Advertisement

Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery

  • Yingqin Li
  • Jinbiao Gao
  • Chao Zhang
  • Zhong Cao
  • Du Cheng
  • Jie Liu
  • Xintao Shuai
Review
Part of the following topical collections:
  1. Polymeric Gene Delivery Systems

Abstract

Gene therapy provides an alternative and effective method for treatment of genetic diseases and cancers that are refractory to conventional therapeutics. The success of gene therapy is largely dependent on the development of safe and effective gene delivery vectors for transporting genetic material from the blood stream to the cytoplasm or nucleus. Current gene vectors can be divided into viral and non-viral vectors. Although non-viral gene delivery carriers can offer some advantages, such as safety and facile fabrication, they do not possess the same high gene transfection efficiency as viral vectors due to a lack of functionality to overcome extra- and intracellular gene delivery obstacles. On the basis of these disadvantages, researchers are developing “smart” non-viral gene-delivery carriers in order to overcome the physiological barriers and realize efficient gene transfection. These “smart” stimuli-responsive carriers can undergo physical or chemical reactions in response to internal tumor-specific environments, such as pH conditions, redox potentials, enzymatic activations and thermal gradients, as well as external stimulations, such as ultrasound, light, magnetic fields, and electrical fields. Furthermore, “smart” carriers can also be triggered by dual or multiple combinations of different stimuli. In this review, we highlight the recent stimuli-sensitive polymeric nanocarriers for gene delivery, and we discuss the potential of combining multiple stimuli-responsive strategies for future gene therapy applications.

Keywords

Stimuli-responsive Gene therapy Polymer Non-viral vector Nanocarriers 

Abbreviations

AAm

Acrylamide

AAV

Adeno-associated viruses

ADV

Acoustic droplet vaporization

AON

Antisense oligodeoxy nucleotides

ATP

Adenosine triphosphate

azoTAB

Azobenzene-trimethylammonium bromide

BAH

Bis-aryl hydrazone

C11F17-PAsp(DET)

C11F17-poly[N-[N′-(2-aminoethyl)]aspartamide]

CMD

Carboxymethyl dextran

CPDT

Cyclopentadithiophene

CTX

Chlorotoxin

DSPEI

Degradability of disulfide cross-linked short PEIs

dtACPP

Activatable cell-penetrating peptide

GALA

Glutamic acid-alanine-leucine-alanine

GFP

Green fluorescent protein

GILT

Gamma-interferon-inducible lysosomal thiol reductase

GNR

Gold nanorod

GSH

Gutathione

HCC

Hepatocellular carcinoma

HHV

Herpes simplex viruses

KALA

Lysine-alanine-leucine-alanine

KAPE

Ketal containing poly (β-amino esters)

LCST

Low critical solution temperature

MB

Microbubble

MF

Magnetic field

MMA

Methyl methacrylate

MMPs

Matrix metalloproteinases

MN core

Magnetic nanopartical core

MPAP

Membrane translocation peptides

mPEG-b-PLLys

Poly(ethylene glycol)-b-poly(l-lysine)

NBU

o-Nitrobenzyl urethane

NIR

Near infrared

NS

Nanoshell

PAA

Poly (acrylic acid)

PAO

Poly(alkylene oxides)

PATK

Poly(amino thioketal)

PBA

Phenylboronic acid

PBAA

Poly (butyl acrylicacid)

PBAE

Poly(β-amino ester)

PDEA

Poly(2-(diethylamino)ethyl methacrylate)

PDMAEMA

Poly(2-dimethylaminoethyl methacrylate)

PEAA

Poly(ethyl acrylic acid)

PEEP-b-PDMAEMA

Poly(ethylethylene phosphate)-block-poly[2-(dimethylamino)ethyl methacrylate]

PEG

Polyethylene glycol

PEI

Polyethylenimine

PEO-PPO-PEO

Poly-(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)

PFP

Perfluoropentane

PGA-g-mPEG

Poly(glutamic acid)-g-MeO-poly(ethylene glycol)

PICM

PEG-b-P (PrMA-co-MAA)

PLH

Poly (l-histidine)

PLL

Poly-l-lysine

PLys

Poly (l-lysine)

PMA

Poly (meth acrylic acid)

PNIPAM

Poly (N-isopropylacrylamide)

PPAA

Poly (propyl acrylic acid)

PPDDP

MPEG113-b-CP5k-b-PDMAEMA42-b-P(DMAEMA22-co-BMA40-co-PAA24

PPMCs

Pluronic/polyethylenimine to embedded magnetite nanocrystals

PPPs

Photo- and pH-responsive polypeptides

PTX

Paclitaxel

RES

Reticuloe endothelin system

ROS

Reactive oxygen species

SDBS

Sodium dodecylbenzenesulfonate

SDS

Sodium dodecylsulfate

siGFP

siRNA molecules targeting GFP

SPIO

Superparamagnetic oxide nanoparticle

SSPEI

Disulfide-containing polyethylenimine

UCAs

Ultrasound contrast agents

UCST

Upper critical solution temperature

UNCs

Upconversion nanoparticles

uPA

Urokinase plasminogen activator

US

Ultrasound contrast agents

VP

Vinylpyrrolidinone

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51225305, U1401242), the Natural Science Foundation of Guangdong Province (2016A030313315, 2014A030312018), the Science and Technology Planning Project of Guangdong Province (2015A050502024), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2014TQ01R651), the Fundamental Research Funds for the Central Universities (161gzd05) and the China Scholarship Council (CSC).

