Topics in Current Chemistry

, 375:10 | Cite as

Aminophosphine Oxides: A Platform for Diversified Functions

  • E. Veerashekhar Goud
  • Akella SivaramakrishnaEmail author
  • Kari Vijayakrishna


This review summarizes significant contributions reported on aminophosphine oxides (AmPOs), specifically those containing at least one amino group present as amino substituents on α- and β-carbons including direct P–N bond containing molecules. AmPOs have additional ‘N’ site(s), including highly basic ‘P=O’ groups, and these features make favor smooth and unexpected behavior. The most striking manifestations of flexibility of AmPOs are that they are exciting ligand systems for the coordination chemistry of actinides, and their involvement in catalytic organic reactions including enantioselective opening of meso-epoxides, addition of silyl enol ethers, allylation with allyltributylstannane, etc. The diverse properties of the AmPOs and their metal complexes demonstrate both the scope and complexity of these systems, depending on the basicity of phosphoryl group, and nature of the substituents on the pentavalent tetracoordinate phosphorus atom and metal. Two components key to understanding the challenges of actinide separations are detailed here, namely, previously described separation methods, and recent investigations into the fundamental coordination chemistry of actinides. Both are aimed at probing the critical features necessary for improved selectivity of separations. This review leads to the conclusion that, although many AmPOs have already been discovered and developed over the past century, many opportunities nevertheless exist for further developments towards new extraction processes and new catalytic materials by fine tuning the electronic and steric properties of substituents on the central phosphorus atom.


Aminophosphine oxide Synthetic route Coordination behavior Actinide separation Application 



Aminophosphine oxides


Tripiperidinophosphine oxide


Tri-n-octylphosphine oxide


Tris(2-ethylhexyl)phosphine oxide






Carbamoyl methylphosphine oxides


Transuranium extraction


Cambridge crystallographic data




Thermogravimetric analysis




Phosphinopyridine N,P-dioxides


(Phosphinomethyl)pyridine N,P-dioxides


Bis(phosphinomethyl)pyridine N,P, p-trioxides


t-butyldiphenylsilyl chloride


t-butyldimethylsilyl chloride


Lithium diisopropylamide






High level liquid waste



A.S. is grateful to Board of Research in Nuclear Sciences (BRNS), DAE, INDIA, Ref. No. 2012/37C/6/BRNS/No. 623) for the financial support to focus on the chemistry of phosphine oxide derivatives. E.V.G. is thankful to BRNS for a research fellowship. We thank Dr. C.V.S. Brahmmananda Rao (IGCAR, Kalpakkam, Tamil Nadu, India) for valuable suggestions. We thank VIT University for the support and facilities.


