Topics in Current Chemistry

, 375:9 | Cite as

The Use of Gamma Radiation for the Treatment of Cultural Heritage in the Argentine National Atomic Energy Commission: Past, Present, and Future

  • Ana Maria del Carmen Calvo
  • Andrea Docters
  • María Virginia Miranda
  • Mario Carlos Nazareno Saparrat
Part of the following topical collections:
  1. Applications of Radiation Chemistry


The use of gamma radiation for treating biodeteriorated cultural heritage on paper has been studied at the Comisión Nacional de Energía Atómica-CNEA (Argentina) since 2001. In order to preserve books, publications, and documents that have been attacked by insects or fungi, gamma radiation techniques have been used at CNEA. The activities include basic research as well as their applications in infected documents and papers currently used in libraries and archives. New papers were subjected to accelerated ageing in order to evaluate the effects of gamma radiation on their physical and mechanical properties. Current studies include resistance to radiation in two batches of highly cellulolytic fungi, associated with indoor environment. They are present in papers and adhesives used for conservation purposes at the Laboratory of Preventive Conservation and Restoration of Documents. A joint study has been started in CNEA with the National University of La Plata.


Cultural objects preservation Disinfestation preservation Fungi in paper Gamma radiation in paper Gamma radiation preservation Cladosporium cladosporioides Chaetomium globosum 



Our special thanks to Dr. Mila D´Angelantonio and to Prof. Margherita Venturi for their interest in our work and its dissemination. We would also like to thank scientists and technicians from different laboratories of CNEA and the Irradiation Facility who contributed, especially to Lic. Rita Plá, Dr. Miguel Ipohorski, and Dr. Diego González, for their support and collaboration.