References

  1. 1.
    Ragusa A, GarcÍa I, PenadÉs S (2007) Nanoparticles as nonviral gene delivery vectors. IEEE Trans Nanobiosci 6:319–330CrossRefGoogle Scholar
  2. 2.
    Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593CrossRefGoogle Scholar
  3. 3.
    Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302CrossRefGoogle Scholar
  4. 4.
    Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW (2016) Clinical development of gene therapy: Results and lessons from recent successes. Mol Ther Methods Clin Dev 3:16034CrossRefGoogle Scholar
  5. 5.
    Tani K (2016) Current status of ex vivo gene therapy for hematological disorders: A review of clinical trials in Japan around the world. Int J Hematol 104:42–72CrossRefGoogle Scholar
  6. 6.
    Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067-U1140Google Scholar
  7. 7.
    Huang S, Shao K, Kuang Y, Liu Y, Li J, An S, Guo Y, Ma H, He X, Jiang C (2013) Tumor targeting and microenvironment-responsive nanoparticles for gene delivery. Biomaterials 34:5294–5302CrossRefGoogle Scholar
  8. 8.
    Xu P, Li S-Y, Li Q, Van Kirk EA, Ren J, Murdoch WJ, Zhang Z, Radosz M, Shen Y (2008) Virion-minnicking nanocapsules from pH-controlled hierarchical self-assembly for gene delivery. Angew Chem Int Ed 47:1260–1264CrossRefGoogle Scholar
  9. 9.
    Kim M-H, Na H-K, Kim Y-K, Ryoo S-R, Cho HS, Lee KE, Jeon H, Ryoo R, Min D-H (2011) Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5:3568–3576CrossRefGoogle Scholar
  10. 10.
    Huh YM, Lee ES, Lee JH, Yw Jun, Kim PH, Yun CO, Kim JH, Suh JS, Cheon J (2007) Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv Mater 19:3109–3112CrossRefGoogle Scholar
  11. 11.
    Zhang G, Liu J, Yang Q, Zhuo R, Jiang X (2012) Disulfide-containing brushed polyethylenimine derivative synthesized by click chemistry for nonviral gene delivery. Bioconjug Chem 23:1290–1299CrossRefGoogle Scholar
  12. 12.
    Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358CrossRefGoogle Scholar
  13. 13.
    Chen DJ, Majors BS, Zelikin A, Putnam D (2005) Structure-function relationships of gene delivery vectors in a limited polycation library. J Control Release 103:273–283CrossRefGoogle Scholar
  14. 14.
    Kaur S, Prasad C, Balakrishnan B, Banerjee R (2015) Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 3:955–987CrossRefGoogle Scholar
  15. 15.
    Dehousse V, Garbacki N, Colige A, Evrard B (2010) Development of pH-responsive nanocarriers using trimethylchitosans and methacrylic acid copolymer for siRNA delivery. Biomaterials 31:1839–1849CrossRefGoogle Scholar
  16. 16.
    Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212CrossRefGoogle Scholar
  17. 17.
    Thornton PD, Mart RJ, Ulijn RV (2007) Enzyme-responsive polymer hydrogel particles for controlled release. Adv Mater 19:1252–1256CrossRefGoogle Scholar
  18. 18.
    Reineke TM (2016) Stimuli-responsive polymers for biological detection and delivery. ACS Macro Lett 5:14–18CrossRefGoogle Scholar
  19. 19.
    Li J, Yu X, Wang Y, Yuan Y, Xiao H, Cheng D, Shuai X (2014) A reduction and pH dual-sensitive polymeric vector for long-circulating and tumor-targeted siRNA delivery. Adv Mater 26:8217–8224CrossRefGoogle Scholar
  20. 20.
    Midoux P, Pichon C, Yaouanc JJ, Jaffres PA (2009) Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol 157:166–178CrossRefGoogle Scholar
  21. 21.
    Guo C, Chen W, Lin S, Li H, Cheng D, Wang X, Shuai X (2012) Synthesis and characterization of polycation block copolymer Poly(l-lysine)-b-poly[N-(N′, N′-diisopropyl-aminoethyl)aspartamide] as potential pH responsive gene delivery system. Polymer 53:342–349CrossRefGoogle Scholar
  22. 22.
    Knorr V, Allmendinger L, Walker GF, Paintner FF, Wagner E (2007) An acetal-based PEGylation reagent for pH-Sensitive shielding of DNA polyplexes. Bioconjug Chem 18:1218–1225CrossRefGoogle Scholar
  23. 23.
    Mignet N, Richard C, Seguin J, Largeau C, Bessodes M, Scherman D (2008) Anionic pH-sensitive pegylated lipoplexes to deliver DNA to tumors. Int J Pharm 361:194–201CrossRefGoogle Scholar
  24. 24.