  1. 1.
    Horwitz EP, Schulz WW (1991) In: Cecille L, Casarci M, Pietrelli L (eds) The TRUEX process: a vital tool for disposal of US defense nuclear waste, new separation chemistry techniques for radioactive waste and other specific applications. Elsevier, London, pp 21–29CrossRefGoogle Scholar
  2. 2.
    Horwitz EP, Kalina DG, Diamond H, Vandegrift DG, Schulz WW (1985) Solvent Extr Ion Exch 3:75–109CrossRefGoogle Scholar
  3. 3.
    Kolodiazhnyi Tetrahedron (2012) Asymmetry 23:1–46CrossRefGoogle Scholar
  4. 4.
    Ingle GK, Liang Y, Mormino MG, Li G, Fronczek FR, Antilla JC (2011) Org Lett 13:2054–2057CrossRefGoogle Scholar
  5. 5.
    Cherkasov RA, Garifzyanov AR, Koshkin SA, Davletshina NV (2012) Russ J Gen Chem 82:1453–1454CrossRefGoogle Scholar
  6. 6.
    Kraszewski J (2007) Stawinski. Pure Appl Chem 79:2217–2227CrossRefGoogle Scholar
  7. 7.
    Trippett S, Miller JA (eds) (1973) Organophosphorus chemistry. RSC, London, pp 73–86Google Scholar
  8. 8.
    Hays HR, Peterson DJ (1972) Tertiary phosphine oxides. In: Kosolapoff GM, Maier L (eds) Organic phosphorus compounds. Wiley, New York, pp 341–500Google Scholar
  9. 9.
    Karayannis NM, Mikulski CM, Pytlewski LL (1971) Inorg Chim Acta Rev 5:69–105CrossRefGoogle Scholar
  10. 10.
    Karpagam S, Guhanathan S (2013) J Appl Polym Sci 129:2046–2056CrossRefGoogle Scholar
  11. 11.
    Lemos A (2009) Molecules 14:4098–4119CrossRefGoogle Scholar
  12. 12.
    Glazier MJ, Levason W, Matthews ML, Thornton PL, Webster M (2004) Inorg Chim Acta 357:1083–1091CrossRefGoogle Scholar
  13. 13.
    Puddephatt RJ (1983) Chem Soc Rev 12:99–127CrossRefGoogle Scholar
  14. 14.
    Harvey JS, Malcolmson SJ, Dunne KS, Meek SJ, Thompson AL, Schrock RR, Hoveyda AH, Gouverneur V (2009) Angew Chem Int Ed 48:762–766CrossRefGoogle Scholar
  15. 15.
    Chaudret B, Delavaux B, Poilblanc R (1988) Coord Chem Rev 86:191–243CrossRefGoogle Scholar
  16. 16.
    McAuliffe CA (1987) Chapter 14. In: Wilkinson G, Gillard RD, Mc Cleverty JA (eds) Comprehensive Coordination Chemistry, Pergamon, Oxford, pp 989–999Google Scholar
  17. 17.
    dos Santos MR, Donnici CL, Da Costa JBN, Caixeiro JMR (2007) Quim Nova 30:159–170CrossRefGoogle Scholar
  18. 18.
    Vysvaril M, Dastych D, Tarab J, Necas M (2009) Inorg Chim Acta 362:4899–4905CrossRefGoogle Scholar
  19. 19.
    Clayden J, Warren S (1996) Angew Chem Int Ed Engl 35:241–270CrossRefGoogle Scholar
  20. 20.
    Clayden J, Collington EW, Egert E, McElroy AB, Warren S (1994) J Chem Soc Perkin Trans 1:2801–2810CrossRefGoogle Scholar
  21. 21.
    Clayden J, Warren S (1994) J Chem Soc Perkin Trans 1:2811–2823CrossRefGoogle Scholar
  22. 22.
    Nelson A, Warren S (1999) J Chem Soc Perkin Trans 1:1963–1982CrossRefGoogle Scholar
  23. 23.
    Nelson S (1999) Warren. J Chem Soc Perkin Trans 1:1983–1998CrossRefGoogle Scholar
  24. 24.
    Ionova G, Ionov S, Rabbe C, Hill C, Madic C, Guillaumont R, Modoloe G, Krupad JC (2001) New J Chem 25:491–501CrossRefGoogle Scholar
  25. 25.
    Modolo G, Odoj R (1999) Solv Extr Ion Exch 17:33–53CrossRefGoogle Scholar
  26. 26.
    Ionova G, Madic C, Hill C, Rabbe C, Ionov S, Guillaumont R, Krupa JC (2001) Solv Extr Ion Exch 19:391–414CrossRefGoogle Scholar
  27. 27.
    Ackermann L (2007) Syn Lett 2007:507–526Google Scholar
  28. 28.
    Blümel J (2008) Coord Chem Rev 252:2410–2423CrossRefGoogle Scholar
  29. 29.
    Wallis CJ, Virieux D, Cristau HJ (2001) Encyclopedia of reagents for organic synthesis. Wiley, ChichesterGoogle Scholar
  30. 30.
    Ackermann L (2008) In: Börner A (ed) Trivalent phosphorus compounds in asymmetric catalysis, synthesis and applications. Wiley, Weinheim, pp 831–847Google Scholar
  31. 31.
    Schaeffner B, Boerner A (eds) (2008) Phosphorus ligands in asymmetric catalysis, pp 785–805Google Scholar
  32. 32.
    Baillie C, Xu L, Xiao J, Roberts SM (eds) (2004) Catalysts for fine chemical synthesis, pp 77–81Google Scholar
  33. 33.
    Gajda A, Gajda T (2007) Curr Org Chem 11:1652–1668CrossRefGoogle Scholar
  34. 34.
    Mlynarz P, Rudzinska E, Berlicki L, Kafarski P (2007) Curr Org Chem 11:1593–1609CrossRefGoogle Scholar
  35. 35.