  1. 1.
    Adamo M et al (2001) Gamma radiation treatment of paper in different environmental conditions. Restaurator 22:107–131Google Scholar
  2. 2.
    Adamo M, Maggauda G, Tata A (2004) Radiation technology for cultural heritage restoration. Restaurator 25(3):159–170Google Scholar
  3. 3.
    Adamo M, Maggauda G, Rochetti F (2007) The effect of γ-radiation on acidified and artificially aged paper. Restaurator 28:227–238Google Scholar
  4. 4.
    Albiano N (2010) Labor toxicology Criteria for monitoring the health of workers exposed to hazardous chemicals”. Cap. 25. Ed: Superintendency of Occupational Risks. Bs. As., ArgentinaGoogle Scholar
  5. 5.
    Almeida- Paes R, Frases S, deSousaAraújo G, Evangelista Marques, de Oliveira M, Gerfen GJ, Nosanchuk JD, Zancopé-Oliveira RM (2012) Biosynthesis and functions of a melanoid pigment produced by species of the Sporothrix complex in the presence of l-tyrosine. Appl Environ Microbiol 78:8623–8630CrossRefGoogle Scholar
  6. 6.
    Ardelean E, Melniciuc-Puică N (2013) Conservation of paper documents damaged by foxing. Eur J Sci Technol 9(2):117–124Google Scholar
  7. 7.
    Area MC, Calvo AM, Felissia FE, Docters A, Miranda MV (2014) Influence of dose and dose rate on the physical properties of commercial papers commonly used in libraries and archives. Radiat Phys Chem 96:217–222Google Scholar
  8. 8.
    Rizzo M, Machado, LDB, Rela PR, Yasko K (eds) Associacao Brasileira de Energia Nuclear-ABEN. International Nuclear Atlantic Conference-INAC2009. Gamma Rays irradiation process on a restored painting from the XVIIth. Century Rio de Janeiro, September 27 to October 2, 2009. ISBN: 978-85-99141-03-8Google Scholar
  9. 9.
    Boletín INTI (2013) Evaluación de las condiciones ambientales del depósito de las revistas de laBiblioteca del INTI. Octubre 2013, Celulosa y Papel, Boletín 19. ISSN1851-846x.
  10. 10.
    Butterfield, F. 1987. “The potential long term effects of gamma radiation of paper” Studies inConservation.V.32:181-191Google Scholar
  11. 11.
    Calvo AM (2004) Tesis:“El Uso de radiación gamma para el control de microorganismos e insectosen papel como un método de conservación de los materiales bibliográficos en peligro de inutilización”. Directora de Tesis: Dra. María Elisa González. Universidad del Museo Social Argentino, Buenos Aires, set. 2004, p 180Google Scholar
  12. 12.
    Calvo AM, Miranda MV (2013) Coloquio” Conservación- Restauración-Salud/Seguridad laboral delas personas y del medioambiente” (Draguignan–Figanières (France): 17–21 juin 2013)Google Scholar
  13. 13.
    Calvo AM, González ME (2001) Irradiación de papel para control de microorganismos. RevistaCNEA, 2001(abril–junio) 2:25–27Google Scholar
  14. 14.
    Calvo AM, González ME, Alfaro L, Miranda MV (2009) Laboratorio de Conservación yRestauración de Colecciones en Papel de la CNEA: tratamiento de libros y documentos atacados pormicroorganismos usando rayos gamma. Revista CNEA 2009(35–36):31–35Google Scholar
  15. 15.
    Calvo AM, Alfaro LS, Miranda MV, Area MC, Felissia F (2010a) Comportamiento del papel decelulosa frente a la irradiación a distintas dosis y el envejecimiento acelerado. Asociación Argentina deTecnología Nuclear, 22–25 de noviembre de 2010, Hotel Claridge, Buenos AiresGoogle Scholar
  16. 16.
    Calvo AM, Alfaro LS, Miranda MV, Chinen S (2010b) “Simulacros de desastre climático yrecuperación de material bibliográfico en el marco de la conservación preventiva” en PatrimonioCultural :la gestión el arte, la arqueología y las ciencias exactas aplicadas, Buenos Aires, CNEA, pp 197–201Google Scholar
  17. 17.
    Calvo Torras MA, Adelantado C, Corcuera Marín E (2005) Criterios: Principales características delos hongos causantes de alteraciones en materiales celulósicos”, PH Boletín Andaluz del Patrimonio Histórico, No 53, pp 18–23Google Scholar
  18. 18.
    Carrazana-García DI, González-Álvarez D, Díaz-Álvarez E, Mesa-Garriga L, Banguela-Castillo A, Chea-González A, Cupull-Santana R (2014) Aspergillus sclerotiorum: riesgo para la herencia cultural y lasalud. UniversitasScientiarum 19(3):323–332. doi: 10.11144/Javeriana.SC19-3.asrh Google Scholar
  19. 19.
    Choi Hye Jung, Sang Myeong Lee, Sun-HeeKim Dong Wan, Kim Young, Choi Whan, HongJoo Woo (2012) A novel Helicosporium isolate and its antimicrobial and cytotoxic pigment. J Microbiol Biotechnol 22(9):1214–1217CrossRefGoogle Scholar
  20. 20.
    Cragg SM et al (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119CrossRefGoogle Scholar
  21. 21.
    Cutrubinis M, Tran K, Bratu E, Caillat L, Negut D, Niculescu G (2008) International Conference on Wood Science for Preservation of Cultural Heritage. In: Disinfection and consolidation by irradiation of wooden samples from three Romanian churches: Mechanical and biological factors. Museu Diego de Sousa, 5-november de 2008, BragaGoogle Scholar
  22. 22.
