Topics in Current Chemistry

, 375:88 | Cite as

Biogenesis of Selenium Nanoparticles Using Green Chemistry

  • Sara Shoeibi
  • Paul Mozdziak
  • Afsaneh Golkar-Narenji
Review
  • 194 Downloads

Abstract

Selenium binds some enzymes such as glutathione peroxidase and thioredoxin reductase, which may be activated in biological infections and oxidative stress. Chemical and physical methods for synthesizing nanoparticles, apart from being expensive, have their own particular risks. However, nanoparticle synthesis through green chemistry is a safe procedure that different biological sources such as bacteria, fungi, yeasts, algae and plants can be the catalyst bed for processing. Synthesis of selenium nanoparticles (SeNPs) by macro/microorganisms causes variation in morphology and shape of the particles is due to diversity of reduction enzymes in organisms. Reducing enzymes of microorganisms by changing the status of redox convert metal ions (Se2−) to SeNPs without charge (Se0). Biological activity of SeNPs includes their protective role against DNA oxidation. Because of the biological and industrial properties, SeNPs have wide applications in the fields of medicine, microelectronic, agriculture and animal husbandry. SeNPs can show strong antimicrobial effects on the growth and proliferation of microorganisms in a dose-dependent manner. The objective of this review is to consider SeNPs applications to various organisms.