    Benns JM, Choi JS, Mahato RI, Park JS, Kim SW (2000) pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(l-histidine)-graft-poly(l-lysine) comb shaped polymer. Bioconjug Chem 11:637–645CrossRefGoogle Scholar
  25. 25.
    Midoux P, Monsigny M (1999) Efficient gene transfer by histidylated polylysine pDNA complexes. Bioconjug Chem 10:406–411CrossRefGoogle Scholar
  26. 26.
    Durmaz YY, Lin Y-L, ElSayed MEH (2013) Development of degradable, ph-sensitive star vectors for enhancing the cytoplasmic delivery of nucleic acids. Adv Funct Mater 23:3885–3895CrossRefGoogle Scholar
  27. 27.
    Lee H, Jeong JH, Park TG (2002) PEG grafted polylysine with fusogenic peptide for gene delivery: High transfection efficiency with low cytotoxicity. J Control Release 79:283–291CrossRefGoogle Scholar
  28. 28.
    Li W, Nicol F, Szoka FC Jr (2004) GALA: A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56:967–985CrossRefGoogle Scholar
  29. 29.
    Stayton PS, El-Sayed MEH, Murthy N, Bulmus V, Lackey C, Cheung C, Hoffman AS (2005) ‘Smart’ delivery systems for biomolecular therapeutics. Orthod Craniofac Res 8:219–225CrossRefGoogle Scholar
  30. 30.
    Felber AE, Castagner B, Elsabahy M, Deleavey GF, Damha MJ, Leroux JC (2011) siRNA nanocarriers based on methacrylic acid copolymers. J Control Release 152:159–167CrossRefGoogle Scholar
  31. 31.
    Peddada LY, Garbuzenko OB, Devore DI, Minko T, Roth CM (2014) Delivery of antisense oligonucleotides using poly(alkylene oxide)-poly(propylacrylic acid) graft copolymers in conjunction with cationic liposomes. J Control Release 194:103–112CrossRefGoogle Scholar
  32. 32.
    C-b Wu, J-y Hao, X-m Deng, Liu Y (2008) Random branched poly(hydroxyetheramine): A novel polycation with proton sponge effect and high density of discrete charge. Polym Bull 60:635–645CrossRefGoogle Scholar
  33. 33.
    Kim HJ, Miyata K, Nomoto T, Zheng M, Kim A, Liu X, Cabral H, Christie RJ, Nishiyama N, Kataoka K (2014) siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core. Biomaterials 35:4548–4556CrossRefGoogle Scholar
  34. 34.
    Sanjoh M, Hiki S, Lee Y, Oba M, Miyata K, Ishii T, Kataoka K (2010) pDNA/poly(l-lysine) polyplexes functionalized with a pH-sensitive charge-conversional poly(aspartamide) derivative for controlled gene delivery to human umbilical vein endothelial cells. Macromol Rapid Commun 31:1181–1186CrossRefGoogle Scholar
  35. 35.
    Tangsangasaksri M, Takemoto H, Naito M, Maeda Y, Sueyoshi D, Kim HJ, Miura Y, Ahn J, Azuma R, Nishiyama N, Miyata K, Kataoka K (2016) siRNA-loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules 17:246–255CrossRefGoogle Scholar
  36. 36.
    Asayama S, Sudo M, Nagaoka S, Kawakami H (2008) Carboxymethyl poly(l-histidine) as a new pH-sensitive polypeptide to enhance polyplex gene delivery. Mol Pharm 5:898–901CrossRefGoogle Scholar
  37. 37.
    Boylan NJ, Kim AJ, Suk JS, Adstamongkonkul P, Simons BW, Lai SK, Cooper MJ, Hanes J (2012) Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-l-lysine. Biomaterials 33:2361–2371CrossRefGoogle Scholar
  38. 38.
    Khalil IA, Hayashi Y, Mizuno R, Harashima H (2011) Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery. J Control Release 156:374–380CrossRefGoogle Scholar
  39. 39.
    Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 269:12918–12924Google Scholar
  40. 40.
    Yuan Q, Yeudall WA, Yang H (2010) PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery. Biomacromolecules 11:1940–1947CrossRefGoogle Scholar
  41. 41.
    Guk K, Lim H, Kim B, Hong M, Khang G, Lee D (2013) Acid-cleavable ketal containing poly(beta-amino ester) for enhanced siRNA delivery. Int J Pharm 453:541–550CrossRefGoogle Scholar
  42. 42.
    Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (2011) Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152:2–12CrossRefGoogle Scholar
  43. 43.
    Wen Y, Zhang Z, Li J (2014) Highly efficient multifunctional supramolecular gene carrier system self-assembled from redox-sensitive and zwitterionic polymer blocks. Adv Funct Mater 24:3874–3884CrossRefGoogle Scholar
  44. 44.
    Takemoto H, Ishii A, Miyata K, Nakanishi M, Oba M, Ishii T, Yamasaki Y, Nishiyama N, Kataoka K (2010) Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system. Biomaterials 31:8097–8105CrossRefGoogle Scholar
