Electronic Structure of Open-Shell Singlet Molecules: Diradical Character Viewpoint

Review
Part of the following topical collections:
  1. Physical Organic Chemistry of Quinodimethanes

Abstract

This chapter theoretically explains the electronic structures of open-shell singlet systems with a wide range of open-shell (diradical) characters. The definition of diradical character and its correlation to the excitation energies, transition properties, and dipole moment differences are described based on the valence configuration interaction scheme using a two-site model with two electrons in two active orbitals. The linear and nonlinear optical properties for various polycyclic aromatic hydrocarbons with open-shell character are also discussed as a function of diradical character.

Keywords

Diradical character Open-shell singlet Excitation energy and property Valence configuration interaction Nonlinear optical property 

References

  1. 1.
    Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416–7417 (Erratum: J Am Chem Soc 126: 10493) CrossRefGoogle Scholar
  2. 2.
    Bettinger HF (2010) Pure Appl Chem 82:905–915CrossRefGoogle Scholar
  3. 3.
    Sun Z, Ye Q, Chi C, Wu J (2012) Chem Soc Rev 41:7857–7889CrossRefGoogle Scholar
  4. 4.
    Nakano M, Champagne B (2015) J Phys Chem Lett 6:3236–3256CrossRefGoogle Scholar
  5. 5.
    Nakano M, Champagne B (2016) WIREs Comput Mol Sci 6:198–210CrossRefGoogle Scholar
  6. 6.
    Nakano M, Kishi R, Nitta T, Kubo T, Nakasuji K, Kamada K, Ohta K, Champagne B, Botek E, Yamaguchi K (2005) J Phys Chem A 109:885–891CrossRefGoogle Scholar
  7. 7.
    Nakano M, Kishi R, Ohta S, Takahashi H, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2007) Phys Rev Lett 99:033001–1–4Google Scholar
  8. 8.
    Nakano M, Yoneda K, Kishi R, Takahashi H, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2009) J Chem Phys 131:114316–1–7Google Scholar
  9. 9.
    Kamada K, Ohta K, Kubo T, Shimizu A, Morita Y, Nakasuji K, Kishi R, Ohta S, Furukawa S, Takahashi H, Nakano M (2007) Angew Chem Int Ed 46:3544–3546CrossRefGoogle Scholar
  10. 10.
    Kubo T, Shimizu A, Sakamoto M, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2005) Angew Chem Int Ed 44:6564–6568CrossRefGoogle Scholar
  11. 11.
    Lambert C (2011) Angew Chem Int Ed 50:1756–1758CrossRefGoogle Scholar
  12. 12.
    Sun Z, Wu J (2012) J Mater Chem 22:4151–4160CrossRefGoogle Scholar
  13. 13.
    Sun Z, Zeng Z, Wu J (2013) Chem-Asian J 8:2894–2904CrossRefGoogle Scholar
  14. 14.
    Abe M (2013) Chem Rev 113:7011–7088CrossRefGoogle Scholar
  15. 15.
    Sun Z, Zeng Z, Wu J (2014) Acc Chem Res 47:2582–2591CrossRefGoogle Scholar
  16. 16.
    Nakano M (2014) Excitation Energies and Properties of Open-Shell Singlet Molecules, Springer International PublishingGoogle Scholar
  17. 17.
    Kubo T (2015) Chem Lett 44:111–122CrossRefGoogle Scholar
  18. 18.
    Nakano M (2017) Chem Rec 17:27–62Google Scholar
  19. 19.
    Clar E (1972) The Aromatic Sextet. Wiley, New YorkGoogle Scholar
  20. 20.
    Hachmann J, Dorando JJ, Avilés M, Chan GK-L (2007) J Chem Phys 127:134309–1–9Google Scholar
  21. 21.
    Casanova D, Head-Gordon M (2009) Phys Chem Chem Phys 11:9779–9790CrossRefGoogle Scholar
  22. 22.
    Hajgató B, Huzak M, Deleuze MS (2011) J Phys Chem A 115:9282–9293CrossRefGoogle Scholar
  23. 23.
    Plasser F, Pasalic H, Gerzabek MH, Libisch F, Reiter R, Burgdörfer J, Müller T, Shepard R, Lischka H (2013) Angew Chem Int Ed 52:2581–2584CrossRefGoogle Scholar
  24. 24.