    Ackermann L (2006) Synthesis 2006:1557–1571CrossRefGoogle Scholar
  36. 36.
    Ackermann L, Born R, Spatz JH, Althammer A, Gschrei CJ (2006) Pure Appl Chem 78:209–214CrossRefGoogle Scholar
  37. 37.
    Dubrovina NV, Boerner A (2004) Angew Chem Int Ed 43:5883–5886CrossRefGoogle Scholar
  38. 38.
    Kim SW, Kim S, Tracy JB, Jasanoff A, Bawendi MG (2005) J Am Chem Soc 127:4556–4557CrossRefGoogle Scholar
  39. 39.
    Odinets IL, Artyushin OI, Sharova EV, Matveeva EV, Turanov AN, Karandashev VK (2013) Phosphorus Sulfur Silicon Relat Elem 188:146–149CrossRefGoogle Scholar
  40. 40.
    Hutton G, Jolliff T, Mitchell H, Warren S (1995) Tetrahedron Lett 36:7905–7908CrossRefGoogle Scholar
  41. 41.
    Iwanaga H, Aiga F (2010) J Lumin 130:812–816CrossRefGoogle Scholar
  42. 42.
    Casellato U, Sitran S, Tamburini S, Vigato PA, Graziani R (1984) Inorg Chim Acta 95:37–42CrossRefGoogle Scholar
  43. 43.
    Krishnamurthy SS (1996) Proc Ind Acad Sci Chem Sci 108:111–121Google Scholar
  44. 44.
    Hart FA, Wilkinson G, Guillard RD, McCleverty JA (eds) (1987) Comprehensive coordination chemistry. Pergamon, OxfordGoogle Scholar
  45. 45.
    Tetsuhiro N, Takamasa M, Takayoshi M, Yasumasa H (2005) J Org Chem 70:7172–7178CrossRefGoogle Scholar
  46. 46.
    Jung LY, Tsai SH, Hong FE (2009) Organometallics 28:6044–6053CrossRefGoogle Scholar
  47. 47.
    Dam HH, Reinhoudt DN, Verboom W (2007) Chem Soc Rev 36:367–378 (and references therein)CrossRefGoogle Scholar
  48. 48.
    Engel R, Rizzo JI (2006) Curr Org Chem 10:2393–2405CrossRefGoogle Scholar
  49. 49.
    Verkade JG, Coskram KJ (1972) Organophosphorus compounds. In: Kosolapoff GM, Maier L (eds) Wiley, New York, pp 1–53Google Scholar
  50. 50.
    Payne DS, Walker AP (1966) J Chem Soc 498–499Google Scholar
  51. 51.
    Zubiri MRI, Woollins JD (2003) Comments Inorg Chem 24:189–252CrossRefGoogle Scholar
  52. 52.
    Dyer PW, Hanton MJ, Kemmitt RDW, Padda R, Singh N (2003) Dalton Trans 104–113Google Scholar
  53. 53.
    Ewart G, Payne DS, Porte AL, Lane AP (1962) J Chem Soc 3984–3990Google Scholar
  54. 54.
    Singh S, Nicholas KM (1998) Chem Commun 149–150Google Scholar
  55. 55.
    Price NR, Chambers J (1990) In: Hartley FR (ed) The chemistry of organophosphorus compounds. Wiley, Chichester, p 649Google Scholar
  56. 56.
    Dolinsky MCB, Lin WO, Dias ML (2006) J Mol Catal A Chem 258:267–274CrossRefGoogle Scholar
  57. 57.
    Reinoso-Garcia MM, Verboom W, Reinhoudt DN, Brisach F, Arnaud-Neu F, Liger K (2005) Solv Extr Ion Exch 23:425–437CrossRefGoogle Scholar
  58. 58.
    Ansell J, Wills M (2002) Chem Soc Rev 31:259–268CrossRefGoogle Scholar
  59. 59.
    Cherkasov RA, Nuriazdanova GKh, Garifzyanov AR (2006) Russ J Gen Chem 76:202–205CrossRefGoogle Scholar
  60. 60.
    Vasil’ev RI, Durmanova NV, Garifzyanov AR, Cherkasov RA (2003) Russ J Gen Chem 73:994–995CrossRefGoogle Scholar
  61. 61.
    Garifzyanov AR, Vasil’ev RI, Cherkasov RA (2005) Russ J Gen Chem 75:217–224CrossRefGoogle Scholar
  62. 62.
    Garifzyanov AR, Zakharov SV, Kryukov SV, Galkin VI, Cherkasov RA (2005) Russ J Gen Chem 75:1208–1211CrossRefGoogle Scholar
  63. 63.
    Cherkasov RA, Garifzyanov AR, Zakharov ZV, Vinokurov AI, Galkin VO (2006) Russ J Gen Chem 76:417–420CrossRefGoogle Scholar
  64. 64.
    Garifzyanov AR, Zakharov SV, Cherkasov RA (2005) Russ J Gen Chem 75:1057–1059CrossRefGoogle Scholar
  65. 65.
    Cherkasov RA, Galkin VI, Khusainova NG, Mostovaya OA, Garifzyanov AR, Nuriazdanova GKh, Krasnova NS, Berdnikov EA (2005) Russ J Gen Chem 41:1481–1484Google Scholar
  66. 66.
    Cherkasov RA, Garifzjanov AR, Krasnova NS, Talan AS, Tarasov AV, Davletshin RR (2008) Abstract of papers, 38th International Conference on Coordination Chemistry, Jerusalem, p 334Google Scholar
  67. 67.
    Garifzyanov AR, Nuriazdanova GKh, Zakharov SV, Cherkasov RA (2004) Russ J Gen Chem 74:1885–1889CrossRefGoogle Scholar
  68. 68.
    Zakharov SV, Nuriazdanova GKh, Garifzyanov AR, Galkin VI, Cherkasov RA (2004) Russ J Gen Chem 74:873–881CrossRefGoogle Scholar
  69. 69.
    Cherkasov RA, Vasil’ev RI, Garifzyanov AR, Talan AS (2008) Russ J Gen Chem 78:1167–1171CrossRefGoogle Scholar
  70. 70.