  45. 45.
    Jung S, Lee SH, Mok H, Chung HJ, Park TG (2010) Gene silencing efficiency of siRNA-PEG conjugates: Effect of PEGylation site and PEG molecular weight. J Control Release 144:306–313CrossRefGoogle Scholar
  46. 46.
    Mok H, Lee SH, Park JW, Park TG (2010) Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nat Mater 9:272–278Google Scholar
  47. 47.
    Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M, Koyama H, Yamasaki Y, Kataoka K (2009) Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 10:119–127CrossRefGoogle Scholar
  48. 48.
    Manickam DS, Li J, Putt DA, Zhou QH, Wu C, Lash LH, Oupicky D (2010) Effect of innate glutathione levels on activity of redox-responsive gene delivery vectors. J Control Release 141:77–84CrossRefGoogle Scholar
  49. 49.
    Schwerdt A, Zintchenko A, Concia M, Roesen N, Fisher K, Lindner LH, Issels R, Wagner E, Ogris M (2008) Hyperthermia-induced targeting of thermosensitive gene carriers to tumors. Hum Gene Ther 19:1283–1292CrossRefGoogle Scholar
  50. 50.
    Kurisawa M, Yokoyama M, Okano T (2000) Gene expression control by temperature with thermo-responsive polymeric gene carriers. J Control Release 69:127–137CrossRefGoogle Scholar
  51. 51.
    Lee SH, Choi SH, Kim SH, Park TG (2008) Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: Swelling induced physical disruption of endosome by cold shock. J Control Release 125:25–32CrossRefGoogle Scholar
  52. 52.
    Choi SH, Lee SH, Park TG (2006) Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Biomacromolecules 7:1864–1870CrossRefGoogle Scholar
  53. 53.
    Beckert L, Kostka L, Kessel E, Krhac Levacic A, Kostkova H, Etrych T, Lachelt U, Wagner E (2016) Acid-labile pHPMA modification of four-arm oligoaminoamide pDNA polyplexes balances shielding and gene transfer activity in vitro and in vivo. Eur J Pharm Biopharm 105:85–96CrossRefGoogle Scholar
  54. 54.
    Zintchenko A, Ogris M, Wagner E (2006) Temperature dependent gene expression induced by PNIPAM-based copolymers: Potential of hyperthermia in gene transfer. Bioconjug Chem 17:766–772CrossRefGoogle Scholar
  55. 55.
    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRefGoogle Scholar
  56. 56.
    Liang J, Liu B (2016) ROS-responsive drug delivery systems. Bioeng Transl Med 1:239–251Google Scholar
  57. 57.
    Molla MR, Prasad P, Thayumanavan S (2015) Protein-induced supramolecular disassembly of amphiphilic polypeptide nanoassemblies. J Am Chem Soc 137:7286–7289CrossRefGoogle Scholar
  58. 58.
    Rozema DB, Blokhin AV, Wakefield DH, Benson JD, Carlson JC, Klein JJ, Almeida LJ, Nicholas AL, Hamilton HL, Chu Q, Hegge JO, Wong SC, Trubetskoy VS, Hagen CM, Kitas E, Wolff JA, Lewis DL (2015) Protease-triggered siRNA delivery vehicles. J Control Release 209:57–66CrossRefGoogle Scholar
  59. 59.
    Thambi T, Park JH, Lee DS (2016) Stimuli-responsive polymersomes for cancer therapy. Biomater Sci 4:55–69CrossRefGoogle Scholar
  60. 60.
    Huang S, Shao K, Kuang Y, Liu Y, Li J, An S, Guo Y, Ma H, He X, Jiang C (2013) Tumor targeting and microenvironment-responsive nanoparticles for gene delivery. Biomaterials 34:5294–5302CrossRefGoogle Scholar
  61. 61.
    Zhu L, Perche F, Wang T, Torchilin VP (2014) Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials 35:4213–4222CrossRefGoogle Scholar
  62. 62.
    Veiman KL, Kunnapuu K, Lehto T, Kiisholts K, Parn K, Langel U, Kurrikoff K (2015) PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. J Control Release 209:238–247CrossRefGoogle Scholar
  63. 63.
    Mo R, Jiang T, Gu Z (2014) Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew Chem Int Ed Engl 53:5815–5820CrossRefGoogle Scholar
  64. 64.
    Kim J, Lee YM, Kim H, Park D, Kim J, Kim WJ (2016) Phenylboronic acid-sugar grafted polymer architecture as a dual stimuli-responsive gene carrier for targeted anti-angiogenic tumor therapy. Biomaterials 75:102–111CrossRefGoogle Scholar
  65. 65.
    Wang G-H, Huang G-L, Zhao Y, Pu X-X, Li T, Deng J-J, Lin J-T (2016) ATP triggered drug release and DNA co-delivery systems based on ATP responsive aptamers and polyethylenimine complexes. J Mater Chem B 4:3832–3841CrossRefGoogle Scholar