    Chakraborty H, Shukla A (2013) J Phys Chem A 117:14220–14229CrossRefGoogle Scholar
  25. 25.
    Motomura S, Nakano M, Fukui H, Yoneda K, Kubo T, Carion R, Champagne B (2011) Phys Chem Chem Phys 13:20575–20583CrossRefGoogle Scholar
  26. 26.
    Fukuda K, Nagami T, Fujiyoshi J, Nakano M (2015) J Phys Chem A 119:10620–10627CrossRefGoogle Scholar
  27. 27.
    Hayes EF, Siu AKQ (1971) J Am Chem Soc 93:2090–2091CrossRefGoogle Scholar
  28. 28.
    Yamaguchi K (1975) Chem Phys Lett 33:330–335CrossRefGoogle Scholar
  29. 29.
    Yamaguchi K (1990) In: Carbo R, Klobukowski M (eds) Self-Consistent Field: Theory and Applications. Elsevier, Amsterdam, The Netherlands, pp 727–828Google Scholar
  30. 30.
    Head-Gordon M (2003) Chem Phys Lett 372:508–511CrossRefGoogle Scholar
  31. 31.
    Nakano M, Fukui H, Minami T, Yoneda K, Shigeta Y, Kishi R, Champagne B, Botek E, Kubo T, Ohta K, Kamada K (2011) Theoret Chem Acc 130:711–724 (erratum (2011) 130:725) Google Scholar
  32. 32.
    Nakano M, Champagne B, Botek E, Ohta K, Kamada K, Kubo T (2010) J Chem Phys 133:154302–1–15Google Scholar
  33. 33.
    Yamanaka S, Okumura M, Nakano M, Yamaguchi K (1994) J Mol Structure (Theochem) 310:205–218Google Scholar
  34. 34.
    Kitagawa Y, Saito T, Nakanishi Y, Kataoka Y, Matsui T, Kawakami T, Okumura M, Yamaguchi K (2009) J Phys Chem A 113:15041–15046CrossRefGoogle Scholar
  35. 35.
    Calzado CJ, Cabrero J, Malrieu JP, Caballol R (2002) J Chem Phys 116:2728–2747CrossRefGoogle Scholar
  36. 36.
    Minami T, Ito S, Nakano M (2013) J Phys Chem A 117:2000–2006CrossRefGoogle Scholar
  37. 37.
    Kishi R, Nakano M (2011) J Phys Chem A 115:3565–3575CrossRefGoogle Scholar
  38. 38.
    Nakano M, Champagne B (2013) J Chem Phys 138: 244306-1-13Google Scholar
  39. 39.
    Nakano M, Fukuda K, Champagne B (2016) J Phys Chem C 120:1193–1207CrossRefGoogle Scholar
  40. 40.
    Special Issue on Optical Nonlinearities in Chemistry (1994) Burland D, ed. Chem Rev 94:1–278CrossRefGoogle Scholar
  41. 41.
    Nalwa HS, Miyata S (eds) (1997) Nonlinear Optics of Organic Molecules and Polymers. CRC Press, Boca Raton, FLGoogle Scholar
  42. 42.
    Papadopoulos MG, Sadlej AJ, Leszczynski J (eds) (2006) Nonlinear optical properties of matter—from molecules to condensed phases. Springer, DordrechtGoogle Scholar
  43. 43.
    Nakano M, Yamaguchi K (1993) Chem Phys Lett 206:285–292CrossRefGoogle Scholar
  44. 44.
    Nakano M, Shigemoto I, Yamada S, Yamaguchi K (1995) J Chem Phys 103:4175–4191CrossRefGoogle Scholar
  45. 45.
    Fukuda K, Suzuki Y, Matsui H, Nagami T, Kitagawa Y, Champagne B, Kamada K, Yamamoto Y, Nakano M (2017) Chem Phys Chem 18:142–148Google Scholar
  46. 46.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2005) Chem Rev 105:3842–3888CrossRefGoogle Scholar
  47. 47.
    Kertesz M, Choi CH, Yang S (2005) Chem Rev 105:3448–3481CrossRefGoogle Scholar
  48. 48.
    Rosenberg M, Dahlstrand C, Kilså L, Ottosson H (2014) Chem Rev 114:5379–5425CrossRefGoogle Scholar
  49. 49.