Keywords

SeNps Green chemistry Reduction Applications Antimicrobial 

Notes

Acknowledgements

We wish to thank from Drs. Darroudi and Oskouyi for their encouragement for writing this review.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Meng Z, Li G, Wong H-F, Ng S-M, Yiu S-C, Ho C-L, Leung C-W, Manners I, Wong W-Y (2017) Patterning of L10 FePt nanoparticles with ultra-high coercivity for bit-patterned media. Nanoscale 9:731–738CrossRefGoogle Scholar
  2. 2.
    Dong Q, Li G, Ho C-L, Leung C-W, Pong P-W-T, Manners I, Wong W-Y (2014) Facile generation of L10-FePt nanodot arrays from a nanopatterned metallopolymer blend of iron and platinum homopolymers. Adv Funct Mater 24(6):857–862CrossRefGoogle Scholar
  3. 3.
    Dong Q, Qu W, Liang W, Guo K, Xue H, Guo Y, Meng Z, Ho C-L, Leung C-W, Wong W-Y (2016) Metallopolymer precursors to L10-CoPt nanoparticles: synthesis, characterization, nanopatterning and potential application. Nanoscale 8(13):7068–7074CrossRefGoogle Scholar
  4. 4.
    Dong Q, Tai F, Lian H, Zhao B, Zhong Z, Chen Z, Tang J, Zhu F (2017) Realization of efficient light out-coupling in organic light-emitting diodes with surface carbon-coated magnetic alloy nanoparticles. Nanoscale 9(8):2875–2882CrossRefGoogle Scholar
  5. 5.
    Dong Q, Qu W, Liang W, Tai F, Guo K, Leung CW, Wong WY (2016) Porphyrin-based metallopolymers: synthesis, characterization and pyrolytic study for the generation of magnetic metal nanoparticles. J Mater Chem C 4(22):5010–5018CrossRefGoogle Scholar
  6. 6.
    Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6(6):651–663CrossRefGoogle Scholar
  7. 7.
    Zhanga W, Chena Z, Liua H, Zhangb L, Gaoa P, Li D (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B 88:196–202.  https://doi.org/10.1016/j.colsurfb.2011.06.031 CrossRefGoogle Scholar
  8. 8.
    Gao X, Zhang J, Zhang L (2002) Hollow sphere selenium nanoparticles: their in vitro anti hydroxyl radical effect. Adv Mater 14:290–293CrossRefGoogle Scholar
  9. 9.
    Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavenging efficiency of nano-Se in vitro. Free Radic Biol Med 35:805–813CrossRefGoogle Scholar
  10. 10.
    Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:52.  https://doi.org/10.1186/1475-2859-9-52 CrossRefGoogle Scholar
  11. 11.
    El-Batal AI, Thabet NM, Moustafa AO, Abdel Ghaffar ARB, Azab KS (2012) Amelioration of oxidative damage induced in gamma irradiated rats by nano selenium and lovastatin mixture. World Appl Sci 19(7):962–971.  https://doi.org/10.5829/idosi.wasj.2012.19.07.2778 Google Scholar
  12. 12.
    Berggren MM, Mangin JF, Gasdaska JR, Powis G (1999) Effect of selenium on rat thioredoxin reductase activity. Biochem Pharmacol 57(2):187–193CrossRefGoogle Scholar
  13. 13.
    Kannan N, Subbalaxmi S (2011) Biogenesis of nanoparticles—a current perspective. Rev Adv Mater Sci 27:99–114Google Scholar
  14. 14.
    Eszenyi P, Sztrik A, Babka B, Prokisch J (2011) Elemental, nano-sized (100–500 nm) selenium production by probiotic lactic acid bacteria. Int J Biosci Biochem Bioinform 1(2):148–153Google Scholar
  15. 15.
    Bhattacharya D, Rajinder G (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204CrossRefGoogle Scholar
  16. 16.
    Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262.  https://doi.org/10.1016/j.nano.2009.07.002 CrossRefGoogle Scholar
  17. 17.
    Oremland RS, Blum JS, Culbertson CW, Visscher PT, Miller LG, Dowdle P, Strohmaier FE (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60(8):3011–3019Google Scholar
  18. 18.
    Lortie L, Gould WD, Rajan S, McCready RGL, Cheng KJ (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58(12):4042–4044Google Scholar
  19. 19.
    Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70(1):52–60CrossRefGoogle Scholar
  20. 20.
    Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol 244:26–29.  https://doi.org/10.1016/j.powtec.2013.03.050 CrossRefGoogle Scholar
  21. 21.
    Pearce CI, Coker VS, Charnock JM, Pattrick RAD, Mosselmans JFW, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:155–603.  https://doi.org/10.1088/0957-4484/19/15/155603 Google Scholar