  66. 66.
    Balazadeh S, Jaspert N, Arif M, Mueller-Roeber B, Maurino VG (2012) Expression of ROS-responsive genes and transcription factors after metabolic formation of H(2)O(2) in chloroplasts. Front Plant Sci 3:234CrossRefGoogle Scholar
  67. 67.
    Chung MF, Chia WT, Wan WL, Lin YJ, Sung HW (2015) Controlled release of an anti-inflammatory drug using an ultrasensitive ros-responsive gas-generating carrier for localized inflammation inhibition. J Am Chem Soc 137:12462–12465CrossRefGoogle Scholar
  68. 68.
    Shim MS, Xia Y (2013) A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew Chem Int Ed Engl 52:6926–6929CrossRefGoogle Scholar
  69. 69.
    Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR (2003) Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 29:1759–1767CrossRefGoogle Scholar
  70. 70.
    Shimamura M, Sato N, Taniyama Y, Yamamoto S, Endoh M, Kurinami H, Aoki M, Ogihara T, Kaneda Y, Morishita R (2004) Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Ther 11:1532–1539CrossRefGoogle Scholar
  71. 71.
    Azuma H, Tomita N, Kaneda Y, Koike H, Ogihara T, Katsuoka Y, Morishita R (2003) Transfection of NFkappaB-decoy oligodeoxynucleotides using efficient ultrasound-mediated gene transfer into donor kidneys prolonged survival of rat renal allografts. Gene Ther 10:415–425CrossRefGoogle Scholar
  72. 72.
    Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166CrossRefGoogle Scholar
  73. 73.
    Pichon C, Kaddur K, Midoux P, Tranquart F, Bouakaz A (2008) Recent advances in gene delivery with ultrasound and microbubbles. J Exp Nanosci 3:17–40CrossRefGoogle Scholar
  74. 74.
    Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T (2001) Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 44:45–54CrossRefGoogle Scholar
  75. 75.
    Bloch SH, Wan M, Dayton PA, Ferrara KW (2004) Optical observation of lipid- and polymer-shelled ultrasound microbubble contrast agents. Appl Phys Lett 84:631CrossRefGoogle Scholar
  76. 76.
    Miller DL, Pislaru SV, Greenleaf JF (2002) Sonoporation: Mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 27:115–134CrossRefGoogle Scholar
  77. 77.
    Simpson DH, Chin CT, Burns PN (1999) Pulse inversion Doppler: A new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 46:372–382CrossRefGoogle Scholar
  78. 78.
    Newman CM, Bettinger T (2007) Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Ther 14:465–475CrossRefGoogle Scholar
  79. 79.
    Suzuki R, Oda Y, Utoguchi N, Maruyama K (2011) Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J Control Release 149:36–41CrossRefGoogle Scholar
  80. 80.
    Mitragotri S (2005) Innovation—healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4:255–260CrossRefGoogle Scholar
  81. 81.
    Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K (1999) Induction of cell-membrane porosity by ultrasound. Lancet 353:1409CrossRefGoogle Scholar
  82. 82.
    Deng CX, Sieling F, Pan H, Cui J (2004) Ultrasound-induced cell membrane porosity. Ultrasound Med Biol 30:519–526CrossRefGoogle Scholar
  83. 83.
    Hallow DM, Mahajan AD, McCutchen TE, Prausnitz MR (2006) Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med Biol 32:1111–1122CrossRefGoogle Scholar
  84. 84.
    Juffermans LJM, Dijkmans PA, Musters RJP, Visser CA, Kamp O (2006) Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am J Physiol Heart Circ Physiol 291:H1595–H1601CrossRefGoogle Scholar
  85. 85.
    Mehier-Humbert S, Bettinger T, Yan F, Guy RH (2005) Ultrasound-mediated gene delivery: Kinetics of plasmid internalization and gene expression. J Control Release 104:203–211CrossRefGoogle Scholar
  86. 86.
    Pan H, Zhou Y, Izadnegahdar O, Cui JM, Deng CX (2005) Study of sonoporation dynamics affected by ultrasound duty cycle. Ultrasound Med Biol 31:849–856CrossRefGoogle Scholar
  87. 87.
    Sundaram J, Mellein BR, Mitragotri S (2003) An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J 84:3087–3101CrossRefGoogle Scholar
  88. 88.