    González ME, Calvo AM, Horak C, Alfaro L, Miranda V (2009) Propiedades del papel deoficina restaurado luego de radiotratamiento para descontaminación de hongos y levaduras” 1er.Congreso Iberoamericano y VIII Jornada “Técnicas de Restauración y Conservación del Patrimonio”, 10y 11 de Septiembre de 2009, La Plata, Buenos AiresGoogle Scholar
  23. 23.
    González ME, Calvo AM, Kairiyama E (2002) “Gamma Radiation for Preservation of Biologically Damaged Paper”. XII International Meeting on Radiation Processing, 26–30 March 2001, Avignon, France. Radiat Phys Chem 63:263–265CrossRefGoogle Scholar
  24. 24.
    Guiomar Carneiro Tomazello M, Wiendl FM (1995) The applicability of gamma radiation to the control of fungi in naturally contaminated paper. Restaurator 16:93–99Google Scholar
  25. 25.
    Hengemihle FH, Weberg N, Shahani C (1995) Preservation Research and Testing Series No. 9502. Desorption of Residual Ethylene Oxide from Fumigated Library Materials Preservation Research and Testing”. Office Preservation Directorate Library of Congress Washington, D.C.
  26. 26.
    IAEA Food Dosimetry Handbook (2002) Dosimetry for food irradiation. International Atomic Energy Agency, Vienna, Technical report series, ISSN0074–1914; no. 409.STI/DOC/010/409. ISBN 92–0–115502, p 168Google Scholar
  27. 27.
    IAEA Regional Project RER 8015 (2009–2011) Nuclear Techniques for Characterization and Preservation of Cultural Heritage Artefacts in the European Region. International Atomic Energy Commission. Vienna, p 44Google Scholar
  28. 28.
    IAEA-TECDOC-1386 (2004) Emerging applications of radiation processing. In: Proceedings of a technical meeting held in Vienna, 28–30 April 2003, IAEA, Vienna, p 171Google Scholar
  29. 29.
    IRAM ATIPCA 3118 P. Envejecimiento por radiación papeles y cartones, p 4Google Scholar
  30. 30.
    ISO/ASTM 52628 (2013). Standard Practice for Dosimetry Radiation Processing. American National Standard, p 13Google Scholar
  31. 31.
    ISO11137-1 (2006) Sterilization of health care products–radiation–part 1: requirements for development, validation and routine control of a sterilization process for medical devices, p 37Google Scholar
  32. 32.
    ISO11137-2 (2013) Sterilization of health care products–radiation–part 2: establishing the sterilization dose, p 68Google Scholar
  33. 33.
    ISO12749-4 (2015) Nuclear energy, nuclear technologies, and radiological protection—vocabulary—part 4: dosimetry for radiation processing, p 29Google Scholar
  34. 34.
    ISO14470 (2011) Food irradiation—requirements for the development, validation and routine control of the process of irradiation using ionizing radiation for the treatment of food, p 20Google Scholar
  35. 35.
    Katušin-Ražem B, Ražem D, Braun M (2009) Irradiation treatment for the protection and conservation of cultural heritage artefacts in Croatia. Radiat Phys Chem 78:729–731. doi: 10.1016/j.radphyschem.2009.03.048 CrossRefGoogle Scholar
  36. 36.
    Lacey J (1996) Spore dispersal-its role in ecology and disease: the British contribution to fungal aerobiology. Mycol Res 100:641–660Google Scholar
  37. 37.
    Llorente C, Bárcena A, Vera Bahima J, Saparrat MCN, Arambarri AM, Rozas MF, Mirífico MV, Balatti PA (2012) Cladosporium cladospoiroides LPSC 1088 produces the 1,8-dihydroxynaphthalene-melanin-like compound and carries a putative pks gene. Mycopathologia 174:397–408CrossRefGoogle Scholar
  38. 38.
    Mesquita N, Portugal A, Videira S, Rodriguez-Echeverri S, Bandeira AML, Santos MJA, Freitas H (2009) Fungal diversity in ancient documents. A case study on the Archive of the University of Coimbra. Int Biodeterior Biodegrad. 63:626–629Google Scholar
  39. 39.
    McCall N (1985) Ionizing radiation as an exterminant: a case study. Conservation Administration News, No 23Google Scholar
  40. 40.
    McCall N (2001) Personal communicationGoogle Scholar
  41. 41.
    Michaelsen A, Piñar G, Montanari M, Pinzari F (2009) Biodeterioration and restoration of a 16th-century book using a combination of conventional and molecular technique s: a case study. Int Biodeterior Biodegrad. 63:161–168Google Scholar
  42. 42.
    Moise IV et al (2012) Establishing the irradiation dose for paper decontamination. Radiat Phys Chem 81(8):1045–1050. doi: 10.1016/j.radphyschem.2011.11.063 CrossRefGoogle Scholar
  43. 43.
    Molina Veloso A, Borrego Alonso SF (2015) El planero como barrera contra agentes biodeteriorantesde mapas y planos. PH Investigación 4:45–61Google Scholar
  44. 44.
    Olcott Price L (1999) Traducción: Alan Haley y voluntarios de APOYO (Association for the Conservation of Cultural Heritage of the Americas).Controlling an invasion of mold. Guidelines for intervention in case of disaster. Support 9:6.
  45. 45.
    Papadópulos CC (1970) Planta Semi Industrial de Ezeiza. CNEA 272, CNEA, Buenos Aires, p 25Google Scholar
  46. 46.
