Advertisement

Topics in Current Chemistry

, 375:79 | Cite as

Nonlinear and Nonsymmetric Single-Molecule Electronic Properties Towards Molecular Information Processing

  • Takashi Tamaki
  • Takuji Ogawa
Review
Part of the following topical collections:
  1. Molecular-Scale Electronics: Current Status and Perspective

Abstract

This review highlights molecular design for nonlinear and nonsymmetric single-molecule electronic properties such as rectification, negative differential resistance, and switching, which are important components of future single-molecule information processing devices. Perspectives on integrated “molecular circuits” are also provided. Nonlinear and nonsymmetric single-molecule electronics can be designed by utilizing (1) asymmetric molecular cores, (2) asymmetric anchoring groups, (3) an asymmetric junction environment, and (4) asymmetric electrode materials. This review mainly focuses on the design of molecular cores.

Keywords

Single-molecular electronics Molecular diode Negative differential resistance Molecular switch Molecular curcuit 

References

  1. 1.
    Aviram A, Ratner MA (1974) Chem Phys Lett 29:277–283CrossRefGoogle Scholar
  2. 2.
    Su TA, Neupane M, Steigerwald ML, Venkataraman L, Nuckolls C (2016) Nat Rev Mater 1:16002CrossRefGoogle Scholar
  3. 3.
    Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Chem Rev (Washington, DC, USA) 116:4318–4440CrossRefGoogle Scholar
  4. 4.
    Moreland J, Ekin JW (1985) J Appl Phys 58:3888–3895CrossRefGoogle Scholar
  5. 5.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252–254CrossRefGoogle Scholar
  6. 6.
    Xu B, Tao NJ (2003) Science 301:1221–1223CrossRefGoogle Scholar
  7. 7.
    Wold DJ, Frisbie CD (2000) J Am Chem Soc 122:2970–2971CrossRefGoogle Scholar
  8. 8.
    Park H, Lim AKL, Alivisatos AP, Park J, Mceuen PL (1999) Appl Phys Lett 75:301–303CrossRefGoogle Scholar
  9. 9.
    Li T, Hu W, Zhu D (2010) Adv Mater (Weinheim, Ger) 22:286–300CrossRefGoogle Scholar
  10. 10.
    Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Science 294:571–574CrossRefGoogle Scholar
  11. 11.
    Batra A, Darancet P, Chen Q, Meisner JS, Widawsky JR, Neaton JB, Nuckolls C, Venkataraman L (2013) Nano Lett 13:6233–6237CrossRefGoogle Scholar
  12. 12.
    Derosa PA, Guda S, Seminario JM (2003) J Am Chem Soc 125:14240–14241CrossRefGoogle Scholar
  13. 13.
    Wang K, Zhou J, Hamill JM, Xu B (2014) J Chem Phys 141:054712CrossRefGoogle Scholar
  14. 14.
    Capozzi B, Xia J, Adak O, Dell EJ, Liu Z-F, Taylor JC, Neaton JB, Campos LM, Venkataraman L (2015) Nat Nanotechnol 10:522–527CrossRefGoogle Scholar
  15. 15.
    Kim T, Liu Z-F, Lee C, Neaton JB, Venkataraman L (2014) Proc Natl Acad Sci USA 111:10928–10932CrossRefGoogle Scholar
  16. 16.
    Perrin ML, Galan E, Eelkema R, Grozema F, Thijssen JM, Van Der Zant HSJ (2015) J Phys Chem C 119:5697–5702CrossRefGoogle Scholar
  17. 17.
    Galan E, Perrin ML, Lutz M, Van Der Zant HSJ, Grozema FC, Eelkema R (2016) Org Biomol Chem 14:2439–2443CrossRefGoogle Scholar
  18. 18.
    Ding W, Koepf M, Koenigsmann C, Batra A, Venkataraman L, Negre CFA, Brudvig GW, Crabtree RH, Schmuttenmaer CA, Batista VS (2015) J Chem Theory Comput 11:5888–5896CrossRefGoogle Scholar
  19. 19.
    Ng M-K, Lee D-C, Yu L (2002) J Am Chem Soc 124:11862–11863CrossRefGoogle Scholar
  20. 20.
    Diez-Perez I, Hihath J, Lee Y, Yu LP, Adamska L, Kozhushner MA, Oleynik II, Tao J (2009) J Nat Chem 1:635–641CrossRefGoogle Scholar
  21. 21.
    Lörtscher E, Gotsmann B, Lee Y, Yu L, Rettner C, Riel H (2012) ACS Nano 6:4931–4939CrossRefGoogle Scholar
  22. 22.
    Cui B, Fang CF, Zhai YX, Yin S, Gao K, Liu DS (2011) Appl Phys Lett 98:133101CrossRefGoogle Scholar
  23. 23.
    Mahmoud A, Lugli P (2012) J Appl Phys 112:113720CrossRefGoogle Scholar
  24. 24.
    Zhang G-P, Xie Z, Song Y, Hu G-C, Wang C-K (2014) Chem Phys Lett 591:296–300CrossRefGoogle Scholar
  25. 25.
    Yuan S, Dai C, Weng J, Mei Q, Ling Q, Wang L, Huang W (2011) J Phys Chem A 115:4535–4546CrossRefGoogle Scholar
  26. 26.
    Elbing M, Ochs R, Koentopp M, Fischer M, Von Hänisch C, Weigend F, Evers F, Weber HB, Mayor M (2005) Proc Natl Acad Sci USA 102:8815–8820CrossRefGoogle Scholar
  27. 27.
    Li Y, Yao J, Liu C, Yang C (2008) J Mol Struc-THEOCHEM 867:59–63CrossRefGoogle Scholar
  28. 28.
    Stokbro K, Taylor J, Brandbyge M, Mozos JL, Ordejón P (2003) Comp Mater Sci 27:151–160CrossRefGoogle Scholar
  29. 29.
    Yuan S, Wang S, Mei Q, Ling Q, Wang L, Huang W (2011) J Phys Chem A 115:9033–9042CrossRefGoogle Scholar
  30. 30.
    Handayani M, Gohda S, Tanaka D, Ogawa T (2014) Chem Euro J 20:7655–7664CrossRefGoogle Scholar
  31. 31.
    Liu R, Ke S-H, Yang W, Baranger HU (2006) J Chem Phys 124:024718CrossRefGoogle Scholar
  32. 32.
    Nijhuis CA, Reus WF, Whitesides GM (2009) J Am Chem Soc 131:17814–17827CrossRefGoogle Scholar
  33. 33.
    Cui B, Xu Y, Ji G, Wang H, Zhao W, Zhai Y, Li D, Liu D (2014) Org Electron 15:484–490CrossRefGoogle Scholar
  34. 34.
    Nijhuis CA, Reus WF, Whitesides GM (2010) J Am Chem Soc 132:18386–18401CrossRefGoogle Scholar
  35. 35.
    Jeong H, Kim D, Wang G, Park S, Lee H, Cho K, Hwang W-T, Yoon M-H, Jang YH, Song H, Xiang D, Lee T (2014) Adv Funct Mater 24:2472–2480CrossRefGoogle Scholar
  36. 36.
    Guo C, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B (2016) Nat Chem 8:484–490CrossRefGoogle Scholar
  37. 37.
    Troisi A, Ratner MA (2004) Nano Lett 4:591–595CrossRefGoogle Scholar
  38. 38.
    Troisi A, Ratner MA (2002) J Am Chem Soc 124:14528–14529CrossRefGoogle Scholar
  39. 39.
    Fujii S, Tada T, Komoto Y, Osuga T, Murase T, Fujita M, Kiguchi M (2015) J Am Chem Soc 137:5939–5947CrossRefGoogle Scholar
  40. 40.
    García M, Guadarrama P, Ramos E, Fomine S (2011) Synth Met 161:2390–2396CrossRefGoogle Scholar
  41. 41.
    Fomine S (2013) J Mol Model 19:65–71CrossRefGoogle Scholar
  42. 42.
    Montiel F, Fomina L, Fomine S (2015) J Mol Model 21:1–8CrossRefGoogle Scholar
  43. 43.
    Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550–1552CrossRefGoogle Scholar
  44. 44.
    Chen J, Wang W, Reed MA, Rawlett AM, Price DW, Tour JM (2000) Appl Phys Lett 77:1224–1226CrossRefGoogle Scholar
  45. 45.
    Fan F-RF, Lai RY, Cornil J, Karzazi Y, Brédas J-L, Cai L, Cheng L, Yao Y, Price DW, Dirk SM, Tour JM, Bard AJ (2004) J Am Chem Soc 126:2568–2573CrossRefGoogle Scholar
  46. 46.
    Rawlett AM, Hopson TJ, Nagahara LA, Tsui RK, Ramachandran GK, Lindsay SM (2002) Appl Phys Lett 81:3043–3045CrossRefGoogle Scholar
  47. 47.
    Fan F-RF, Yang J, Dirk SM, Price DW, Kosynkin D, Tour JM, Bard AJ (2001) J Am Chem Soc 123:2454–2455CrossRefGoogle Scholar
  48. 48.
    Fan F-RF, Yang J, Cai L, Price DW, Dirk SM, Kosynkin DV, Yao Y, Rawlett AM, Tour JM, Bard AJ (2002) J Am Chem Soc 124:5550–5560CrossRefGoogle Scholar
  49. 49.
    Fan F-RF, Yao Y, Cai L, Cheng L, Tour JM, Bard AJ (2004) J Am Chem Soc 126:4035–4042CrossRefGoogle Scholar
  50. 50.
    Taylor J, Brandbyge M, Stokbro K (2003) Phys Rev B 68:121101CrossRefGoogle Scholar
  51. 51.
    Ren Y, Chen K-Q, Wan Q, Pan A, Hu WP (2010) Phys Lett A 374:3857–3862CrossRefGoogle Scholar
  52. 52.
    Yeganeh S, Galperin M, Ratner MA (2007) J Am Chem Soc 129:13313–13320CrossRefGoogle Scholar
  53. 53.
    Zhou J, Samanta S, Guo C, Locklin J, Xu B (2013) Nanoscale 5:5715–5719CrossRefGoogle Scholar
  54. 54.
    Dhungana KB, Mandal S, Pati R (2012) J Phys Chem C 116:17268–17273CrossRefGoogle Scholar
  55. 55.
    Komoto Y, Fujii S, Nakamura H, Tada T, Nishino T, Kiguchi M (2016) Sci Rep 6:26606CrossRefGoogle Scholar
  56. 56.
    Pati R, Mcclain M, Bandyopadhyay A (2008) Phys Rev Lett 100:246801CrossRefGoogle Scholar
  57. 57.
    Perrin ML, Frisenda R, Koole M, Seldenthuis JS, Giljose AC, Valkenier H, Hummelen JC, Renaud N, Grozema FC, Thijssen JM, Dulić D, Van Der Zantherre SJ (2014) Nat Nanotechnol 9:830–834CrossRefGoogle Scholar
  58. 58.
    Fan Z-Q, Chen K-Q, Wan Q, Zou BS, Duan W, Shuai Z (2008) Appl Phys Lett 92:263304CrossRefGoogle Scholar
  59. 59.
    Nozaki D, Lokamani A, Santana-Bonilla A, Dianat R Gutierrez, Cuniberti G (2015) J Phys Chem Lett 6:3950–3955CrossRefGoogle Scholar
  60. 60.
    Xia C-J, Liu D-S, Liu H-C, Zhai X-J (2011) Physica E 43:1518–1521CrossRefGoogle Scholar
  61. 61.
    Geng H, Hu Y, Shuai Z, Xia K, Gao H, Chen K (2007) J Phys Chem C 111:19098–19102CrossRefGoogle Scholar
  62. 62.
    Dalgleish H, Kirczenow G (2006) Nano Lett 6:1274–1278CrossRefGoogle Scholar
  63. 63.
    Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Chem Rev (Washington, DC, USA) 114:12174–12277CrossRefGoogle Scholar
  64. 64.
    Matsuda K, Irie M (2004) J Photoch Photobio C 5:169–182CrossRefGoogle Scholar
  65. 65.
    Dulić D, Van Der Molen S, Kudernac T, Jonkman H, De Jong J, Bowden T, Van Esch J, Feringa B, Van Wees B (2003) Phys Rev Lett 91:207402Google Scholar
  66. 66.
    Jin H, Fan C, Paul AL, Joakim A, Stephen DS, Devens G, Thomas AM, Ana LM, Jun L, Otto FS, Stuart ML (2005) Nanotechnology 16:695CrossRefGoogle Scholar
  67. 67.
    Tam ES, Parks JJ, Shum WW, Zhong Y-W, Santiago-Berríos MEB, Zheng X, Yang W, Chan GKL, Abruña HD, Ralph DC (2011) ACS Nano 5:5115–5123CrossRefGoogle Scholar
  68. 68.
    Kim Y, Hellmuth TJ, Sysoiev D, Pauly F, Pietsch T, Wolf J, Erbe A, Huhn T, Groth U, Steiner UE, Scheer E (2012) Nano Lett 12:3736–3742CrossRefGoogle Scholar
  69. 69.
    Tsuji Y, Staykov A, Yoshizawa K (2009) J Phys Chem C 113:21477–21483CrossRefGoogle Scholar
  70. 70.
    Jia C, Wang J, Yao C, Cao Y, Zhong Y, Liu Z, Liu Z, Guo X (2013) Angew Chem Int Edit 52:8666–8670CrossRefGoogle Scholar
  71. 71.
    Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C, Hong W, Royal G, Wandlowski T (2013) J Am Chem Soc 135:5974–5977CrossRefGoogle Scholar
  72. 72.
    Haiss W, Van Zalinge H, Higgins SJ, Bethell D, Höbenreich H, Schiffrin DJ, Nichols RJ (2003) J Am Chem Soc 125:15294–15295CrossRefGoogle Scholar
  73. 73.
    Chen F, He J, Nuckolls C, Roberts T, Klare JE, Lindsay S (2005) Nano Lett 5:503–506CrossRefGoogle Scholar
  74. 74.
    Kay NJ, Higgins SJ, Jeppesen JO, Leary E, Lycoops J, Ulstrup J, Nichols RJ (2012) J Am Chem Soc 134:16817–16826CrossRefGoogle Scholar
  75. 75.
    Li Z, Li H, Chen S, Froehlich T, Yi C, Schönenberger C, Calame M, Decurtins S, Liu S-X, Borguet E (2014) J Am Chem Soc 136:8867–8870CrossRefGoogle Scholar
  76. 76.
    Li Y, Baghernejad M, Qusiy A-G, Zsolt Manrique D, Zhang G, Hamill J, Fu Y, Broekmann P, Hong W, Wandlowski T, Zhang D, Lambert C (2015) Angew Chem Int Edit 54:13586–13589CrossRefGoogle Scholar
  77. 77.
    Li Z, Smeu M, Afsari S, Xing Y, Ratner MA, Borguet E (2014) Angew Chem Int Edit 53:1098–1102CrossRefGoogle Scholar
  78. 78.
    Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L (2009) Nat Nanotechnol 4:230–234Google Scholar
  79. 79.
    Su TA, Li H, Steigerwald ML, Venkataraman L, Nuckolls C (2015) Nat Chem 7:215–220CrossRefGoogle Scholar
  80. 80.
    De Silva AP, Uchiyama S (2007) Nat Nanotechnol 2:399–410Google Scholar
  81. 81.
    Okamoto A, Tanaka K, Saito I (2004) J Am Chem Soc 126:9458–9463CrossRefGoogle Scholar
  82. 82.
    Wang D, Fu Y, Yan J, Zhao B, Dai B, Chao J, Liu H, He D, Zhang Y, Fan C, Song S (2014) Anal Chem 86:1932–1936CrossRefGoogle Scholar
  83. 83.
    Tybrandt K, Forchheimer R, Berggren M (2012) Nat Commun 3:871CrossRefGoogle Scholar
  84. 84.
    Wang B, Kitney RI, Joly N, Buck M (2011) Nat Commun 2:508CrossRefGoogle Scholar
  85. 85.
    Katz E, Privman V (2010) Chem Soc Rev 39:1835–1857CrossRefGoogle Scholar
  86. 86.
    Collier CP, Wong EW, Belohradský M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1999) Science 285:391–394CrossRefGoogle Scholar
  87. 87.
    Meng F, Hervault Y-M, Shao Q, Hu B, Norel L, Rigaut S, Chen X (2014) Nat Commun 5:3023CrossRefGoogle Scholar
  88. 88.
    Ernst JT, Kutzki O, Debnath AK, Jiang S, Lu H, Hamilton AD (2002) Angew Chem Int Edit 41:278–281CrossRefGoogle Scholar
  89. 89.
    Noguchi H, Hojo K, Suginome M (2007) J Am Chem Soc 129:758–759CrossRefGoogle Scholar
  90. 90.
    Tamaki T, Nosaka T, Ogawa T (2014) J Org Chem 79:11029–11038CrossRefGoogle Scholar
  91. 91.
    Shiotari A, Ozaki Y, Naruse S, Okuyama H, Hatta S, Aruga T, Tamaki T, Ogawa T (2015) RSC Adv 5:79152–79156CrossRefGoogle Scholar
  92. 92.
    Van Hal PA, Smits ECP, Geuns TCT, Akkerman HB, De Brito BC, Perissinotto S, Lanzani G, Kronemeijer AJ, Geskin V, Cornil J, Blom PWM, De Boer B, De Leeuw DM (2008) Nat Nanotechnol 3:749–754CrossRefGoogle Scholar
  93. 93.
    Huang M-J, Hsu L-Y, Fu M-D, Chuang S-T, Tien F-W, Chen C-H (2014) J Am Chem Soc 136:1832–1841CrossRefGoogle Scholar
  94. 94.
    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F (2008) J Am Chem Soc 130:318–326CrossRefGoogle Scholar
  95. 95.
    Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Nature 442:904–907CrossRefGoogle Scholar
  96. 96.
    Yamada R, Kumazawa H, Noutoshi T, Tanaka S, Tada H (2008) Nano Lett 8:1237–1240CrossRefGoogle Scholar
  97. 97.
    Sedghi G, Garcia-Suarez VM, Esdaile LJ, Anderson HL, Lambert CJ, Martin S, Bethell D, Higgins SJ, Elliott M, Bennett N, Macdonald JE, Nichols RJ (2011) Nat Nanotechnol 6:517–523CrossRefGoogle Scholar
  98. 98.
    Sedghi G, Esdaile LJ, Anderson HL, Martin S, Bethell D, Higgins SJ, Nichols RJ (2012) Adv Mater (Weinheim, Ger) 24:653–657CrossRefGoogle Scholar
  99. 99.
    Magoga M, Joachim C (1999) Phys Rev B 59:16011–16021CrossRefGoogle Scholar
  100. 100.
    Joachim C, Gimzewski JK, Aviram A (2000) Nature 408:541–548CrossRefGoogle Scholar
  101. 101.
    Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataramanl, Hybertsen MS (2012) Nat Nanotechnol 7:663–667Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of ScienceOsaka UniversityToyonakaJapan

Personalised recommendations