    van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, de Jong N (2006) Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation. J Control Release 112:149–155CrossRefGoogle Scholar
  89. 89.
    Zarnitsyn VG, Prausnitz MR (2004) Physical parameters influencing optimization of ultrasound-mediated DNA transfection. Ultrasound Med Biol 30:527–538CrossRefGoogle Scholar
  90. 90.
    Fabiilli ML, Haworth KJ, Fakhri NH, Kripfgans OD, Carson PL, Fowlkes JB (2009) The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans Ultrason Ferroelectr Freq Control 56:1006–1017CrossRefGoogle Scholar
  91. 91.
    Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276CrossRefGoogle Scholar
  92. 92.
    Zhang M, Fabiilli ML, Haworth KJ, Fowlkes JB, Kripfgans OD, Roberts WW, Ives KA, Carson PL (2010) Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol 36:1691–1703CrossRefGoogle Scholar
  93. 93.
    Wang CH, Kang ST, Yeh CK (2013) Superparamagnetic iron oxide and drug complex-embedded acoustic droplets for ultrasound targeted theranosis. Biomaterials 34:1852–1861CrossRefGoogle Scholar
  94. 94.
    Wang P, Yin T, Li J, Zheng B, Wang X, Wang Y, Zheng J, Zheng R, Shuai X (2016) Ultrasound-responsive microbubbles for sonography-guided siRNA delivery. Nanomedicine 12:1139–1149CrossRefGoogle Scholar
  95. 95.
    Yin T, Wang P, Li J, Zheng R, Zheng B, Cheng D, Li R, Lai J, Shuai X (2013) Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials 34:4532–4543CrossRefGoogle Scholar
  96. 96.
    Yin T, Wang P, Li J, Wang Y, Zheng B, Zheng R, Cheng D, Shuai X (2014) Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials 35:5932–5943CrossRefGoogle Scholar
  97. 97.
    Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M, Lembo D (2012) New chitosan nanobubbles for ultrasound-mediated gene delivery: Preparation and in vitro characterization. Int J Nanomed 7:3309–3318CrossRefGoogle Scholar
  98. 98.
    Jin Q, Wang Z, Yan F, Deng Z, Ni F, Wu J, Shandas R, Liu X, Zheng H (2013) A novel cationic microbubble coated with stearic acid-modified polyethylenimine to enhance DNA loading and gene delivery by ultrasound. PLoS One 8:e76544CrossRefGoogle Scholar
  99. 99.
    Gao D, Xu M, Cao Z, Gao J, Chen Y, Li Y, Yang Z, Xie X, Jiang Q, Wang W, Liu J (2015) Ultrasound-triggered phase-transition cationic nanodroplets for enhanced gene delivery. ACS Appl Mater Interfaces 7:13524–13537CrossRefGoogle Scholar
  100. 100.
    Lentacker I, De Geest BG, Vandenbroucke RE, Peeters L, Demeester J, De Smedt SC, Sanders NN (2006) Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir 22:7273–7278CrossRefGoogle Scholar
  101. 101.
    Lentacker I, De Smedt SC, Demeester J, Sanders NN (2006) Microbubbles which bind and protect DNA against nucleases. J Control Release 116:E73–E75CrossRefGoogle Scholar
  102. 102.
    Chin LS, Lim M, Hung TT, Marquis CP, Amal R (2014) Perfluorodecalin nanocapsule as an oxygen carrier and contrast agent for ultrasound imaging. Rsc Adv 4:13052–13060CrossRefGoogle Scholar
  103. 103.
    Min HS, Son S, Lee TW, Koo H, Yoon HY, Na JH, Choi Y, Park JH, Lee J, Han MH, Park R-W, Kim I-S, Jeong SY, Rhee K, Kim SH, Kwon IC, Kim K (2013) Liver-specific and echogenic hyaluronic acid nanoparticles facilitating liver cancer discrimination. Adv Funct Mater 23:5518–5529CrossRefGoogle Scholar
  104. 104.
    Yang P, Li D, Jin S, Ding J, Guo J, Shi W, Wang C (2014) Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials 35:2079–2088CrossRefGoogle Scholar
  105. 105.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release 65:271–284CrossRefGoogle Scholar
  106. 106.
    Zhou Y, Wang Z, Chen Y, Shen H, Luo Z, Li A, Wang Q, Ran H, Li P, Song W, Yang Z, Chen H, Wang Z, Lu G, Zheng Y (2013) Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater 25:4123–4130CrossRefGoogle Scholar
  107. 107.
    Kim D-H, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396CrossRefGoogle Scholar
  108. 108.
    Koning GA, Eggermont AMM, Lindner LH, ten Hagen TLM (2010) Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm Res 27:1750–1754CrossRefGoogle Scholar
  109. 109.
    Shubayev VI, Pisanic TR 2nd, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477CrossRefGoogle Scholar