    Phillips GO, Arthur JC (1985) Photochemistry and radiation chemistry of cellulose. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications, vol 552, pp 290–311. Ellis Horwood Ltd, ChichesterGoogle Scholar
  47. 47.
    Pinheiro AC, Macedo MF, Jurado V, Saiz-Jimenez C, Viegas C, Brandao J, Rosado L (2011) Mould and yeast identification in archival settings: preliminary results on the use of traditional methods and molecular biology options in Portuguese archives. Int Biodeterior Biodegrad 65:619–627Google Scholar
  48. 48.
    Pinzari F, Troiano F, Piñar G, Sterflinger K, Montanari M (2011) The contribution of microbiological research in the field of book, paper and parchment conservation. In: Engel P, Schirò J, Larsen R, Moussakova E, Kecskeméti I (eds) New approaches to book and paper conservation-restoration, pp 575e–594. Verlag Berger, Horn/WienGoogle Scholar
  49. 49.
    Piñar G, Tafer H, Sterflinger K, Pinzari F (2015) A mid the possible causes of a very famous foxing: molecular and microscopic insight into Leonardo da Vinci’s self-portrait. Environ Microbiol Rep 7(6):849–859Google Scholar
  50. 50.
    Ponta CC (2008) Irradiation conservation of cultural heritage. Nucl Phys News 18(1)Google Scholar
  51. 51.
    Ray E (2006) The Prague Library Floods of 2002. Libraries & Culture. Crisis Exp 41(3):381–391Google Scholar
  52. 52.
    Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, Brakhage A (2009) Production of pyomelanin, a second type of melanin ,via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol 75(2):493–503Google Scholar
  53. 53.
    Sinco P (2000) The use of gamma rays in book conservation. Nucl News, pp 38–40Google Scholar
  54. 54.
    Smith PA, Sheely MV, Hakspiel SJ, Miller S (2003) Volatile organic compounds produced during irradiation of Mai. AIHA J 64(2):89–195CrossRefGoogle Scholar
  55. 55.
    Sequeira S, Cabrita EJ, Macedo MF (2012) Antifungals on paper conservation: an overview. Int Biodeterior Biodegrad 74:67–86CrossRefGoogle Scholar
  56. 56.
    Sterflinger K, Pinzari F (2012) The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment. Environ Microbiol 14(3):559–566. doi: 10.1111/j.1462-2920.2011.02584.x CrossRefGoogle Scholar
  57. 57.
    Szczepanowska H, Cavaliere AR (2012) Conserving our cultural heritage: the role of fungi in biodeterioration. In: Johanning E, Morey P, Auger P (eds) Bioaerosols—fungi, bacteria, mycotoxins in indoor and outdoor environments and human health, pp 293–309. Fungal Research Group, AlbanyGoogle Scholar
  58. 58.
    TAPPI T401-93 (1993) Fiber analysis of paper and paperboard, p 12Google Scholar
  59. 59.
    TAPPI T494om96 (1996) Tensile breaking properties of paper and paperboard. Using constant rate of elongation apparatus, p 4Google Scholar
  60. 60.
    Troncozo MI, Gómez RP, Arambarri AM, Balatti PA, Bucsinszky AMM, Saparrat MCN (2015) Growth and oxidative enzymatic activity of in vitro cultures of Ciliochorella buxifolia. Mycoscience 56:58–65CrossRefGoogle Scholar
  61. 61.
    Urban J, Justa P (1986) Conservation by gamma radiation: the Museum of Central Bohemia in Roztoky. Mus Int 151:165–167Google Scholar
  62. 62.
    UNE 57092-4 (2002) Papel y Cartón. Envejecimiento acelerado.Pte.4:Tratamiento con calor húmedoa 80 °C y 65% de HR. Asociación Española de Normalización y Certificación(AENOR), p 8Google Scholar
  63. 63.
    UNE 57092-1 (2002) “Papel y Cartón. Envejecimiento acelerado con calor seco a 105 ºC. Asociación Española de Normalización y Certificación (AENOR), p 6Google Scholar
  64. 64.
    US Department of Health and Human Services (1987) Toxicology and carcinogenesis studies of ethyleneoxide. CASNº75-21-8 Technical Reports Series No 326, p 117Google Scholar
  65. 65.
    Valentín N (2010) Biodeterioro de libros y documentos en Conservación Preventiva enArchivos y Bibliotecas. IPCE. Ministerio de Cultura, pp 36–45Google Scholar
  66. 66.
    Valentín N (2008) El Biodeterioro de los Bienes Culturales. Materiales Orgánicos. La Ciencia y elArte. Instituto del Patrimonio Histórico Español.Ed.Secretaría General Técnica Ministerio de Cultura, pp 190–197Google Scholar
  67. 67.
    Valentín N (2005) Prevención del Biodeterioro en Archivos y Bibliotecas. BienesCulturales. No 2. IPHE, pp 190–193Google Scholar
  68. 68.
    WHO (World Health Organization. Pan American Health Organization) (1996) Pan American Center for Human Ecology and Health. Health and Environment Division. Ethylene Oxide. “Guide to health and safety”. Mepetec, State of Mexico, No 16, p 13Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ana Maria del Carmen Calvo
    • 1
  • Andrea Docters
    • 1
  • María Virginia Miranda
    • 1
  • Mario Carlos Nazareno Saparrat
    • 2
  1. 1.Comisión Nacional de Energía AtómicaBuenos AiresArgentina
  2. 2.Instituto de Fisiología Vegetal (INFIVE)Universidad Nacional de La Plata (UNLP)-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)La PlataArgentina

Personalised recommendations