    Cherkasov RA, Garifzjanov AR, Krasnova NS, Talan AS, Badretdinova GZ, Burnaeva LM, Ivkova GA (2008) Phosphorus Sulfur Silicon Relat Elem 183:406–409CrossRefGoogle Scholar
  71. 71.
    Cherkasov RA, Talan AS, Tarasov AV, Garifzyanov AR (2008) Russ J Gen Chem 78:1330–1333CrossRefGoogle Scholar
  72. 72.
    Cherkasov RA, Garifzyanov AR, Talan AS, Davletshin RR, Kurnosova NV (2009) Russ J Gen Chem 79:1835–1849CrossRefGoogle Scholar
  73. 73.
    Gholivand K, Shariatinia Z, Yaghmaian F, Faramarzpour H (2006) Bull Chem Soc Jpn 79:1604–1606CrossRefGoogle Scholar
  74. 74.
    Biricik N, Kayan C, Gümgüm B, Fei Z, Scopelliti R, Dyson PJ, Gürbüz N, Özdemir I (2010) Inorg Chim Acta 363:1039–1047CrossRefGoogle Scholar
  75. 75.
    Fei Z, Neda I, Thönnessen H, Jones PG, Schmutzler R (1997) Phosphorus Sulfur Silicon Relat Elem 131:1–23CrossRefGoogle Scholar
  76. 76.
    Popovici C, Ońa-Burgos P, Fernández I, Roces L, García-Granda S, Iglesias MJ, Ortiz FL (2010) Org Lett 12:428–431CrossRefGoogle Scholar
  77. 77.
    Gholivand K, Pourayoubi M, Farshadian S, Molani S, Shariatinia Z (2005) X-ray Struct Anal Online 21:x55–x56CrossRefGoogle Scholar
  78. 78.
    Kapoor RN, Guillory P, Schulte L, Cervantes-Lee F, Haiduc I, Parkanyi L, Pannell KH (2005) Appl Organometal Chem 19:510–517CrossRefGoogle Scholar
  79. 79.
    Gholivand K, Gholami A, Ebrahimi AAV, Abolghasemi ST, Esrafili MD, Fadaeic FT, Schenk KJ (2015) RSC Adv 5:17482–17492CrossRefGoogle Scholar
  80. 80.
    Jalalifar M, Khalikov S (2012) Int J Mod Org Chem 1:129–135Google Scholar
  81. 81.
    Bourne SA, Mbianda XY, Modro TA, Nassimbeni LR, Wan H (1998) J Chem Soc Perkin Trans 2:83–88CrossRefGoogle Scholar
  82. 82.
    Dutta DK, Deb B (2011) Coord Chem Rev 255:1686–1712CrossRefGoogle Scholar
  83. 83.
    Swor CD, Tyler DR (2011) Coord Chem Rev 255:2860–2881CrossRefGoogle Scholar
  84. 84.
    Shaikh TM, Weng C-M, Hong F-E (2012) Coord Chem Rev 256:771–803CrossRefGoogle Scholar
  85. 85.
    Sterenberg BT, Scoles L, Carty AJ (2002) Coord Chem Rev 231:183–197CrossRefGoogle Scholar
  86. 86.
    Slawin AMZ, Wheatley J, Woollins JD (2005) Eur J Inorg Chem 2005:713–720CrossRefGoogle Scholar
  87. 87.
    Petrov KA, Gavrilova AI, Korotkova VP (1962) Z Obsh Khim 32:915–927Google Scholar
  88. 88.
    Cates LA, Li VS, Saddawi BH, Alkadhi KA (1985) J Med Chem 28:595–597CrossRefGoogle Scholar
  89. 89.
    Nielsen RP, Sisler HH (1963) Inorg Chem 2:753–756CrossRefGoogle Scholar
  90. 90.
    Sisler HH, Nielsen RP (1966) Inorg Synth 8:7406–7409Google Scholar
  91. 91.
    Donoghue JT, Fernandez E, Peters DA (1969) Inorg Chem 8:1191–1193CrossRefGoogle Scholar
  92. 92.
    Rømming C, Songstad J (1978) Acta Chem Scand Ser A 32:689–699CrossRefGoogle Scholar
  93. 93.
    Popoff IC, Huber LK, Block BP, Morton PD, Riordan RP (1963) J Org Chem 28:2898–2900CrossRefGoogle Scholar
  94. 94.
    Smith NL, Sisler HH (1961) J Org Chem 26:5145–5149CrossRefGoogle Scholar
  95. 95.
    Schmidt H, Lensink C, Xi SK, Verkade JGZ, Anorg Z (1989) Allg Chem 578:75–80CrossRefGoogle Scholar
  96. 96.
    Alberti A, Astolfi P, Carloni P, Greci L, Rizzolie C, Stipa P (2015) New J Chem 39:8964–8970CrossRefGoogle Scholar
  97. 97.
    Liu X, Verkade JG (2001) Heteroatom Chem 12:21–26CrossRefGoogle Scholar
  98. 98.
    Goud EV, Pavankumar BB, Paul A, Shruthi Y, Sivaramakrishna A, Vijayakrishna K, Sabharwal N, Rao CVSB, Clayton HS (2013) J Coord Chem 66:2647–2658CrossRefGoogle Scholar
  99. 99.
    Pavankumar BB, Goud EV, Selvakumar R, Ashokkumar SK, Sivaramakrishna A, Vijayakrishna K, Rao CVSB, Sabharwal KN, Jha PC (2015) RSC Adv 5:4727–4736CrossRefGoogle Scholar
  100. 100.
    Gusev OV, Peganova TA, Gonchar AV, Petrovskii PV, Lyssenko KA, Ustynyuk NA (2009) Phosphorus Sulfur Silicon Relat Elem 184:322–331CrossRefGoogle Scholar
  101. 101.
    Tolmachev AA, Yurchenko AA, Merculov AS, Semenova MG, Zarudnitskii EV, Ivanov VV, Pinchuk AM (1999) Heter Chem 10:585–597CrossRefGoogle Scholar
  102. 102.
    Matevosyan GL, Zavlin PM (1990) Chem Heterocycl Comp 26:599–616CrossRefGoogle Scholar
  103. 103.
    Marchenko AP, Koidan HN, Huryeva AN, Zarudnitskii EV, Yurchenko AA, Kostyuk AN (2010) J Org Chem 75:7141–7145CrossRefGoogle Scholar