    Chase DT, Rose BD, McClintock SP, Zakharov LN, Haley MM (2011) Angew Chem Int Ed 50:1127–1130CrossRefGoogle Scholar
  50. 50.
    Shimizu A, Tobe Y (2011) Angew Chem Int Ed 50:6906–6910CrossRefGoogle Scholar
  51. 51.
    Fix AG, Deal PE, Vonnegut CL, Rose BD, Zakharov LN, Haley MM (2013) Org Lett 15:1362–1365CrossRefGoogle Scholar
  52. 52.
    Shimizu A, Kishi R, Nakano M, Shiomi D, Sato K, Takui T, Hisaki I, Miyata M, Tobe Y (2013) Angew Chem Int Ed 52:6076–6079CrossRefGoogle Scholar
  53. 53.
    Thomas S, Kim K (2014) Phys Chem Chem Phys 16:24592–24597CrossRefGoogle Scholar
  54. 54.
    Ruud L, Helgaker T, Bal KL, Jørgensen P, Jensen HJA (1993) J Chem Phys 99:3847–3859CrossRefGoogle Scholar
  55. 55.
    Cohen HD, Roothaan CCJ (1965) J Chem Phys 43:S34–S39CrossRefGoogle Scholar
  56. 56.
    Fukuda K, Nagami T, Fujiyoshi J, Nakano M (2015) J Phys Chem A 119:10620–10627CrossRefGoogle Scholar
  57. 57.
    Nakano M, Nitta T, Yamaguchi K, Champagne B, Botek E (2004) J Phys Chem A 108:4105–4111CrossRefGoogle Scholar
  58. 58.
    van Gisbergen SJA, Schipper PRT, Gritsenko OV, Baerends EJ, Snijders JG, Champagne B, Kirtman B (1999) Phys Rev Lett 83:694–697CrossRefGoogle Scholar
  59. 59.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3543CrossRefGoogle Scholar
  60. 60.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425–8433CrossRefGoogle Scholar
  61. 61.
    Song J, Hirosawa T, Tsuneda T, Hirao K (2007) J Chem Phys 126:154105–1–7Google Scholar
  62. 62.
    Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122:234111–1–10Google Scholar
  63. 63.
    Sekino H, Maeda Y, Kamiya M, Hirao K (2007) J Chem Phys 126:014107–1–6Google Scholar
  64. 64.
    Peach MJG, Cohen AJ, Tozer DJ (2006) Phys Chem Chem Phys 8:4543–4549CrossRefGoogle Scholar
  65. 65.
    Jacquemin D, Perpète EA, Medved M, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:191108–1–4Google Scholar
  66. 66.
    Kishi R, Bonness S, Yoneda K, Takahashi H, Nakano M, Botek E, Champagne B, Kubo T, Kamada K, Ohta K, Tsuneda T (2010) J Chem Phys 132:094107-1-11Google Scholar
  67. 67.
    Bonness S, Fukui H, Yoneda K, Kishi R, Champagne B, Botek E, Nakano M (2010) Chem Phys Lett 493:195–199CrossRefGoogle Scholar
  68. 68.
    Refaely-Abramson S, Baer R, Kronik L (2011) Phys Rev B 84:075144–1–8Google Scholar
  69. 69.
    Kishi R, Nakano M, Ohta S, Takebe A, Nate M, Takahashi H, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2007) J Chem Theory Comput 3:1699–1707CrossRefGoogle Scholar
  70. 70.
    Nakano M, Minami T, Fukui H, Yoneda K, Shigeta Y, Kishi R, Champagne B, Botek E (2010) Chem Phys Lett 501:140–145CrossRefGoogle Scholar
  71. 71.
    Takatsuka K, Fueno T, Yamaguchi K (1978) Theor Chim Acta 48:175–183CrossRefGoogle Scholar
  72. 72.
    Staroverov VN, Davidson ER (2000) Chem Phys Lett 330:161–168CrossRefGoogle Scholar
  73. 73.
    Kubo T, Shimizu A, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2007) Org Lett 9:81–84CrossRefGoogle Scholar
  74. 74.
    Nakano M, Kubo T, Kamada K, Ohta K, Kishi R, Ohta S, Nakagawa N, Takahashi H, Furukawa S, Morita Y, Nakatsuji K, Yamaguchi K (2006) Chem Phys Lett 418:142–147CrossRefGoogle Scholar
  75. 75.