  110. 110.
    Mah C, Fraites TJ, Zolotukhin I, Song SH, Flotte TR, Dobson J, Batich C, Byrne BJ (2002) Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther 6:106–112CrossRefGoogle Scholar
  111. 111.
    Lo Y-L, Chou H-L, Liao Z-X, Huang S-J, Ke J-H, Liu Y-S, Chiu C-C, Wang L-F (2015) Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery. Nanoscale 7:8554–8565CrossRefGoogle Scholar
  112. 112.
    Zheng SW, Liu G, Hong RY, Li HZ, Li YG, Wei DG (2012) Preparation and characterization of magnetic gene vectors for targeting gene delivery. Appl Surf Sci 259:201–207CrossRefGoogle Scholar
  113. 113.
    Takafuji M, Kitaura K, Nishiyama T, Govindarajan S, Gopal V, Imamura T, Ihara H (2014) Chemically tunable cationic polymer-bonded magnetic nanoparticles for gene magnetofection. J Mater Chem B 2:644–650CrossRefGoogle Scholar
  114. 114.
    Agopian K, Wei BL, Garcia JV, Gabuzda D (2006) A hydrophobic binding surface on the human immunodeficiency virus type 1 Nef core is critical for association with p21-activated kinase 2. J Virol 80:3050–3061CrossRefGoogle Scholar
  115. 115.
    Li QG, Lindman K, Wadell G (1997) Hydropathic characteristics of adenovirus hexons. Arch Virol 142:1307–1322CrossRefGoogle Scholar
  116. 116.
    Jochum FD, zur Borg L, Roth PJ, Theato P (2009) Thermo- and light-responsive polymers containing photoswitchable azobenzene end groups. Macromolecules 42:7854–7862CrossRefGoogle Scholar
  117. 117.
    Nagasaki T, Wada K, Tamagaki S (2003) Photo-enhancement of transfection efficiency with a novel azobenzene-based cationic lipid. Chem Lett 32:88–89CrossRefGoogle Scholar
  118. 118.
    Hamada T, Sato YT, Yoshikawa K, Nagasaki T (2005) Reversible photoswitching in a cell-sized vesicle. Langmuir 21:7626–7628CrossRefGoogle Scholar
  119. 119.
    Liu YC, Le Ny AL, Schmidt J, Talmon Y, Chmelka BF, Lee CT Jr (2009) Photo-assisted gene delivery using light-responsive catanionic vesicles. Langmuir 25:5713–5724CrossRefGoogle Scholar
  120. 120.
    Li Y, Yang J, Sun L, Wang W, Liu W (2014) UV light-triggered unpacking of DNA to enhance gene transfection of azobenzene-containing polycations. J Mater Chem B 2:3868CrossRefGoogle Scholar
  121. 121.
    Kim MS, Diamond SL (2006) Controlled release of DNA/polyamine complex by photoirradiation of a solid phase presenting o-nitrobenzyl ether tethered spermine or polyethyleneimine. Bioorg Med Chem Lett 16:5572–5575CrossRefGoogle Scholar
  122. 122.
    Deng X, Zheng N, Song Z, Yin L, Cheng J (2014) Trigger-responsive, fast-degradable poly(beta-amino ester)s for enhanced DNA unpackaging and reduced toxicity. Biomaterials 35:5006–5015CrossRefGoogle Scholar
  123. 123.
    Hu X, Li Y, Liu T, Zhang G, Liu S (2014) Photodegradable neutral-cationic brush block copolymers for nonviral gene delivery. Chem Asian J 9:2148–2155CrossRefGoogle Scholar
  124. 124.
    Lee H, Kim Y, Schweickert PG, Konieczny SF, Won YY (2014) A photo-degradable gene delivery system for enhanced nuclear gene transcription. Biomaterials 35:1040–1049CrossRefGoogle Scholar
  125. 125.
    Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K (2009) Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3:80–86CrossRefGoogle Scholar
  126. 126.
    Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ (2012) Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano 6:7681–7691CrossRefGoogle Scholar
  127. 127.
    Jayakumar MKG, Idris NM, Zhang Y (2012) Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci USA 109:8483–8488CrossRefGoogle Scholar
  128. 128.
    Anal AK (2007) Stimuli-induced pulsatile or triggered release delivery systems for bioactive compounds. Recent Pat Endocr Metab Immune Drug Discov 1:83–90CrossRefGoogle Scholar
  129. 129.
    Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S (2013) Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun 4:1707CrossRefGoogle Scholar
  130. 130.
    Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60CrossRefGoogle Scholar
  131. 131.
    Servant A, Leon V, Jasim D, Methven L, Limousin P, Fernandez-Pacheco EV, Prato M, Kostarelos K (2014) Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery. Adv Healthc Mater 3:1334–1343CrossRefGoogle Scholar