  104. 104.
    Samuel RC, Kashyap RP, Krawiec M, Watson WH, Neilson RH (2002) Inorg Chem 41:7113–7124CrossRefGoogle Scholar
  105. 105.
    Biricik N, Durap F, Kayan C, Gümgüma B, Gürbüz N, Özdemir I, Han Ang W, Fei Z, Scopelliti R (2008) J Organomet Chem 693:2693–2699CrossRefGoogle Scholar
  106. 106.
    Kolodiazhnyi OI, Gryshkun EV, Andrushko NV, Freytag M, Jones PG, Schmutzler R (2003) Tetrahedron Asymmetry 14:181–183CrossRefGoogle Scholar
  107. 107.
    Keglevich G, Szekrényi A (2008) Lett Org Chem 5:616–622CrossRefGoogle Scholar
  108. 108.
    Fields EK (1952) J Am Chem Soc 74:1528–1531CrossRefGoogle Scholar
  109. 109.
    Zefirov NS, Matveeva ED (2008) Arkivoc 1:1–17Google Scholar
  110. 110.
    Priya S, Balakrishna MS, Mobin SM (2005) Polyhedron 24:1641–1650CrossRefGoogle Scholar
  111. 111.
    Light RW, Hutchins LD, Paine RT, Campana CF (1980) Inorg Chem 19:3597–3604CrossRefGoogle Scholar
  112. 112.
    Hall RG, Riebli P (2002) Phosphorus Sulfur Silicon Relat Elem 177:1557–1562CrossRefGoogle Scholar
  113. 113.
    Du L-Z, Gong J-F, Zhu Y, Wu Y-J, Song M-P (2006) Inorg Chem Commun 9:529–532CrossRefGoogle Scholar
  114. 114.
    Olszewski TK, Boduszek B, Sobek S, Kozłowski H (2006) Tetrahedron 62:2183–2189CrossRefGoogle Scholar
  115. 115.
    Goldeman W, Olszewski TK, Boduszeka B, Sawka-Dobrowolska W (2006) Tetrahedron 62:4506–4518CrossRefGoogle Scholar
  116. 116.
    de los Santos JM, Etemad-Moghadam D, Ignacio R, Aparicio D, Palacios F (2007) J Org Chem 72:5202–5206CrossRefGoogle Scholar
  117. 117.
    Semenzin D, Etemad-Moghadam G, Albouy D, Diallo O, Koenig M (1997) J Org Chem 62:2414–2422CrossRefGoogle Scholar
  118. 118.
    Merino P, Marqués-López E, Herrera RP (2008) Adv Synth Catal 350:1195–1208CrossRefGoogle Scholar
  119. 119.
    Gröger H, Hammer B (2000) Chem Eur 6:943–948CrossRefGoogle Scholar
  120. 120.
    Hiratake J, Oda J (1997) Biosci Biotechnol Biochem 61:211–218CrossRefGoogle Scholar
  121. 121.
    Zhang D, Yuan C (2008) Chem Eur J 14:6049–6052CrossRefGoogle Scholar
  122. 122.
    Parsons WH, Patchett AA, Bull HG, Schoen WR, Taub D, Davidson J, Combs PL, Springer JP, Gadebusch H, Weissberger B, Valiant ME, Mellin TN, Busch RD (1988) J Med Chem 31:1772–1778CrossRefGoogle Scholar
  123. 123.
    Fu X, Loh W-T, Zhang Y, Chen T, Ma T, Liu H, Wang J, Tan C-H (2009) Angew Chem Int Ed 48:7387–7390CrossRefGoogle Scholar
  124. 124.
    Maj AM, Pietrusiewicz KM, Suisse I, Agbossou F, Mortreux A (1999) Tetrahedron Asymmetry 10:831–835CrossRefGoogle Scholar
  125. 125.
    Su HY, Song Y, Taylor MS (2016) Org Biomol Chem 14:5665–5672CrossRefGoogle Scholar
  126. 126.
    Booth BL, Lawrence NJ, Rashid HS (1997) J Chem Soc Perkin Trans 1:3509–3518CrossRefGoogle Scholar
  127. 127.
    Palacios F, Aparicio D, de los Santos JM, Baceiredo A, Bertrand G (2000) Tetrahedron 56:663–669CrossRefGoogle Scholar
  128. 128.
    Xi Z, Zhang WX, Song Z, Zheng W, Kong F, Takahash T (2005) J Org Chem 70:8785–8789CrossRefGoogle Scholar
  129. 129.
    Palacios F, Aparicio D, Lόpez Y, de los Santos JM (2004) Tetrahedron Lett 45:4345–4348CrossRefGoogle Scholar
  130. 130.
    Palacios F, Aparicio D, Lόpez Y, de los Santos JM (2005) Tetrahedron 61:2815–2830CrossRefGoogle Scholar
  131. 131.
    Palacios F, Ochoa de Retana AM, Alonso JM (2006) J Org Chem 71:6141–6148CrossRefGoogle Scholar
  132. 132.
    Palacios F, Aparicio D, Lόpez Y, de los Santos JM (1999) Tetrahedron 55:13767–13778CrossRefGoogle Scholar
  133. 133.
    Oliana M, King F, Horton PN, Hursthouse MB, (Mimi) Hii KK (2006) J Org Chem 71:2472–2479CrossRefGoogle Scholar
  134. 134.
    Feeder N, Fox DJ, Medlock JA, Warren S (2002) J Chem Soc Perkin Trans 1:1175–1180CrossRefGoogle Scholar
  135. 135.
    Elena K, Andrey Z, Bobrovnikova AA, Cherkasova TG, Shirokolobova AG, Bolsunovskaya LM (2014) Procedia Chem 10:530–534CrossRefGoogle Scholar
  136. 136.
    Berthet J-C, Nierlich M, Ephritikhine M (2003) Polyhedron 22:3475–3482CrossRefGoogle Scholar
  137. 137.
    Karroker DG (1970) J Chem Educ 47:424–430CrossRefGoogle Scholar
  138. 138.