    Ohta S, Nakano M, Kubo T, Kamada K, Ohta K, Kishi R, Nakagawa N, Champagne B, Botek E, Takebe A, Umezaki S, Nate M, Takahashi H, Furukawa S, Morita Y, Nakasuji K, Yamaguchi K (2007) J Phys Chem A 111:3633–3641CrossRefGoogle Scholar
  76. 76.
    Nakano M, Takebe A, Kishi R, Fukui H, Minami T, Kubota K, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2008) Chem Phys Lett 454:97–104CrossRefGoogle Scholar
  77. 77.
    Salustro S, Maschio L, Kirtman B, Rérat M, Dovesi R (2016) J Phys Chem A 120:6756–6761Google Scholar
  78. 78.
    Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) J Phys Soc Jpn 65:1920–1923CrossRefGoogle Scholar
  79. 79.
    Jiang DE, Dai S (2008) J Phys Chem A 112:332–335CrossRefGoogle Scholar
  80. 80.
    Jiang DE, Sumpter BG, Dai S, J Chem Phys 127:124703–1–5Google Scholar
  81. 81.
    Chen Z, Jiang DE, Lu X, Bettinger HF, Dai S (2007) Schleyer PvR. Houk KN 9:5449–5452Google Scholar
  82. 82.
    Son YW, Cohen ML, Louie SG (2006) Phys Rev Lett 97:216803–1–4Google Scholar
  83. 83.
    Hod O, Barone V, Peralta JE, Scuseria GE (2007) Nano Lett 7:2295–2299CrossRefGoogle Scholar
  84. 84.
    Hachmann J, Dorando JJ, Avilés M, Chan GKL (2007) J Chem Phys 127:134309–1–9Google Scholar
  85. 85.
    Pisani L, Chan JA, Montanari B, Harrison NM (2007) Phys Rev B 75:064418–1–9Google Scholar
  86. 86.
    Castro Neto AH, Guinea F, Peres HMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  87. 87.
    Yazyev OV, Wang WL, Meng S, Kaxiras E (2008) Nano Lett 8:766–Google Scholar
  88. 88.
    Wang WL, Meng S, Kaxiras E (2008) Nano Lett 8:241–245CrossRefGoogle Scholar
  89. 89.
    Ezawa M (2008) Physica E 40:1421–1423CrossRefGoogle Scholar
  90. 90.
    Ezawa M (2007) Phys Rev B 76: 245415–1–6Google Scholar
  91. 91.
    Fernándz-Rossier J, Palacios JJ (2007) Phys Rev Lett 99:177204–1–4Google Scholar
  92. 92.
    Dias JR (2008) Chem Phys Lett 467:200–203CrossRefGoogle Scholar
  93. 93.
    Nakano M, Nagai H, Fukui H, Yoneda K, Kishi R, Takahashi H, Shimizu A, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2008) Chem Phys Lett 467:120–125CrossRefGoogle Scholar
  94. 94.
    Nagai H, Nakano M, Yoneda K, Fukui H, Minami T, Bonness S, Kishi R, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2009) Chem Phys Lett 477:355–359CrossRefGoogle Scholar
  95. 95.
    Nagai H, Nakano M, Yoneda K, Kishi R, Takahashi H, Shimizu A, Kubo T, Kamada K, Ohta K, Botek E, Chanpagne B (2010) Chem Phys Lett 489:212–218CrossRefGoogle Scholar
  96. 96.
    Yoneda K, Nakano M (2016) Chap 27 in Graphene Science Handbook edited by Mahmood A, Ali N, Milne WI, Ozkan CS, Mitura S, Gervasoni JL, CRC Press: pp 437–455Google Scholar
  97. 97.
    Yoneda K, Nakano M, Kishi R, Takahashi H, Shimizu A, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2009) Chem Phys Lett 480:278–283CrossRefGoogle Scholar
  98. 98.
    Nakano M, Kishi R, Takebe A, Nate M, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek B (2007) Comput Lett 3:333–338CrossRefGoogle Scholar
  99. 99.
    Yoneda K, Nakano M, Fukui H, Minami T, Shigeta Y, Kubo T, Botek E, Champagne B (2011) ChemPhysChem 12:1697–1707CrossRefGoogle Scholar
  100. 100.
    Yoneda K, Nakano M, Inoue Y, Inui T, Fukuda K, Shigeta Y, Kubo T, Champagne B (2012) J Phys Chem C 116:17787–17795CrossRefGoogle Scholar
  101. 101.
    Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T (2013) J Am Chem Soc 135:1430–1437CrossRefGoogle Scholar
  102. 102.
    Konishi A, Hirao Y, Kurata H, Kubo T, Nakano M, Kamada K (2014) Pure Appl Chem 86:497–505CrossRefGoogle Scholar
  103. 103.
    Yoneda K, Matsui H, Fukuda K, Takamuku S, Kishi R, Nakano M (2014) Chem Phys Lett 595–596:220–225CrossRefGoogle Scholar
  104. 104.
    Lieb EH (1989) Phys Rev Lett 62:1201–1204CrossRefGoogle Scholar
  105. 105.
    Ovchinnikov AA (1978) Theor Chim Acta 47:297–304CrossRefGoogle Scholar
  106. 106.
    Nakano M, Minami T, Yoneda K, Muhammad S, Kishi R, Shigeta Y, Kubo T, Rougier L, Champagne B, Kamada K, Ohta K (2011) J Phys Chem Lett 2:1094–1098CrossRefGoogle Scholar
  107. 107.
    Fukuda K, Matsushita N, Minamida Y, Matsui H, Nagami T, Takamuku S, Kitagawa K, Nakano M (2017) Chemistry Select 2:2084–2087Google Scholar
  108. 108.
    Kamada K, Ohta K, Shimizu A, Kubo T, Kishi R, Takahashi H, Botek E, Champagne B, Nakano M (2010) J Phys Chem Lett 1:937–940CrossRefGoogle Scholar
  109. 109.
    Kamada K, Fuku-en SI, Minamide S, Ohta K, Kishi R, Nakano M, Matsuzaki M, Okamoto H, Higashikawa H, Inoue K, Kojima S, Yamamoto Y (2013) J Am Chem Soc 135:232–241CrossRefGoogle Scholar
  110. 110.
    Ishida M, Shin JY, Lim JM, Lee BS, Yoon MC, Koide T, Sessier JL, Osuka A, Kim D (2011) J Am Chem Soc 133:15533–15544CrossRefGoogle Scholar
  111. 111.
    Li Y, Heng WK, Lee BS, Aratani N, Zafra JL, Bao N, Lee R, Sung YM, Sun Z, Huang KW, Webster RD, Navarrete JTL, Kim D, Osuka A, Casado J, Ding J, Wu J (2012) J Am Chem Soc 134:14913–14922CrossRefGoogle Scholar
  112. 112.
    Zeng Z, Sung YW, Bao N, Tan D, Lee R, Zafra JL, Lee BS, Ishida M, Ding J, Navarrete JTL, Li Y, Zeng W, Kim D, Huang KW, Webster RD, Casado J, Wu J (2012) J Am Chem Soc 134:14513–14525CrossRefGoogle Scholar
  113. 113.
    Zeng Z, Ishida M, Zafra JL, Zhu X, Sung YM, Bao N, Webster RD, Lee BS, Li RW, Zeng W, Li Y, Chi C, Navarrete JTL, Ding J, Casado J, Kim D, Wu J (2013) J Am Chem Soc 135:6363–6371CrossRefGoogle Scholar
  114. 114.
    Kishida H, Hibino K, Nakamura A, Kato D, Abe J (2010) This Solid Films pp 1028–2030Google Scholar
  115. 115.
    Quah HS, Chen W, Schreyer MK, Yang H, Wong MW, Ji W, Vittal JJ (2015) Nat Comm 6:7954–1–7Google Scholar
  116. 116.
    Takauji K, Suizu R, Awaga K, Kishida H, Nakamura A (2014) J Phys Chem C 116:5241–5246Google Scholar
  117. 117.
    Minami T, Nakano M (2012) J Phys Chem Lett 3:145–150CrossRefGoogle Scholar
  118. 118.
    Nakano M, Ito S, Nagami T, Kitagawa Y, Kubo T (2016) J Phys Chem C 120:22803–22815CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Materials Engineering ScienceGraduate School of Engineering Science, Osaka UniversityToyonakaJapan
  2. 2.Center for Spintronics Research Network (CSRN)Graduate School of Engineering Science, Osaka UniversityToyonakaJapan

Personalised recommendations