  132. 132.
    Servant A, Methven L, Williams RP, Kostarelos K (2013) Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv Healthc Mater 2:806–811CrossRefGoogle Scholar
  133. 133.
    Weaver CL, LaRosa JM, Luo XL, Cui XT (2014) Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 8:1834–1843CrossRefGoogle Scholar
  134. 134.
    Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L, Xu Z, Gao J, Du Y, Chen Z (2014) Angiopep-conjugated electro-responsive hydrogel nanoparticles: Therapeutic potential for epilepsy. Angew Chem Int Ed Engl 53:12436–12440Google Scholar
  135. 135.
    Gautier C, Cougnon C, Pilard J-F, Casse N, Chenais B (2007) A poly(cyclopentadithiophene) matrix suitable for electrochemically controlled DNA delivery. Anal Chem 79:7920–7923CrossRefGoogle Scholar
  136. 136.
    Nicolau DV, Hook AL, Thissen HW, Hayes JP, Voelcker NH (2005) Development of an electro-responsive platform for the controlled transfection of mammalian cells.  Proc. SPIE 5651, Biomedical Applications of Micro- and Nanoengineering II, p 418Google Scholar
  137. 137.
    An K, Zhao P, Lin C, Liu H (2014) A pH and redox dual responsive 4-arm poly(ethylene glycol)-block-poly(disulfide histamine) copolymer for non-viral gene transfection in vitro and in vivo. Int J Mol Sci 15:9067–9081CrossRefGoogle Scholar
  138. 138.
    Cai X, Dong C, Dong H, Wang G, Pauletti GM, Pan X, Wen H, Mehl I, Li Y, Shi D (2012) Effective gene delivery using stimulus-responsive catiomer designed with redox-sensitive disulfide and acid-labile imine linkers. Biomacromolecules 13:1024–1034CrossRefGoogle Scholar
  139. 139.
    Li Y, Hei M, Xu Y, Qian X, Zhu W (2016) Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int J Pharm 511:689–702CrossRefGoogle Scholar
  140. 140.
    Gupta MK, Lee SH, Crowder SW, Wang X, Hofmeister LH, Nelson CE, Bellan LM, Duvall CL, Sung H-J (2015) Oligoproline-derived nanocarrier for dual stimuli-responsive gene delivery. J Mater Chem B 3:7271–7280CrossRefGoogle Scholar
  141. 141.
    Liu X, Ni P, He J, Zhang M (2010) Synthesis and micellization of pH/temperature-responsive double-hydrophilic diblock copolymers polyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] prepared via ROP and ATRP. Macromolecules 43:4771–4781CrossRefGoogle Scholar
  142. 142.
    Sun H, Zhu X, Zhang L, Gu X, Wang J, Li J, Zhang Y (2013) PDEA-coated magnetic nanoparticles for gene delivery to Hep G2 cells. Biotechnol Bioprocess Eng 18:648–654CrossRefGoogle Scholar
  143. 143.
    Mok H, Veiseh O, Fang C, Kievit FM, Wang FY, Park JO, Zhang M (2010) pH-sensitive siRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells. Mol Pharm 7:1930–1939CrossRefGoogle Scholar
  144. 144.
    Huang RY, Chiang PH, Hsiao WC, Chuang CC, Chang CW (2015) Redox-sensitive polymer/SPIO nanocomplexes for efficient magnetofection and MR imaging of human cancer cells. Langmuir 31:6523–6531CrossRefGoogle Scholar
  145. 145.
    Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M (2014) Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomed 9:3347–3361Google Scholar
  146. 146.
    Yang Y, Xie X, Yang Y, Li Z, Yu F, Gong W, Li Y, Zhang H, Wang Z, Mei X (2016) Polymer nanoparticles modified with photo- and pH-dual-responsive polypeptides for enhanced and targeted cancer therapy. Mol Pharm 13:1508–1519CrossRefGoogle Scholar
  147. 147.
    Wang F, Shen Y, Zhang W, Li M, Wang Y, Zhou D, Guo S (2014) Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. J Control Release 196:37–51CrossRefGoogle Scholar
  148. 148.
    Guo W, Wang T, Tang X, Zhang Q, Yu F, Pei M (2014) Triple stimuli-responsive amphiphilic glycopolymer. J Polym Sci Part A Polym Chem 52:2131–2138CrossRefGoogle Scholar
  149. 149.
    Klaikherd A, Nagamani C, Thayumanavan S (2009) Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies. J Am Chem Soc 131:4830–4838CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, School of EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.PCFM Lab of Ministry of Education, School of Material Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations