Modeling the Growth of Single-Wall Carbon Nanotubes

  • Hakim Amara
  • Christophe BicharaEmail author
Part of the following topical collections:
  1. Single-Walled Carbon Nanotubes: Preparation, Property and Application


More than 20 years after their discovery, our understanding of the growth mechanisms of single-wall carbon nanotubes is still incomplete, in spite of a large number of investigations motivated by potential rewards in many possible applications. Among the many techniques used to solve this challenging puzzle, computer simulations can directly address an atomic scale that is hardly accessible by other experiments, and thereby support or invalidate different ideas, assumptions, or models. In this paper, we review some aspects of the computer simulation and theoretical approaches dedicated to the study of single-wall carbon nanotube growth, and suggest some ways towards a better control of the synthesis processes by chemical vapor deposition.


SWNT Growth mechanisms Modeling CVD 



The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 604472 (IRENA project) and French Research Funding Agency under Grant No. ANR-13-BS10-0015-01 (SYNAPSE project). Drs. M. He, Y. Magnin and J.-M. Aguiar-Hualde are gratefully acknowledged for making some of their results available prior to publication.


  1. 1.
    Iijima S (1991) Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Iijima S, Ichihashi T (1993) Nature 363:603–605CrossRefGoogle Scholar
  3. 3.
    Liu C, Cheng HM (2016) J Am Chem Soc 138:6690–6698CrossRefGoogle Scholar
  4. 4.
    Page AJ, Ding F, Irle S, Morokuma K (2015) Rep Prog Phys 78:36501CrossRefGoogle Scholar
  5. 5.
    Ding F, Harutyunyan AR, Yakobson BI (2009) Proc Natl Acad Sci 106:2506–2509CrossRefGoogle Scholar
  6. 6.
    Snoeck J, Froment GF, Fowles M (1997) J Catal 169:240–249CrossRefGoogle Scholar
  7. 7.
    Chiang W, Sankaran RM (2009) Nat Mater 8:882–886CrossRefGoogle Scholar
  8. 8.
    Chiang W-H, Sankaran RM (2012) Carbon NY. 50:1044–1050CrossRefGoogle Scholar
  9. 9.
    Bachilo SM, Balzano L, Herrera JE, Pompeo F, Resasco DE, Weisman RB (2003) J Am Chem Soc 125:11186–11187CrossRefGoogle Scholar
  10. 10.
    He M, Chernov AI, Fedotov PV, Obraztsova ED, Sainio J, Rikkinen E, Jiang H, Zhu Z, Tian Y, Kauppinen EI, Niemelä M, Krause AOI (2010) J Am Chem Soc 132:13994–13996CrossRefGoogle Scholar
  11. 11.
    Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J-Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Nature 510:522–524CrossRefGoogle Scholar
  12. 12.
    Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278CrossRefGoogle Scholar
  13. 13.
    Robertson J (2012) J Mater Chem 22:19858CrossRefGoogle Scholar
  14. 14.
    Amara H, Roussel J-M, Bichara C, Gaspard J-P, Ducastelle F (2009) Phys Rev B 79:14109CrossRefGoogle Scholar
  15. 15.
    Schwarz KJ (1977) Phys C Solid State Phys 10:195–210CrossRefGoogle Scholar
  16. 16.
    Deck C, Vecchio K (2006) Carbon NY 44:267–275CrossRefGoogle Scholar
  17. 17.
    Hofmann S, Sharma R, Ducati C, Du G, Mattevi C, Cepek C, Cantoro M, Pisana S, Parvez A, Cervantes-Sodi F, Ferrari AC, Dunin-Borkowski R, Lizzit S, Petaccia L, Goldoni A, Robertson J (2007) Nano Lett 7:602–608CrossRefGoogle Scholar
  18. 18.
    Hofmann S, Blume R, Wirth CT, Cantoro M, Sharma R, Ducati C, Hävecker M, Zafeiratos S, Schnoerch P, Oestereich A, Teschner D, Albrecht M, Knop-Gericke A, Schlögl R, Robertson J (2009) J Phys Chem C 113:1648–1656CrossRefGoogle Scholar
  19. 19.
    Rinaldi A, Tessonnier J-P, Schuster ME, Blume R, Girgsdies F, Zhang Q, Jacob T, Abd Hamid SB, Su DS, Schlögl R (2011) Angew Chem Int Ed Engl 50:3313–3317CrossRefGoogle Scholar
  20. 20.
    Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson SD, Schlögl R (2008) Science 320:86–89CrossRefGoogle Scholar
  21. 21.
    Yazyev OV, Pasquarello A (2008) Phys Rev Lett 100:1–4Google Scholar
  22. 22.
    Hu X, Björkman T, Lipsanen H, Sun L, Krasheninnikov AV (2015) J Phys Chem Lett 6:3263–3268CrossRefGoogle Scholar
  23. 23.
    Ding F, Larsson P, Larsson JA, Ahuja R, Duan H, Rosén A, Bolton K (2008) Nano Lett 8:463–468CrossRefGoogle Scholar
  24. 24.
    Silvearv F, Larsson P, Jones SLT, Ahuja R, Larsson JAJ (2015) Mater Chem C 3:3422–3427CrossRefGoogle Scholar
  25. 25.
    Fan X, Buczko R, Puretzky A, Geohegan DB, Howe J, Pantelides S, Pennycook S (2003) Phys Rev Lett 90Google Scholar
  26. 26.
    Yuan Q, Gao J, Shu H, Zhao J, Chen X, Ding F (2012) J Am Chem Soc 134:2970–2975CrossRefGoogle Scholar
  27. 27.
    Reich S, Li L, Robertson J (2006) Chem Phys Lett 421:469–472CrossRefGoogle Scholar
  28. 28.
    Zhang S, Kang L, Wang X, Tong L, Yang L, Wang Z, Qi K, Deng S, Li Q, Bai X, Ding F, Zhang J (2017) Nature 543:234–238CrossRefGoogle Scholar
  29. 29.
    Li M, Liu X, Zhao X, Yang F, Wang X, Li Y (2017) Top Curr Chem 375:29CrossRefGoogle Scholar
  30. 30.
    Shibuta Y, Arifin R, Shimamura K, Oguri T, Shimojo F, Yamaguchi S (2013) Chem Phys Lett 565:92–97CrossRefGoogle Scholar
  31. 31.
    Oguri T, Shimamura K, Shibuta Y, Shimojo F, Yamaguchi S (2014) Chem Phys Lett 595–596:185–191CrossRefGoogle Scholar
  32. 32.
    Takagi D, Hibino H, Suzuki S, Kobayashi Y, Homma Y (2007) Nano Lett 7:2272–2275CrossRefGoogle Scholar
  33. 33.
    Liu B, Ren W, Gao L, Li S, Pei S, Liu C, Jiang C, Cheng H-M (2009) J Am Chem Soc 131:2082–2083CrossRefGoogle Scholar
  34. 34.
    Takagi D, Kobayashi Y, Homma Y (2009) J Am Chem Soc 131:6922–6923CrossRefGoogle Scholar
  35. 35.
    Ding F, Bolton K, Rosén A (2004) J Phys Chem B 108:17369–17377CrossRefGoogle Scholar
  36. 36.
    Martinez-Limia A, Zhao J, Balbuena PB (2007) J Mol Model 13:595–600CrossRefGoogle Scholar
  37. 37.
    Neyts EC, Shibuta Y, van Duin ACT, Bogaerts A (2010) ACS Nano 4:6665–6672CrossRefGoogle Scholar
  38. 38.
    Page AJ, Ohta Y, Irle S, Morokuma K (2010) Acc Chem Res 43:1375–1385CrossRefGoogle Scholar
  39. 39.
    Ohta Y, Okamoto Y, Irle S, Morokuma K (2008) ACS Nano 2:1437–1444CrossRefGoogle Scholar
  40. 40.
    Page AJ, Minami S, Ohta Y, Irle S, Morokuma K (2010) Carbon NY 48:3014–3026CrossRefGoogle Scholar
  41. 41.
    Page AJ, Saha S, Li H-B, Irle S, Morokuma K (2015) J Am Chem Soc 137:9281–9288CrossRefGoogle Scholar
  42. 42.
    Khalilov U, Bogaerts A, Neyts EC (2015) Nat Commun 6:10306CrossRefGoogle Scholar
  43. 43.
    Burgos JC, Jones E, Balbuena PB (2011) J Phys Chem C 115:7668–7675CrossRefGoogle Scholar
  44. 44.
    Growth SCN, Diego AG, Gómez-Gualdrón DA, McKenzie G, Alvarado JF, Balbuena PB (2012) ACS Nano 6:720–735CrossRefGoogle Scholar
  45. 45.
    Gomez-Ballesteros JL, Burgos JC, Lin PA, Sharma R, Balbuena PB (2015) RSC Adv 5:106377–106386CrossRefGoogle Scholar
  46. 46.
    Yoshikawa R, Maruyama S (private communication) Google Scholar
  47. 47.
    Lin M, Ying Tan JP, Boothroyd C, Loh KP, Tok ES, Foo Y-L (2006) Nano Lett 6:449–452CrossRefGoogle Scholar
  48. 48.
    Batzill M (2012) Surf Sci Rep 67:83–115CrossRefGoogle Scholar
  49. 49.
    Moors M, Amara H, Visart De Bocarmé T, Bichara C, Ducastelle F, Kruse N, Charlier J-C (2009) ACS Nano 3:511–516CrossRefGoogle Scholar
  50. 50.
    Benayad A, Li X (2013) J Phys Chem C 117:4727–4733CrossRefGoogle Scholar
  51. 51.
    Weatherup RS, Amara H, Blume R, Dlubak B, Bayer BC, Diarra M, Bahri M, Cabrero-Vilatela A, Caneva S, Kidambi PR, Martin M, Deranlot C, Seneor P, Schlögl R, Ducastelle F, Bichara C, Hofmann S (2014) J Am Chem Soc 136:13698–13708CrossRefGoogle Scholar
  52. 52.
    Ribas MA, Ding F, Balbuena PB, Yakobson BI (2009) J Chem Phys 131:224501CrossRefGoogle Scholar
  53. 53.
    Naidich YV, Perevertailo VM, Nevodnik GM (1971) Powder Met Met Ceram 10:45–47CrossRefGoogle Scholar
  54. 54.
    Diarra M, Zappelli A, Amara H, Ducastelle F, Bichara C (2012) Phys Rev Lett 109:185501CrossRefGoogle Scholar
  55. 55.
    Riikonen S, Krasheninnikov AV, Nieminen R (2010) Phys Rev B 82:1–13CrossRefGoogle Scholar
  56. 56.
    Honeycutt JD, Andersen HC (1984) Chem Phys Lett 108:535–538CrossRefGoogle Scholar
  57. 57.
    van Duijneveldt JS, Frenkel D (1992) J Chem Phys 96:4655CrossRefGoogle Scholar
  58. 58.
    Picher M, Lin PA, Gomez-Ballesteros JL, Balbuena PB, Sharma R (2014) Nano Lett 14:6104–6108CrossRefGoogle Scholar
  59. 59.
    Fiawoo M-FC, Bonnot A-M, Amara H, Bichara C, Thibault-Pénisson J, Loiseau A (2012) Phys Rev Lett 108:195503CrossRefGoogle Scholar
  60. 60.
    Neyts EC, van Duin ACT, Bogaerts A (2011) J Am Chem Soc 133:17225–17231CrossRefGoogle Scholar
  61. 61.
    Raty J-Y, Gygi F, Galli G (2005) Phys Rev Lett 95:96103CrossRefGoogle Scholar
  62. 62.
    Ohta Y, Okamoto Y, Irle S, Morokuma K, Page AJ, Wang Y (2009) Nano Res 2:755–767CrossRefGoogle Scholar
  63. 63.
    Page AJ, Yamane H, Ohta Y, Irle S, Morokuma K (2010) J Am Chem Soc 132:15699–15707CrossRefGoogle Scholar
  64. 64.
    Amara H, Bichara C, Ducastelle F (2008) Phys Rev Lett 100:56105CrossRefGoogle Scholar
  65. 65.
    Penev ES, Artyukhov VI, Yakobson BI (2014) ACS Nano 8:1899–1906CrossRefGoogle Scholar
  66. 66.
    Gomez-gualdron DA, Balbuena PB (2009) J Phys Chem C 113:698–709CrossRefGoogle Scholar
  67. 67.
    Wang Q, Yang S-W, Yang Y, Chan-Park MB, Chen Y (2011) J Phys Chem Lett 2:1009–1014CrossRefGoogle Scholar
  68. 68.
    Wirth CT, Hofmann S, Robertson J (2009) Diam Relat Mater 18:940–945CrossRefGoogle Scholar
  69. 69.
    Jiang A, Awasthi N, Kolmogorov A, Setyawan W, Börjesson A, Bolton K, Harutyunyan AR, Curtarolo S (2007) Phys Rev B 75:1–12Google Scholar
  70. 70.
    Ding F, Bolton K, Rosén A (2004) J Vac Sci Technol A Vac Surf Film 22:1471CrossRefGoogle Scholar
  71. 71.
    Engelmann Y, Bogaerts A, Neyts EC (2014) Nanoscale 6:11981–11987CrossRefGoogle Scholar
  72. 72.
    Magnin Y, Zappelli A, Amara H, Ducastelle F, Bichara C (2015) Phys Rev Lett 205502:1–5Google Scholar
  73. 73.
    Diarra M, Amara H, Ducastelle F, Bichara C (2012) Phys Status Solidi 249:2629–2634CrossRefGoogle Scholar
  74. 74.
    Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J-C (2001) Phys Rev Lett 87:275504CrossRefGoogle Scholar
  75. 75.
    Page AJ, Irle S, Morokuma K (2010) J Phys Chem C 114:8206–8211CrossRefGoogle Scholar
  76. 76.
    Xu Z, Yan T, Ding F (2015) Chem Sci 6:4704–4711CrossRefGoogle Scholar
  77. 77.
    Page AJ, Ohta Y, Okamoto Y, Irle S, Morokuma K (2009) J Phys Chem C 113:20198–20207CrossRefGoogle Scholar
  78. 78.
    Karoui S, Amara H, Bichara C, Ducastelle F (2010) ACS Nano 4:6114–6120CrossRefGoogle Scholar
  79. 79.
    Diarra M, Amara H, Bichara C, Ducastelle F (2012) Phys Rev B 85:245446CrossRefGoogle Scholar
  80. 80.
    Yuan Q, Xu Z, Yakobson BI, Ding F (2012) Phys Rev Lett 108:245505CrossRefGoogle Scholar
  81. 81.
    Rao R, Liptak D, Cherukuri T, Yakobson BI, Maruyama B (2012) Nat Mater 11:1–4CrossRefGoogle Scholar
  82. 82.
    Lolli G, Zhang L, Balzano L, Sakulchaicharoen N, Tan Y, Resasco DE (2006) J Phys Chem B 110:2108–2115CrossRefGoogle Scholar
  83. 83.
    Wang B, Poa CHP, Wei L, Yang Y, Chen Y (2007) J Am Chem Soc 129:9014–9019CrossRefGoogle Scholar
  84. 84.
    He M, Jiang H, Kauppinen EI, Lehtonen J (2012) Nanoscale 4:7394CrossRefGoogle Scholar
  85. 85.
    Artyukhov VI, Penev ES, Yakobson BI (2014) Nat Commun 5:4892CrossRefGoogle Scholar
  86. 86.
    Li J, Ke CT, Liu K, Li P, Liang S, Finkelstein G, Wang F, Liu J (2014) ACS Nano 8:8564–8572CrossRefGoogle Scholar
  87. 87.
    Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu YT, Liu Z (2007) Nat Mater 6:293–296CrossRefGoogle Scholar
  88. 88.
    He M, Magnin Y, Amara H, Jiang H, Cui H, Fossard F, Castan A, Kauppinen E, Loiseau A, Bichara C (2017) Carbon 113:231–236CrossRefGoogle Scholar
  89. 89.
    Aguiar-Hualde J-M, Magnin Y, Amara H, Bichara C, submitted to Carbon.
  90. 90.
    He M, Amara H, Jiang H, Hassinen J, Bichara C, Ras RHA, Lehtonen J, Kauppinen EI, Loiseau A (2015) Nanoscale 7:20284–20289CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Laboratoire d’Etude des MicrostructuresONERA-CNRSChâtillon CedexFrance
  2. 2.Aix Marseille University, CNRS, CINAMMarseilleFrance

Personalised recommendations