  22. 22.
    Bajaj M, Schmidt S, Winter J (2012) Formation of Se (0) Nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of North-East Punjab, India. Microb Cell Fact 11:A64CrossRefGoogle Scholar
  23. 23.
    Jafari Fesharaki P, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41(2):461–466CrossRefGoogle Scholar
  24. 24.
    Sahverdi AR, Fakhimi A, Mosavat G, Jafari-Fesharaki P, Rezaie S, Rezayat SM (2010) Antifungal activity of biogenic selenium nanoparticles. World Appl Sci J 10(8):918–922Google Scholar
  25. 25.
    Bahri Kazempour Z, Yazdi MH, Rafii F, Shahverdi AR (2013) Sub-inhibitory concentration of biogenic selenium nanoparticles lacks post antifungal effect for Aspergillus niger and Candida albicans and stimulates the growth of Aspergillus niger. Iran J Microbiol 5(1):81–85Google Scholar
  26. 26.
    Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl. Biochem 56:7–15.  https://doi.org/10.1042/BA20100042 Google Scholar
  27. 27.
    Dwivedi S, AlKhedhairy AA, Ahamed M, Musarrat J (2013) Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel Se-bioassay. PLoS ONE 8(3):1–10.  https://doi.org/10.1371/journal.pone.0057404.g002 CrossRefGoogle Scholar
  28. 28.
    Debieuxa CM, Dridgea EJ, Muellera CM, Splatta P, Paszkiewicza K, Knighta I, Florancea H, Lovea J, Titballa RW, Lewisb RJ, Richardsonc DJ, Butler CS (2011) A bacterial process for selenium nanosphere assembly. PNAS 108(33):1–6.  https://doi.org/10.1073/pnas.1105959108/-/DCSupplemental Google Scholar
  29. 29.
    Tam K, Ho CT, Lee J-H, Lai M, Chang CH, Rheem Y, Chen W, Hur H-G, Myung NV (2010) Growh mechanism of amorphous selenium nanoparticles synthesized by Shewanella sp. HN-41. Biosci Biotechnol Biochem 74(4):696–700.  https://doi.org/10.1271/bbb.90454 CrossRefGoogle Scholar
  30. 30.
    Lee J-H, Han J, Choi H, Hur H-G (2007) Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 68:1898–1905.  https://doi.org/10.1016/j.chemosphere.2007.02.062 CrossRefGoogle Scholar
  31. 31.
    Yee N, Ma J, Dalia A, Boonfueng T, Kobayashi DY (2007) Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microbiol 73(6):1914–1920.  https://doi.org/10.1128/AEM.02542-06 CrossRefGoogle Scholar
  32. 32.
    Youssef GA, El-Aassar SA, Berekaa M, El-Shaer M, Stolz J (2009) Arsenate and selenate reduction by some facultative bacteria in the Nile Delta. Am Eurasian J Agric Environ Sci 5(6):847–855Google Scholar
  33. 33.
    Tomei FA, Barton LL, Lemanski CL, Zocco TG (1992) Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can J Microbiol 38:1328–1333CrossRefGoogle Scholar
  34. 34.
    Yamada A, Miyashita M, Inoue K, Matsunaga T (1997) Extracellular reduction of selenite by a novel marine photosynthetic bacterium. Appl Microbiol Biotechnol 48:367–372CrossRefGoogle Scholar
  35. 35.
    Khoei NS, Lampis S, Zonaro E, Yrjala K, Bernardi P, Vallini G (2017) Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. N Biotechnol 34:1–11.  https://doi.org/10.1016/j.nbt.2016.10.002 CrossRefGoogle Scholar
  36. 36.
    Shoeibi S, Mashreghi M (2017) Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J Trace Elem Med Biol 39:135–139.  https://doi.org/10.1016/j.jtemb.2016.09.003 CrossRefGoogle Scholar
  37. 37.
    Xiao X, Zhao C, Yang S, Guo S (2017) Characteristics of nano-selenium synthesized by Se(IV) adsorption and reduction with anoxygenic photosynthetic bacteria. Dig J Nanomater Biostruct 12(1):205–214Google Scholar
  38. 38.
    Hariharan H, Al-Harbi N, Karuppiah P, Rajaram S (2012) Microbial synthesis of selinium nanocomposite using saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett 9(12):509–515Google Scholar
  39. 39.
    Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 6(8):599–602.  https://doi.org/10.1049/mnl.2011.0227 CrossRefGoogle Scholar
  40. 40.
    Zare B, Babaie S, Setayesh N, Shahverdi AR (2013) Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomedicine 1(1):13–19Google Scholar
  41. 41.
    Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68(3):525–531.  https://doi.org/10.1007/s10725-012-9735-x CrossRefGoogle Scholar
  42. 42.
    Li S, Shen Y, Xie A, Yu X, Zhang X, Yang L, Li C (2007) Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L. extract. Nanotechnology 18(40):1–9.  https://doi.org/10.1088/0957-4484/18/40/405101 Google Scholar
  43. 43.
    Sharma G, Sharma AR, Bhavesh R, Park J, Ganbold B, Nam JS, Lee SS (2014) Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules 19(3):2761–2770.  https://doi.org/10.3390/molecules19032761 CrossRefGoogle Scholar
  44. 44.
    Kapur M, Soni K, Kohli K (2017) Green synthesis of selenium nanoparticles from Broccoli, characterization, application and toxicity. Adv Techn Biol Med 5(1):1–7.  https://doi.org/10.4172/2379-1764.1000198 CrossRefGoogle Scholar
  45. 45.
    Bansal V, Bharde A, Ramanathan R, Bhargava SK (2012) Inorganic materials using ‘unusual’ microorganisms. Adv Colloid Interface Sci 179–182:150–168.  https://doi.org/10.1016/j.cis.2012.06.013 CrossRefGoogle Scholar
  46. 46.
    Narasingarao P, Haggblom MM (2007) Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Appl Environ Microbiol 73(11):3519–3527.  https://doi.org/10.1128/AEM.02737-06 CrossRefGoogle Scholar
  47. 47.
    Hunter WJ, Manter DK (2008) Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57(1):83–88.  https://doi.org/10.1007/s00284-008-9160-6 CrossRefGoogle Scholar
  48. 48.
    Talebi S, Ramezani F, Ramezani M (2010) Biosynthesis of metal nanoparticles by microorganisms. Nanocon Olomouc Czech Rep EU 10:12–18Google Scholar
  49. 49.
    Mohanpuria P, Rana NK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  50. 50.
    Galano E, Mangiapane E, Bianga J, Palmese A, Pessione E, Szpunar J, Lobinski R, Amoresano A (2013) Privileged incorporation of selenium as selenocysteine in Lactobacillus reuteri proteins demonstrated by selenium-specific imaging and proteomics. Mol Cell Proteomics 12(8):2196–2204.  https://doi.org/10.1074/mcp.M113.027607 CrossRefGoogle Scholar
  51. 51.
    Marinescu G, Stoicescu AG, Teodorof L (2011) Industrial nutrient medium use for yeast selenium preparation. Food Technol 35(1):45–53Google Scholar
  52. 52.
    Esmaeili S, Khosravi-Darani K, Pourahmad R, Komeili R (2012) An experimental design for production of selenium-enriched yeast. World Appl Sci J 19(1):31–37.  https://doi.org/10.5829/idosi.wasj.2012.19.01.2634 Google Scholar
  53. 53.
    Hanson BR, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662CrossRefGoogle Scholar
  54. 54.
    Wangeline AL, Valdez JR, Lindblom SD, Bowling KL, Reeves FB, Pilon-Smits EA (2011) Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern Rocky Mountain Front Range. Am J Bot 98(7):1139–1147.  https://doi.org/10.3732/ajb.1000369 CrossRefGoogle Scholar
  55. 55.
    Poluboyarinov PA, Vikhreva VA, Leshchenko PP, Aripovskii AV, Likhachev AN (2009) Elemental selenium formation upon destruction of the organoselenium compound DAFS-25 molecule by growing fungal mycelium. Moscow Univ Biol Sci Bull 64(4):164–168.  https://doi.org/10.3103/s0096392509040075 CrossRefGoogle Scholar
  56. 56.
    Shahverdi AR, Shakibaie M, Nazari P (2011) Basic and practical procedures for microbial synthesis of nanoparticles. Metal nanoparticles in microbiology. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-18312-6 Google Scholar
  57. 57.
    Jablonski PP, Anderson JV (1982) Light-dependent reduction of selenite by sonicated pea chloroplasts. Phytochemistry 21(9):2179–2184CrossRefGoogle Scholar
  58. 58.
    Barnaby S, Sarker N, Dowdell A, Banerjee I (2011) The spontaneous formation of selenium nanoparticles on gallic acid assemblies and their antioxidant properties. Fordham Undergrad Res J 1:41–46Google Scholar
  59. 59.
    Zhang JS, Gao XY, Zhang LD, Bao YP (2001) Biological effects of a nano red elemental selenium. BioFactors 15:27–38CrossRefGoogle Scholar
  60. 60.
    Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432.  https://doi.org/10.1039/b517131h CrossRefGoogle Scholar
  61. 61.
    El-Batal AI, Abou Zaid O, Noaman E, Ismail ES (2012) Promising antitumor activity of fermented wheat germ extract in combination with selenium nanoparticles. Int J Pharm Health Care 2(6):23–47Google Scholar
  62. 62.
    Ramos JF, Webster TJ (2012) Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts. Int J Nanomed 7:3907–3914.  https://doi.org/10.2147/IJN.S33767 Google Scholar
  63. 63.
    Flohe L (2011) Selenium and human health: snapshots from the frontiers of selenium biomedicine. In: Woollins JD, Laitinen RS (eds) Selenium and tellurium chemistry, vol 12. Springer, Berlin, Heidelberg, pp 285–302.  https://doi.org/10.1007/978-3-642-20699-3_12 CrossRefGoogle Scholar
  64. 64.
    Chen T, Wong Y-S, Zheng W, Bai Y, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B 67:26–31CrossRefGoogle Scholar
  65. 65.
    Sun D, Liu Y, Yu Q, Qin X, Yang L, Zhou Y, Chen L, Liu J (2014) Inhibition of tumor growth and vasculature and fluorescence imaging using functionalized ruthenium-thiol protected selenium nanoparticles. Biomaterials 35(5):1572–1583.  https://doi.org/10.1016/j.biomaterials.2013.11.007 CrossRefGoogle Scholar
  66. 66.
    Wang Y, Ma J, Zhou L, Chen J, Liu Y, Qiu Z, Zhang S (2012) Dual functional selenium-substituted hydroxyapatite. Interface Focus 2:378–386.  https://doi.org/10.1098/rsfs.2012.0002 CrossRefGoogle Scholar
  67. 67.
    Zhang S, Luo Y, Zeng H, Wang Q, Tian F, Song J, Cheng WH (2011) Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response. J Nutr Biochem 22:1137–1142.  https://doi.org/10.1016/j.jnutbio.2010.09.014 CrossRefGoogle Scholar
  68. 68.
    Ren F, Chen X, Hesketh J, Gan F, Huang K (2012) Selenium promotes T-cell response to TCR-stimulation and ConA, but not PHA in primary porcine splenocytes. PLoS One 7(4):1–10.  https://doi.org/10.1371/journal.pone.0035375.g001 CrossRefGoogle Scholar
  69. 69.
    Kojouri GA, Sadeghian S, Mohebbi A, Mokhber Dezfouli MR (2012) The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep. Biol Trace Elem Res 146:160–166.  https://doi.org/10.1007/s12011-011-9241-4 CrossRefGoogle Scholar
  70. 70.
    Xu CL, Wang YZ, Jin ML, Yang XQ (2009) Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresour Technol 100:2095–2097.  https://doi.org/10.1016/j.biortech.2008.10.037 CrossRefGoogle Scholar
  71. 71.
    Reznik A, Zhao W, Ohkawa Y, Tanioka K, Rowlands JA (2009) Applications of avalanche multiplication in amorphous selenium to flat panel detectors for medical applications. J Mater Sci Mater Electron 20:63–67.  https://doi.org/10.1007/s10854-007-9440-0 CrossRefGoogle Scholar
  72. 72.
    Prasad GL (2009) Biomedical applications of nanoparticles. In: Webster TJ (ed) Safety of nanoparticles. vol 5. Springer, New York, pp 89–109.  https://doi.org/10.1007/978-0-387-78608-7_5 CrossRefGoogle Scholar
  73. 73.
    Tian B, Al-Jamal WT, Van den Bossche J, Kostarelos K (2012) Design and engineering of multifunctional quantum dot-based nanoparticles for simultaneous therapeutic-diagnostic applications. In: Svenson S, Prud’homme RK (eds) Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. vol 16. pp 345–364.  https://doi.org/10.1007/978-1-4614-2305-8_16
  74. 74.
    Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:1–16.  https://doi.org/10.1155/2011/270974 Google Scholar
  75. 75.
    Tran PA, Webster TJ (2011) Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomed 6:1553–1558.  https://doi.org/10.2147/IJN.S21729 Google Scholar
  76. 76.
    Verma P (2017) Minimum biofilm eradication concentration (MBEC) assay of silver and selenium nanoparticles against biofilm forming Staphylococcus aureus. Int J Med Clin Res 5(4):20213–20222.  https://doi.org/10.18535/jmscr/v5i4.77 Google Scholar
  77. 77.
    Prateeksha Singh BR, Shoeb M, Sharma S, Naqvi AH, Gupta VK, Singh BN (2017) Scaffold of selenium nanovectors and honey phytochemicals for inhibition of pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol 7:1–14.  https://doi.org/10.3389/fcimb.2017.00093 CrossRefGoogle Scholar
  78. 78.
    Yazdi MH, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi AR (2013) Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. DARU J Pharm Sci 21(1):1–33.  https://doi.org/10.1186/2008-2231-21-33 CrossRefGoogle Scholar
  79. 79.
    Urik M, Sevc J, Littera P, Kolencik M, Cernansky S (2009) Basic interactions of Aspergillus niger with se(iv). Nova Biotechnol 9(2):141–145Google Scholar
  80. 80.
    Abdel-Hamid MI, Skulberg OM (1995) Effect of selenium on the growth of some selected green and blue–green algae. Lakes Reserv Res Manag 1:205–211CrossRefGoogle Scholar
  81. 81.
    Umysova D, Vitova M, Douskova I, Bisova K, Hlavova M, Cizkova M, Machat J, Doucha J, Zachleder V (2009) Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol 9:58.  https://doi.org/10.1186/1471-2229-9-58 CrossRefGoogle Scholar
  82. 82.
    Araie H, Shiraiwa Y (2009) Selenium utilization strategy by microalgae. Molecules 14:4880–4891.  https://doi.org/10.3390/molecules14124880 CrossRefGoogle Scholar
  83. 83.
    Kumar HD, Prakash G (1971) Toxicity of selenium to the blue-green algae, Anacystis nidulans and Anabaena variabilis. Ann Bot 35:697–705CrossRefGoogle Scholar
  84. 84.
    Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, Li Y, Zheng W (2012) Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomed 7:835–844.  https://doi.org/10.2147/IJN.S28278 CrossRefGoogle Scholar
  85. 85.
    Domokos-Szabolcsy E, Kato M, Zsiros O, Garab GY, Prokisch J, Fari M (2012) Photosynthetic activity changes in tobacco cultures treated by red elemental selenium nanoparticles. In: Paper presented at the Advances in plant breeding and plant biotechnology in central Europe, DebrecenGoogle Scholar
  86. 86.
    Rajendran D (2013) Aplication of nano minerales in animal production system. Res J Biotechnol 8(3):1–3CrossRefGoogle Scholar
  87. 87.
    Zhou X, Wang Y, Gu Q, Li W (2009) Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291:78–81.  https://doi.org/10.1016/j.aquaculture.2009.03.007 CrossRefGoogle Scholar
  88. 88.
    Kojouri GA, Jahanabadi S, Shakibaie M, Ahadi AM, Shahverdi AR (2012) Effect of selenium supplementation with sodium selenite and selenium nanoparticles on iron homeostasis and transferrin gene expression in sheep: a preliminary study. Res Vet Sci 93:275–278.  https://doi.org/10.1016/j.rvsc.2011.07.029 CrossRefGoogle Scholar
  89. 89.
    Petrera F, Calamari L, Bertin G (2009) Effect of either sodium selenite or Se–yeast supplementation on selenium status and milk characteristics in dairy goats. Small Rumin Res 82:130–138.  https://doi.org/10.1016/j.smallrumres.2009.02.008 CrossRefGoogle Scholar
  90. 90.
    Ortman K, Pehrson B (1998) Selenite and selenium yeast as feed supplements to growing fattening pigs. J Vet Med A 45:551–557CrossRefGoogle Scholar
  91. 91.
    Schrauzer GN (2006) Selenium yeast: composition, quality, analysis, and safety. Pure Appl Chem 78(1):105–109.  https://doi.org/10.1351/pac200678010105 CrossRefGoogle Scholar
  92. 92.
    Aguilar F, Autrup H, Barlow S, Castle L, Crebelli R, Dekant W, Engel KH, Gontard N, Gott D, Grilli S, Gürtler R, Larsen J-C, Leclercq C, Leblanc J-C, Malcata FX, Mennes W, Milana MR, Pratt I, Rietjens I, Tobback P, Toldrá F (2008) Selenium-enriched yeast as source for selenium added for nutritional purposes in foods for particular nutritional uses and foods (including food supplements) for the general population. EFSA J 766:1–42Google Scholar
  93. 93.
    Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 393(4):649–655.  https://doi.org/10.1016/j.bbrc.2010.02.046 CrossRefGoogle Scholar
  94. 94.
    Prasad T, Arora SP (1991) Influence of different sources of injected selenium on certain enzymes, glutathione and adenosyl methionine concentration in buffalo (Bubalus bubalis) calves. Br J Nutr 66(2):261–267CrossRefGoogle Scholar
  95. 95.
    Shamsudeen P, Shrivastava HP, Ramsingh P, Krupakaran R (2013) In vitro effect of selenium on fungal biomass and aflatoxin production by Aspergillus parasiticus. Indian J Fundam Appl Life Sci 3(2):91–95Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Sara Shoeibi
    • 1
  • Paul Mozdziak
    • 2
  • Afsaneh Golkar-Narenji
    • 3
  1. 1.Cellular and Molecular Research Center, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Graduate Physiology ProgramNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Genetic, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran

Personalised recommendations