossRefGoogle Scholar
  122. 122.
    Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photon 8(7):506–514CrossRefGoogle Scholar
  123. 123.
    McGehee MD (2014) Perovskite solar cells: continuing to soar. Nat Mater 13(9):845–846CrossRefGoogle Scholar
  124. 124.
    Jeon I, Chiba T, Delacou C, Guo Y, Kaskela A, Reynaud O, Kauppinen EI, Maruyama S, Matsuo Y (2015) Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett 15(10):6665–6671CrossRefGoogle Scholar
  125. 125.
    Li Z, Kulkarni SA, Boix PP, Shi E, Cao A, Fu K, Batabyal SK, Zhang J, Xiong Q, Wong LH, Mathews N, Mhaisalkar SG (2014) Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8(7):6797–6804CrossRefGoogle Scholar
  126. 126.
    Wang X, Li Z, Xu W, Kulkarni SA, Batabyal SK, Zhang S, Cao A, Wong LH (2015) TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11:728–735CrossRefGoogle Scholar
  127. 127.
    Aitola K, Sveinbjörnsson K, Correa-Baena J-P, Kaskela A, Abate A, Tian Y, Johansson EMJ, Grätzel M, Kauppinen EI, Hagfeldt A, Boschloo G (2016) Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ Sci 9(2):461–466CrossRefGoogle Scholar
  128. 128.
    Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14(10):5561–5568CrossRefGoogle Scholar
  129. 129.
    Jeon I, Yoon J, Ahn N, Atwa M, Delacou C, Sota M, Kauppinen EI, Choi M, Maruyama S, Matsuo Y (2017) Carbon nanotubes versus graphene as flexible transparent electrodes in perovskite solar cells. J Phys Chem Lett 8:5395–5401CrossRefGoogle Scholar
  130. 130.
    Jeon I, Seo S, Sato Y, Delacou C, Suenaga K, Kauppinen EI, Maruyama S, Matsuo Y (2017) Perovskite solar cells using carbon nanotubes as both cathode and anode electrodes’. J Phys Chem C 21(46):25743–25749CrossRefGoogle Scholar
  131. 131.
    Choe M, Lee BH, Jo G, Park J, Park W, Lee S, Hong WK, Seong MJ, Kahng YH, Lee K, Lee T (2010) Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org Electron Phys Mater Appl 11(11):1864–1869Google Scholar
  132. 132.
    Du J, Pei S, Ma L, Cheng H-M (2014) 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv Mater 26(13):1958–1991CrossRefGoogle Scholar
  133. 133.
    Jo G, Choe M, Lee S, Park W, Kahng YH, Lee T (2012) The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23(11):112001CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of TokyoTokyoJapan
  2. 2.Hefei National Laboratory for Physical Sciences at MicroscaleUniversity of Science and Technology of ChinaAnhuiChina
  3. 3.Energy Nano Engineering LaboratoryNational Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan

Personalised recommendations