    Harman ME, Hart FA, Hursthouse MB, Moss GP, Raithby PR (1976) J Chem Soc Chem Commun 11:396–397CrossRefGoogle Scholar
  139. 139.
    Bushuk BA, Bushuk SB, Cherepennikova NF, Douglas WE, Fukin GK, Grigoriev IS, Klapshina LG, van der Lee A, Semenov VV (2004) Mendeleev Commun 14:109–111CrossRefGoogle Scholar
  140. 140.
    Donoghue JT, Fernandez E, McMillan JA, Peters DA (1969) J Inorg Nucl Chem 31:1431–1433CrossRefGoogle Scholar
  141. 141.
    de Matos P, Freitas MA, Marshall AG, Marques N, Carvalho A, Isolani PC, Vicentini G (2001) J Alloys Comp 323–324:147–149CrossRefGoogle Scholar
  142. 142.
    Das D, Goud EV, Annam S, Jayalakshmi S, Gopakumar G, Rao CVSB, Sivaraman N, Sivaramakrishna A, Vijayakrishna K (2015) RSC Adv 5:107421–107429CrossRefGoogle Scholar
  143. 143.
    Rao CVSB, Jayalakshmi S, Subramaniam S, Sivaraman N, Rao PRV (2015) Radiochim Acta 103:345–358CrossRefGoogle Scholar
  144. 144.
    Braun S, Zinner LB, Vicentini G (1993) An Assoc Bras Quim 42–43:20–24Google Scholar
  145. 145.
    Goud EV, Pavankumar BB, Reddy BHP, Vijayakrishna K, Sivaramakrishna A, Sabharwal KN, Rao CVSB (2015) J Ind Chem Soc 92:760–762Google Scholar
  146. 146.
    Filho SAJ, Isolani PC, Vicentini G (1997) J Alloys Comp 249:91–93CrossRefGoogle Scholar
  147. 147.
    Rao CVSB, Srinivasan TG, Rao PRV (2010) Solvent Extr Ion Exch 28:1–23CrossRefGoogle Scholar
  148. 148.
    Le Saulnier L, Urbanov S, Scopelliti R, Elhabiri M, Bunzli JCG (1999) J Chem Soc Dalton Trans 22:3919–3925CrossRefGoogle Scholar
  149. 149.
    Dieleman CB, Matt D, Neda I, Schmutzler R, Harriman A, Yaftian R (1999) Chem Commun 18:1911–1912CrossRefGoogle Scholar
  150. 150.
    Arduini A, Bohmer V, Delmau L, Desreux JF, Dozel JF, Carrera MAG, Lambert B, Musigmann C, Pochini A, Shivanyuk A, Ugozzoli F (2000) Chem Eur J 6:2135–2144CrossRefGoogle Scholar
  151. 151.
    De F, Ramirez M, Urbanov S, Cecile C, Muller G, Fatin-Rouge N, Scopelliti R, Bunzli JCG (2002) J Chem Soc Dalton Trans 23:4505–4513Google Scholar
  152. 152.
    Koppikar DK, Sivapullaiah PV, Ramakrishnan L, Soundararajan S (1978) Complexes of the lanthanides with neutral oxygen donor ligands. Springer, Berlin, pp 135–213Google Scholar
  153. 153.
    da Silva MFP, Zukerman-Schpector J, Vicentini G, Isolani PC (2005) Inorg Chim Acta 358:796–800CrossRefGoogle Scholar
  154. 154.
    de Aquino AR, Bombieri G, Isolani PC, Vicentini G, Zukerman-Schpector J (2000) Inorg Chim Acta 306:102–105 (and references therein)CrossRefGoogle Scholar
  155. 155.
    Anagnostis J, Turnbull MM (2004) Polyhedron 23:125–133CrossRefGoogle Scholar
  156. 156.
    Yang H, Wong EH, Rheingold AL, Owens-Watermire BE, Haggerty BS (1994) Organometallics 13:4825–4834CrossRefGoogle Scholar
  157. 157.
    Yang H, Wong EH, Rheingold AL, Owens-Watermire BE (1993) J Chem Soc Chem Commun 1:35–37CrossRefGoogle Scholar
  158. 158.
    Priya S, Balakrishna MS, Mague JT, Mobin SM (2003) Inorg Chem 42:1272–1281CrossRefGoogle Scholar
  159. 159.
    Hergenrother PM, Thompson CM, Smith JG Jr, Connell JW, Hinkleya JA, Lyonc RE, Moulton R (2005) Polymer 46:5012–5024CrossRefGoogle Scholar
  160. 160.
    Stoscup JA, Staples RJ, Biros SM (2014) Acta Cryst E70:188–191Google Scholar
  161. 161.
    Reinoso-Garcia MM, Janczewski D, Reinhoudt DN, Verboom W, Malinowska E, Pietrzak M, Hill C, Báča J, Grüner B, Selucky P, Grüttner C (2006) New J Chem 30:1480–1492CrossRefGoogle Scholar
  162. 162.
    McGuigan C, Harris SA, Daluge SM (2005) J Med Chem 48:3504–3515CrossRefGoogle Scholar
  163. 163.
    Gholivand K, Valmoozi AAE, Gholami A, Dusek M, Abolghasemi S (2016) J Organomet Chem 806:33–44CrossRefGoogle Scholar
  164. 164.
    Li Y, Mao S (2007) Bioorg Med Chem Lett 17:3398–3401CrossRefGoogle Scholar
  165. 165.
    Liu F, Sharon A, Chu CK (2008) J Fluorine Chem 129:743–766CrossRefGoogle Scholar
  166. 166.
    Jansen RS, Rosing H (2010) J Chromatogr B 878:621–627CrossRefGoogle Scholar
  167. 167.
    Lalanne M, Paci A (2007) Bioorg Med Chem Lett 17:2237–2240CrossRefGoogle Scholar
  168. 168.
    Lalanne M, Khoury H (2009) Int J Pharm 379:235–243CrossRefGoogle Scholar
  169. 169.
    Reddy SS, Rao VK, Krishna BS, Raju CN, Rao PV (2011) Phosphorus Sulfur Silicon Relat Elem 186:1411–1421CrossRefGoogle Scholar
  170. 170.
    Rao AJ, Rao VK, Rao PV, Ghosh SK, Raju CN (2010) Eur J Chem 1:297–301CrossRefGoogle Scholar
  171. 171.
    Rao VK, Rao AJ, Reddy SS, Raju CN, Rao PV, Ghosh SK (2010) Eur J Med Chem 45:203–209CrossRefGoogle Scholar
  172. 172.
    Reddy SS, Rao VK, Ramana KV, Reddy CS, Ghosh SK, Raju CN (2010) Der Pharma Chem 2:1–9Google Scholar
  173. 173.
    Lam KH, Chui CH, Gambari R, Wong RSM, Cheng GYM, Lau FY, Chan ASC (2010) Eur J Med Chem 45:5527–5530CrossRefGoogle Scholar
  174. 174.
    Rao VK, Reddy SS, Krishna BS, Reddy CS, Reddy NP, Reddy TCM, Raju CN, Ghosh SK (2011) Lett Drug Des Discov 8:59–64CrossRefGoogle Scholar
  175. 175.
    Hu DY, Wan QQ, Yang S, Song BA, Bhadury PS, Jin LH, Yan K, Liu F, Chen Z, Xue W (2008) J Agric Food Chem 56:998–1001CrossRefGoogle Scholar
  176. 176.
    Bartley DM, Coward JK (2005) J Org Chem 70:6757–6774CrossRefGoogle Scholar
  177. 177.
    Cheng X, Horton PN, Hursthouse MB, Kuok (Mimi) Hii K (2004) Tetrahedron Asymmetry 15:2241–2246CrossRefGoogle Scholar
  178. 178.
    Bond WD (1990) Thorex process. In: Schulz WW, Burger LL, Navratil JD, Bender KP, Bond WD (eds) Science and technology of tributyl phosphate (applications of tributyl phosphate in nuclear fuel reprocessing), vol III. CRC, Boca RatonGoogle Scholar
  179. 179.
    Siddall TH III (1959) Ind Eng Chem 51:41–44CrossRefGoogle Scholar
  180. 180.
    Ghilardi CA, Innocent P, Misollini S, Orlandini A (1986) J Chem Soc Dalton Trans 2075–2081Google Scholar
  181. 181.
    Sinyavskaya EI, Tsymbal LV, Yatsimirskii KB, Pisareva SA, Medved TY, Kabachnik MI (1986) Russ Chem Bull 35:160–165CrossRefGoogle Scholar
  182. 182.
    Newton G, Caughman HD, Taylor RC (1974) J Chem Soc Dalton Trans 258–264Google Scholar
  183. 183.
    Kaŝpárek F, Trávnicek Z, Posolda M, Kŝindelár Z, Marek J (1998) J Coord Chem 44:61–70CrossRefGoogle Scholar
  184. 184.
    Gumienna-Kontecka E, Galezowska J, Drag M, Lataika R, Kafarski P, Kozlowski H (2004) Inorg Chem Acta 357:1632–1636CrossRefGoogle Scholar
  185. 185.
    Cherkasov RA, Garifzyanov AR, Kurnosova NV, Matveeva EV, Odinets IL (2012) Russ Chem Bull 61:174–180CrossRefGoogle Scholar
  186. 186.
    Laskorin BN, Fedorova LA, Stupin NP, Kabachnik MI, Medved T Ya, Polikarpov YuM (1970) Radiokhimiya 12:335 (in Russian)Google Scholar
  187. 187.
    Turanov AN, Karandashev VK, Bondarenko NA, Urinovich EM, Tsvetkov EN (1996) Russ J Inorg Chem 41:1742–1747Google Scholar
  188. 188.
    Matveeva EV, Petrovskii PV, Odinets IL (2008) Tetrahedron Lett 49:6129–6133CrossRefGoogle Scholar
  189. 189.
    Matveeva EV, Petrovskii PV, Klemenkova ZS, Bondarenko NA, Odinets IL (2010) C. R. Chimie 13:864–970CrossRefGoogle Scholar
  190. 190.
    Matveeva EV, Shipov AE, Petrovskii PV, Odinets IL (2011) Tetrahedron Lett 52:6562–6565CrossRefGoogle Scholar
  191. 191.
    Matveeva EV, Sharova EV, Turanov AN, Karandashev VK, Odinets IL (2012) Cent Eur J Chem 10:1933–1941Google Scholar
  192. 192.
    Arnaud-Neu F, Böhmer V, Jean-François Dozol C, Grüttner C, Jakobi RA, Kraft D, Mauprivez O, Rouquette H, Schwing-Weill MJ, Simon N, Vogt W (1996) J Chem Soc Perkin Trans 2:1175–1182CrossRefGoogle Scholar
  193. 193.
    Delmau LH, Simon N, Schwing-Weill MJ, Arnaud-Neu F, Dozol JF, Eymard S, Tournois B, Böhmer V, Grüttner C, Musigmann C, Tunayar A (1998) Chem Commun 16:1627–1628CrossRefGoogle Scholar
  194. 194.
    Boerrigter H, Verboom W, Reinhoudt DN (1997) J Org Chem 62:7148–7155CrossRefGoogle Scholar
  195. 195.
    Boerrigter H, Tomasberger T, Verboom W, Reinhoudt DN (1999) Eur J Org Chem 1999:665–674CrossRefGoogle Scholar
  196. 196.
    Peters MW, Werner EJ, Scott MJ (2002) Inorg Chem 41:1707–1716CrossRefGoogle Scholar
  197. 197.
    Böhmer V, Dozol J-F, Grüttner C, Liger K, Matthews SE, Rudershausen S, Saadioui M, Wang P (2004) Org Biomol Chem 2:2327–2334CrossRefGoogle Scholar
  198. 198.
    Koma Y, Watanabe M, Nemoto S, Tanaka Y (1998) J Nucl Sci Tech 35:130–136CrossRefGoogle Scholar
  199. 199.
    Paine RT, Bond EM, Parveen S, Donhart N, Duesler EN, Smith KA, Noth H (2002) Inorg Chem 41:444–448CrossRefGoogle Scholar
  200. 200.
    Rosario-Amorin D, Ouizem S, Dickie DA, Wen Y, Paine RT, Gao J, Grey JK, de Bettencourt-Dias A, Hay BP, Delmau LH (2013) Inorg Chem 52:3063–3083CrossRefGoogle Scholar
  201. 201.
    Grüttner C, Böhmer V, Casnati A, Dozol J-F, Reinhoudt DN, Reinoso-García MM, Rudershausen S, Teller J, Ungaro R, Verboom W, Wang P (2005) J Magn Magn Mater 293:559–566CrossRefGoogle Scholar
  202. 202.
    Rapko BM, Duesler EN, Smith PH, Paine RT, Ryan RR (1993) Inorg Chem 32:2164–2174CrossRefGoogle Scholar
  203. 203.
    Bertrand G, Cazaux J-B, Baceiredo A, Guerret O, Palacios F, Aparicio D, De Los Santos JM (2000) CR Acad Sci Paris Série IIc Chim Chem 3:261–265Google Scholar
  204. 204.
    Minghetti G, Stoccoro S, Cinellu MA, Zucca A, Manassero M, Sansoni M (1998) J Chem Soc Dalton Trans 4119–4126Google Scholar
  205. 205.
    Palacios F, Aparicio D, García J (1996) Tetrahedron 52:9609–9628CrossRefGoogle Scholar
  206. 206.
    Gholivand Z Shariatinia (2006) J Organomet Chem 691:4215–4224CrossRefGoogle Scholar
  207. 207.
    Maj AM, Pietrusiewicz KM, Suisse I, Agbossou F, Mortreux A (2001) J Organomet Chem 626:157–160CrossRefGoogle Scholar
  208. 208.
    Pignolet LH (1983) Homogenous catalysis with metal phosphine complexes. Plenum, New YorkCrossRefGoogle Scholar
  209. 209.
    Colquhoun HM, Thompson DJ, Twigg MV (1991) Carbonylation: direct synthesis of carbonyl compounds. Plenum, New YorkCrossRefGoogle Scholar
  210. 210.
    Tkatchenko I, Wilkinson G, Stone FGA, Abel EW (eds) (1982) Comprehensive organometallic chemistry. Pergamon, OxfordGoogle Scholar
  211. 211.
    Stille JK, Trost BM, Fleming I (eds) (1991) Comprehensive organic chemistry. Pergamon, New YorkGoogle Scholar
  212. 212.
    Bahrmann H, Cornils B, Frohning CD, Mullen A (1980) In: Falbe J (ed) New synthesis with carbon monoxide. Springer, New YorkGoogle Scholar
  213. 213.
    Webb SL, Giandomenico CM, Halpem J (1986) J Am Chem Soc 108:345–347CrossRefGoogle Scholar
  214. 214.
    Nappa MJ, Santi R, Halpern J (1985) Organometallics 4:34–41CrossRefGoogle Scholar
  215. 215.
    Rahman MS, Oliana M, (Mimi) Hii KK (2004) Tetrahedron Asymmetry 15:1835–1840CrossRefGoogle Scholar
  216. 216.
    Zanotti-Gerosa A, Hems W, Groarke M, Hancock F (2005) Platin Metals Rev 49:158–165CrossRefGoogle Scholar
  217. 217.
    Andrieu J, Camus J-M, Poli R, Richard P (2001) New J Chem 25:1015–1023CrossRefGoogle Scholar
  218. 218.
    Bartels B, Martín CG, Nelson A, Russell MG, Warren S (1998) Tetrahedron Lett 39:1637–1640CrossRefGoogle Scholar
  219. 219.
    Mino T, Tanaka Y, Sato Y, Saito A, Sakamoto M, Fujita T (2003) Tetrahedron Lett 44:4677–4679CrossRefGoogle Scholar
  220. 220.
    Denmark SE, Coe DM, Pratt NE, Griedel BD (1994) J Org Chem 59:6620–6628CrossRefGoogle Scholar
  221. 221.
    Denmark SE, Fu J, Coe DM, Su X, Pratt NE, Griedel BD (2006) J Org Chem 71:1513–1522CrossRefGoogle Scholar
  222. 222.
    Denmark SE, Fu J (2000) J Am Chem Soc 122:12021–12022CrossRefGoogle Scholar
  223. 223.
    Denmark SE, Fu J, Lawler MJ (2006) J Org Chem 71:1523–1536CrossRefGoogle Scholar
  224. 224.
    Denmark SE, Fu J (2001) J Am Chem Soc 123:9488–9489CrossRefGoogle Scholar
  225. 225.
    Denmark SE, Fan Y, Eastgate MD (2005) J Org Chem 70:5235–5248CrossRefGoogle Scholar
  226. 226.
    Denmark SE, Fu J (2003) J Am Chem Soc 125:2208–2216CrossRefGoogle Scholar
  227. 227.
    Oyama T, Yoshioka H, Tomoi M (2005) Chem Commun 14:1857–1859CrossRefGoogle Scholar
  228. 228.
    Denmark SE, Pham SM (2003) J Org Chem 68:5045–5055CrossRefGoogle Scholar
  229. 229.
    Denmark SE, Wynn T, Beutner GL (2002) J Am Chem Soc 124:13405–13407CrossRefGoogle Scholar
  230. 230.
    Denmark SE, Beutner GL, Wynn T, Eastgate MD (2005) J Am Chem Soc 127:3774–3789CrossRefGoogle Scholar
  231. 231.
    Denmark SE, Barsanti PA, Wong K-T, Stavenger RA (1998) J Org Chem 63:2428–2429CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • E. Veerashekhar Goud
    • 1
  • Akella Sivaramakrishna
    • 1
    Email author
  • Kari Vijayakrishna
    • 1
  1. 1.Department of Chemistry, School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations